The Neurodevelopmental Impact of Neonatal Morphine Administration
Abstract
:1. Introduction
2. Adverse Effects of Neonatal Pain
2.1. Early Development of Pain Pathways
2.2. Impact of Neonatal Pain
2.3. Consensus Views Support Analgesia and Limitation of Painful Procedures
3. Morphine’s Impact on Neuronal Apoptosis
4. Neuroprotective Impact of Analgesia
5. Long-Term Impact of Morphine Therapy-Clinical Evidence
5.1. A pilot Study of Preemptive Morphine Analgesia in Preterm Neonates
5.2. The Second Study Entitled
5.3. A Study Entitled
6. Summary
Supplementary Files
Conflicts of Interest
References
- Simons, S.H.; van Dijk, M.; Anand, K.S.; Roofthooft, D.; van Lingen, R.A.; Tibboel, D. Do we still hurt newborn babies? A prospective study of procedural pain and analgesia in neonates. Arch. Pediatr. Adolesc. Med. 2003, 157, 1058–1064. [Google Scholar] [CrossRef]
- Hu, S.; Sheng, W.S.; Lokensgard, J.R.; Peterson, P.K. Morphine induces apoptosis of human microglia and neurons. Neuropharmacology 2002, 42, 829–836. [Google Scholar] [CrossRef]
- Bajic, D.; Commons, K.G.; Soriano, S.G. Morphine-enhanced apoptosis in selective brain regions of neonatal rats. Int. J. Dev. Neurosci. 2013, 31, 258–266. [Google Scholar] [CrossRef]
- Handelmann, G.E.; Dow-Edwards, D. Modulation of brain development by morphine: Effects on central motor systems and behavior. Peptides 1985, 6 (Suppl. 2), 29–34. [Google Scholar]
- Ma, M.X.; Chen, Y.M.; He, J.; Zeng, T.; Wang, J.H. Effects of morphine and its withdrawal on y-maze spatial recognition memory in mice. Neuroscience 2007, 147, 1059–1065. [Google Scholar] [CrossRef]
- Duhrsen, L.; Simons, S.H.P.; Dzietko, M.; Genz, K.; Bendix, I.; Boos, V.; Sifringer, M.; Tibboel, D.; Felderhoff-Mueser, U. Effects of Repetitive Exposure to Pain and Morphine Treatment on the Neonatal Rat Brain. Neonatology 2013, 103, 35–43. [Google Scholar] [CrossRef]
- Roofhooft, D.W.; Simons, S.H.P.; Anand, K.J.; Tibboel, D.; van Dijk, M. Eight Years Later, Are We Still Hurting Newborn Infants? Neonatology 2014, 105, 218–226. [Google Scholar]
- Bellù, R.; de Waal, K.A.; Zanini, R. Opioids for neonates receiving mechanical ventilation. Cochrane Database Syst. Rev. 2008. [Google Scholar] [CrossRef]
- Humphrey, T. Some correlations between the appearance of human fetal reflexes and the development of the nervous system. Prog. Brain Res. 1964, 4, 93–135. [Google Scholar] [CrossRef]
- Mellor, D.J.; Diesch, T.J.; Gunn, A.J.; Bennet, L. The importance of “awareness” for understanding fetal pain. Brain Res. Brain Res. Rev. 2005, 49, 455–471. [Google Scholar]
- Anand, K.J.; Hickey, P.R. Pain and its effects in the human neonate and fetus. N. Engl. J. Med. 1987, 317, 1321–1329. [Google Scholar] [CrossRef]
- McPherson, C. Sedation and analgesia in mechanically ventilated preterm neonates: Continue standard of care or experiment? J. Pediatr. Pharmacol. Ther. 2012, 17, 351–364. [Google Scholar]
- Slater, R.; Cantarella, A.; Gallella, S.; Worley, A.; Boyd, S.; Meek, J.; Fitzgerald, M. Cortical pain responses in human infants. J. Neurosci. 2006, 26, 3662–3666. [Google Scholar] [CrossRef]
- Fitzgerald, M.; Beggs, S. The neurobiology of pain: Developmental aspects. Neuroscientist 2001, 7, 246–257. [Google Scholar] [CrossRef]
- Maxwell, L.G.; Malavolta, C.P.; Fraga, M.V. Assessment of pain in the neonate. Clin. Perinatol. 2013, 40, 457–469. [Google Scholar]
- Bosenberg, A.; Flick, R.P. Regional anesthesia in neonates and infants. Clin. Perinatol. 2013, 40, 525–538. [Google Scholar] [CrossRef]
- Taddio, A.; Katz, J. The effects of early pain experience in neonates on pain responses in infancy and childhood. Paediatr. Drugs 2005, 7, 245–257. [Google Scholar] [CrossRef]
- Bouza, H. The impact of pain in the immature brain. J. Matern. Fetal Neonatal Med. 2009, 22, 722–732. [Google Scholar] [CrossRef]
- Walker, S.M. Biological and neurodevelopmental implications of neonatal pain. Clin. Perinatol. 2013, 40, 471–491. [Google Scholar] [CrossRef]
- Taddio, A.; Goldbach, M.; Ipp, M.; Stevens, B.; Koren, G. Effect of neonatal circumcision on pain responses during vaccination in boys. Lancet 1995, 345, 291–292. [Google Scholar] [CrossRef]
- Taddio, A.; Shah, V.; Atenafu, E.; Katz, J. Influence of repeated painful procedures and sucrose analgesia on the development of hyperalgesia in newborn infants. Pain 2009, 144, 43–48. [Google Scholar] [CrossRef]
- Vinall, J.; Miller, S.P.; Chau, V.; Brummelte, S.; Synnes, A.R.; Grunau, R.E. Neonatal pain in relation to postnatal growth in infants born very preterm. Pain 2012, 153, 1374–1381. [Google Scholar] [CrossRef]
- Anand, K.J. Pain, plasticity, and premature birth: A prescription for permanent suffering? Nat. Med. 2000, 6, 971–973. [Google Scholar] [CrossRef]
- Ruda, M.A.; Ling, Q.D.; Hohmann, A.G.; Peng, Y.B.; Tachibana, T. Altered nociceptive neuronal circuits after neonatal peripheral inflammation. Science 2000, 289, 628–631. [Google Scholar] [CrossRef]
- Anand, K.J. Clinical importance of pain and stress in preterm neonates. Biol. Neonate 1998, 73, 1–9. [Google Scholar] [CrossRef]
- Fitzgerald, M.; Millard, C.; McIntosh, N. Cutaneous hypersensitivity following peripheral tissue damage in newborn infants and its reversal with topical anaesthesia. Pain 1989, 39, 31–36. [Google Scholar] [CrossRef]
- Grunau, R.E.; Holsti, L.; Peters, J.W. Long-term consequences of pain in human neonates. Semin. Fetal Neonatal Med. 2006, 11, 268–275. [Google Scholar] [CrossRef]
- Brummelte, S.; Grunau, R.E.; Chau, V.; Poskitt, K.J.; Brant, R.; Vinall, J.; Gover, A.; Synnes, A.; Miller, S.P. Procedural pain and brain development in premature newborns. Ann. Neurol. 2012, 71, 385–396. [Google Scholar] [CrossRef]
- Anand, K.J.; Sippell, W.G.; Aynsley-Green, A. Randomised trial of fentanyl anaesthesia in preterm babies undergoing surgery: Effects on the stress response. Lancet 1987, 1, 243–248. [Google Scholar]
- Grunau, R.V.; Whitfield, M.F.; Petrie, J.H.; Fryer, E.L. Early pain experience, child and family factors, as precursors of somatization: A prospective study of extremely premature and fullterm children. Pain 1994, 56, 353–359. [Google Scholar] [CrossRef]
- Grunau, R.E.; Whitfield, M.F.; Petrie-Thomas, J.; Synnes, A.R.; Cepeda, I.L.; Keidar, A.; Rogers, M.; Mackay, M.; Hubber-Richard, P.; Johannesen, D. Neonatal pain, parenting stress and interaction, in relation to cognitive and motor development at 8 and 18 months in preterm infants. Pain 2009, 143, 138–146. [Google Scholar] [CrossRef]
- Hohmeister, J.; Kroll, A.; Wollgarten-Hadamek, I.; Zohsel, K.; Demirakça, S.; Flor, H.; Hermann, C. Cerebral processing of pain in school-aged children with neonatal nociceptive input: An exploratory fMRI study. Pain 2010, 150, 257–267. [Google Scholar] [CrossRef]
- Ranger, M.; Chau, C.M.; Garg, A.; Woodward, T.S.; Beg, M.F.; Bjornson, B.; Poskitt, K.; Fitzpatrick, K.; Synnes, A.R.; Miller, S.P.; et al. Neonatal pain-related stress predicts cortical thickness at age 7 years in children born very preterm. PLoS One 2013, 8, e76702. [Google Scholar] [CrossRef]
- Andrews, K.; Fitzgerald, M. Cutaneous flexion reflex in human neonates: A quantitative study of threshold and stimulus-response characteristics after single and repeated stimuli. Dev. Med. Child Neurol. 1999, 41, 696–703. [Google Scholar] [CrossRef]
- Boronat, M.A.; García-Fuster, M.J.; García-Sevilla, J.A. Chronic morphine induces up-regulation of the pro-apoptotic fas receptor and down-regulation of the anti-apoptotic bcl-2 oncoprotein in rat brain. Br. J. Pharmacol. 2001, 134, 1263–1270. [Google Scholar] [CrossRef]
- Katebi, S.N.; Razavi, Y.; Zeighamy Alamdary, S.; Khodagholi, F.; Haghparast, A. Morphine could increase apoptotic factors in the nucleus accumbens and prefrontal cortex of rat brain’s reward circuitry. Brain Res. 2013, 1540, 1–8. [Google Scholar] [CrossRef]
- Anand, K.J.; Garg, S.; Rovnaghi, C.R.; Narsinghani, U.; Bhutta, A.T.; Hall, R.W. Ketamine reduces the cell death following inflammatory pain in newborn rat brain. Pediatr. Res. 2007, 62, 283–290. [Google Scholar] [CrossRef]
- Juul, S.E.; Beyer, R.P.; Bammler, T.K.; Farin, F.M.; Gleason, C.A. Effects of neonatal stress and morphine on murine hippocampal gene expression. Pediatr. Res. 2011, 69, 285–292. [Google Scholar] [CrossRef]
- Laprairie, J.L.; Johns, M.E.; Murphy, A.Z. Preemptive morphine analgesia attenuates the long-term consequences of neonatal inflammation in male and female rats. Pediatr. Res. 2008, 64, 625–630. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Q.; Yu, L.C. Morphine: A protective or destructive role in neurons? Neuroscientist 2008, 14, 561–570. [Google Scholar] [CrossRef]
- Scott, H.L.; Braud, S.; Bannister, N.J.; Isaac, J.T. Synaptic strength at the thalamocortical input to layer IV neonatal barrel cortex is regulated by protein kinase C. Neuropharmacology 2007, 52, 185–192. [Google Scholar] [CrossRef]
- Francis, F.; Koulakoff, A.; Boucher, D.; Chafey, P.; Schaar, B.; Vinet, M.C.; Friocourt, G.; McDonnell, N.; Reiner, O.; Kahn, A.; et al. Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron 1999, 23, 247–256. [Google Scholar] [CrossRef]
- Gleeson, J.G.; Lin, P.T.; Flanagan, L.A.; Walsh, C.A. Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 1999, 23, 257–271. [Google Scholar] [CrossRef]
- Chen, L.; Huang, L.Y. Protein kinase C reduces Mg2+ block of nmda-receptor channels as a mechanism of modulation. Nature 1992, 356, 521–523. [Google Scholar] [CrossRef]
- Ferguson, S.A.; Ward, W.L.; Paule, M.G.; Hall, R.W.; Anand, K.J. A pilot study of preemptive morphine analgesia in preterm neonates: Effects on head circumference, social behavior, and response latencies in early childhood. Neurotoxicol. Teratol. 2012, 34, 47–55. [Google Scholar] [CrossRef]
- Anand, K.J.; Hall, R.W.; Desai, N.; Shephard, B.; Bergqvist, L.L.; Young, T.E.; Boyle, E.M.; Carbajal, R.; Bhutani, V.K.; Moore, M.B.; et al. Effects of morphine analgesia in ventilated preterm neonates: Primary outcomes from the neopain randomised trial. Lancet 2004, 363, 1673–1682. [Google Scholar] [CrossRef]
- Franz, A.R.; Pohlandt, F.; Bode, H.; Mihatsch, W.A.; Sander, S.; Kron, M.; Steinmacher, J. Intrauterine, early neonatal, and postdischarge growth and neurodevelopmental outcome at 5.4 years in extremely preterm infants after intensive neonatal nutritional support. Pediatrics 2009, 123, e101–e109. [Google Scholar] [CrossRef]
- MacGregor, R.; Evans, D.; Sugden, D.; Gaussen, T.; Levene, M. Outcome at 5–6 years of prematurely born children who received morphine as neonates. Arch. Dis. Child. Fetal Neonatal Ed. 1998, 79, F40–F43. [Google Scholar] [CrossRef]
- Rozé, J.C.; Denizot, S.; Carbajal, R.; Ancel, P.Y.; Kaminski, M.; Arnaud, C.; Truffert, P.; Marret, S.; Matis, J.; Thiriez, G.; et al. Prolonged sedation and/or analgesia and 5-year neurodevelopment outcome in very preterm infants: Results from the epipage cohort. Arch. Pediatr. Adolesc. Med. 2008, 162, 728–733. [Google Scholar] [CrossRef]
- De Graaf, J.; van Lingen, R.A.; Valkenburg, A.J.; Weisglas-Kuperus, N.; Groot Jebbink, L.; Wijnberg-Williams, B.; Anand, K.J.; Tibboel, D.; van Dijk, M. Does neonatal morphine use affect neuropsychological outcomes at 8 to 9 years of age? Pain 2013, 154, 449–458. [Google Scholar] [CrossRef]
- Simons, S.H.; van Dijk, M.; van Lingen, R.A.; Roofthooft, D.; Duivenvoorden, H.J.; Jongeneel, N.; Bunkers, C.; Smink, E.; Anand, K.J.; van den Anker, J.N.; et al. Routine morphine infusion in preterm newborns who received ventilatory support: A randomized controlled trial. JAMA 2003, 290, 2419–2427. [Google Scholar] [CrossRef]
- De Graaf, J.; van Lingen, R.A.; Simons, S.H.; Anand, K.J.; Duivenvoorden, H.J.; Weisglas-Kuperus, N.; Roofthooft, D.W.; Groot Jebbink, L.J.; Veenstra, R.R.; Tibboel, D.; et al. Long-term effects of routine morphine infusion in mechanically ventilated neonates on children’s functioning: Five-year follow-up of a randomized controlled trial. Pain 2011, 152, 1391–1397. [Google Scholar] [CrossRef]
- Bhutta, A.T.; Rovnaghi, C.; Simpson, P.M.; Gossett, J.M.; Scalzo, F.M.; Anand, K.J.S. Interactions of inflammatory pain and morphine in infant rats Long-term behavioral effects. Physiol. Behav. 2001, 73, 51–58. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Attarian, S.; Tran, L.C.; Moore, A.; Stanton, G.; Meyer, E.; Moore, R.P. The Neurodevelopmental Impact of Neonatal Morphine Administration. Brain Sci. 2014, 4, 321-334. https://doi.org/10.3390/brainsci4020321
Attarian S, Tran LC, Moore A, Stanton G, Meyer E, Moore RP. The Neurodevelopmental Impact of Neonatal Morphine Administration. Brain Sciences. 2014; 4(2):321-334. https://doi.org/10.3390/brainsci4020321
Chicago/Turabian StyleAttarian, Stephanie, Lan Chi Tran, Aimee Moore, George Stanton, Eric Meyer, and Robert P. Moore. 2014. "The Neurodevelopmental Impact of Neonatal Morphine Administration" Brain Sciences 4, no. 2: 321-334. https://doi.org/10.3390/brainsci4020321
APA StyleAttarian, S., Tran, L. C., Moore, A., Stanton, G., Meyer, E., & Moore, R. P. (2014). The Neurodevelopmental Impact of Neonatal Morphine Administration. Brain Sciences, 4(2), 321-334. https://doi.org/10.3390/brainsci4020321