Genetic Pathways to Insomnia
Abstract
:1. Introduction
2. Overview of Genetic Methodology
2.1. Twin and Family Studies
2.2. Candidate Gene Studies
2.3. Genome-Wide Association Studies (GWAS)
3. Twin and Family Studies of Insomnia
4. Measured Gene Studies of Insomnia
4.1. Candidate Gene
4.2. Genome-Wide Association Studies
5. Conclusions and Future Directions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Arlington, VA, USA, 2013. [Google Scholar]
- Ohayon, M.M. Epidemiology of insomnia: What we know and what we still need to learn. Sleep Med. Rev. 2002, 6, 97–111. [Google Scholar] [CrossRef] [PubMed]
- Roth, T. Insomnia: Definition, prevalence, etiology, and consequences. J. Clin. Sleep Med. 2007, 3, S7–S10. [Google Scholar] [PubMed]
- Morin, C.M.; Jarrin, D.C. Epidemiology of insomnia. Sleep Med. Clin. 2013, 8, 281–297. [Google Scholar] [CrossRef]
- Spielman, A.J.; Caruso, L.S.; Glovinsky, P.B. A behavioral perspective on insomnia treatment. Psychiatr. Clin. N. Am. 1987, 10, 541–553. [Google Scholar]
- Gehrman, P.R.; Pfeiffenberger, C.; Byrne, E. The role of genes in the insomnia phenotype. Sleep Med. Clin. 2013, 8, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Kendler, K.S.; Prescott, C.A. Genes, Environment, and Psychopathology: Understanding the Causes of Pyschiatric and Substance Use Disorders; Guilford Press: New York, NY, USA, 2006. [Google Scholar]
- Neale, B.M.; Ferreira, M.A.R.; Medland, S.E.; Posthuma, D. Statistical Genetics: Gene Mapping through Linkage and Association; Taylor & Francis: London, UK, 2007. [Google Scholar]
- Plomin, R.; Defries, J.C.; Knopik, V.S.; Neiderhiser, J.M. Behavioral Genetics, 6th ed.; Worth Publishers: New York, NY, USA, 2013. [Google Scholar]
- Strachan, T.; Read, A. Human Molecular Genetics, 4th ed.; Garland Science: New York, NY, USA, 2010. [Google Scholar]
- Barclay, N.L.; Gregory, A.M. Quantitative genetic research on sleep: A review of normal sleep, sleep disturbances and associated emotional, behavioural, and health-related difficulties. Sleep Med. Rev. 2013, 17, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Gehrman, P.R.; Byrne, E.; Gillespie, N.; Martin, N.G. Genetics of insomnia. Sleep Med. Clin. 2011, 6, 191–202. [Google Scholar] [CrossRef]
- Beaulieu-Bonneau, S.; LeBlanc, M.; Merette, C.; Dauvilliers, Y.; Morin, C.M. Family history of insomnia in a population-based sample. Sleep 2007, 30, 1739–1745. [Google Scholar] [PubMed]
- Dauvilliers, Y.; Morin, C.; Cervena, K.; Carlander, B.; Touchon, J.; Besset, A.; Billiard, M. Family studies in insomnia. J. Psychosom. Res. 2005, 58, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Bastien, C.H.; Morin, C.M. Familial incidence of insomnia. J. Sleep Res. 2000, 9, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Hauri, P.; Olmstead, E. Childhood-onset insomnia. Sleep 1980, 3, 59–65. [Google Scholar] [PubMed]
- Abe, K.; Shimakawa, M. Genetic-constitutional factor and childhood insomnia. Psychiatr. Neurol. (Basel) 1966, 152, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Webb, W.B.; Campbell, S.S. Relationships in sleep characteristics of identical and fraternal twins. Arch. Gen. Psychiatry 1983, 40, 1093–1095. [Google Scholar] [CrossRef] [PubMed]
- Partinen, M.; Kaprio, J.; Koskenvuo, M.; Putkonen, P.; Langinvainio, H. Genetic and environmental determination of human sleep. Sleep 1983, 6, 179–185. [Google Scholar] [PubMed]
- Heath, A.C.; Kendler, K.S.; Eaves, L.J.; Martin, N.G. Evidence for genetic influences on sleep disturbance and sleep pattern in twins. Sleep 1990, 13, 318–335. [Google Scholar] [PubMed]
- Heath, A.C.; Eaves, L.J.; Kirk, K.M.; Martin, N.G. Effects of lifestyle, personality, symptoms of anxiety and depression, and genetic predisposition on subjective sleep disturbance and sleep pattern. Twin Res. 1998, 1, 176–188. [Google Scholar] [CrossRef] [PubMed]
- McCarren, M.; Goldberg, J.; Ramakrishnan, V.; Fabsitz, R. Insomnia in vietnam era veteran twins: Influence of genes and combat experience. Sleep 1994, 17, 456–461. [Google Scholar] [PubMed]
- De Castro, J.M. The influence of heredity on self-reported sleep patterns in free-living humans. Physiol. Behav. 2002, 76, 479–486. [Google Scholar] [CrossRef]
- Watson, N.F.; Goldberg, J.; Arguelles, L.; Buchwald, D. Genetic and environmental influences on insomnia, daytime sleepiness, and obesity in twins. Sleep 2006, 29, 645–649. [Google Scholar] [PubMed]
- Boomsma, D.I.; van Someren, E.J.; Beem, A.L.; de Geus, E.J.; Willemsen, G. Sleep during a regular week night: A twin-sibling study. Twin Res. Hum. Genet. 2008, 11, 538–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barclay, N.L.; Eley, T.C.; Buysse, D.J.; Rijsdijk, F.V.; Gregory, A.M. Genetic and environmental influences on different components of the pittsburgh sleep quality index and their overlap. Sleep 2010, 33, 659–668. [Google Scholar] [PubMed]
- Hublin, C.; Partinen, M.; Koskenvuo, M.; Kaprio, J. Heritability and mortality risk of insomnia-related symptoms: A genetic epidemiologic study in a population-based twin cohort. Sleep 2011, 34, 957–964. [Google Scholar] [CrossRef] [PubMed]
- Drake, C.L.; Friedman, N.P.; Wright, K.P., Jr.; Roth, T. Sleep reactivity and insomnia: Genetic and environmental influences. Sleep 2011, 34, 1179–1188. [Google Scholar] [CrossRef] [PubMed]
- Hur, Y.M.; Burri, A.; Spector, T.D. The genetic and environmental structure of the covariation among the symptoms of insomnia, fatigue, and depression in adult females. Twin Res. Hum. Genet. 2012, 15, 720–726. [Google Scholar] [CrossRef] [PubMed]
- Genderson, M.R.; Rana, B.K.; Panizzon, M.S.; Grant, M.D.; Toomey, R.; Jacobson, K.C.; Xian, H.; Cronin-Golomb, A.; Franz, C.E.; Kremen, W.S.; et al. Genetic and environmental influences on sleep quality in middle-aged men: A twin study. J. Sleep Res. 2013, 22, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Lind, M.J.; Aggen, S.H.; Kirkpatrick, R.M.; Kendler, K.S.; Amstadter, A.B. A longitudinal twin study of insomnia symptoms in adults. Sleep 2015, 38, 1423–1430. [Google Scholar] [CrossRef] [PubMed]
- Gregory, A.M.; Eley, T.C.; O’Connor, T.G.; Plomin, R. Etiologies of associations between childhood sleep and behavioral problems in a large twin sample. J. Am. Acad. Child Adolesc. Psychiatry 2004, 43, 744–751. [Google Scholar] [CrossRef] [PubMed]
- Gregory, A.M.; Rijsdijk, F.V.; Eley, T.C. A twin-study of sleep difficulties in school-aged children. Child Dev. 2006, 77, 1668–1679. [Google Scholar] [CrossRef] [PubMed]
- Gregory, A.M.; Rijsdijk, F.V.; Dahl, R.E.; McGuffin, P.; Eley, T.C. Associations between sleep problems, anxiety, and depression in twins at 8 years of age. Pediatrics 2006, 118, 1124–1132. [Google Scholar] [CrossRef] [PubMed]
- Gregory, A.M. A genetic decomposition of the association between parasomnias and dyssomnias in 8-year-old twins. Arch. Pediatr. Adolesc. Med. 2008, 162, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Gehrman, P.R.; Meltzer, L.J.; Moore, M.; Pack, A.I.; Perlis, M.L.; Eaves, L.J.; Silberg, J.L. Heritability of insomnia symptoms in youth and their relationship to depression and anxiety. Sleep 2011, 34, 1641–1646. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.; Slane, J.; Mindell, J.A.; Burt, S.A.; Klump, K.L. Genetic and environmental influences on sleep problems: A study of preadolescent and adolescent twins. Child Care Health Dev. 2011, 37, 638–641. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.J.; Gregory, A.M.; Freeman, D.; Ronald, A. Do sleep disturbances and psychotic-like experiences in adolescence share genetic and environmental influences? J. Abnorm. Psychol. 2015, 124, 674–684. [Google Scholar] [CrossRef] [PubMed]
- Barclay, N.L.; Gehrman, P.R.; Gregory, A.M.; Eaves, L.J.; Silberg, J.L. The heritability of insomnia progression during childhood/adolescence: Results from a longitudinal twin study. Sleep 2015, 38, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Krystal, A.D. Psychiatric disorders and sleep. Neurol. Clin. 2012, 30, 1389–1413. [Google Scholar] [CrossRef] [PubMed]
- Gregory, A.M.; Buysse, D.J.; Willis, T.A.; Rijsdijk, F.V.; Maughan, B.; Rowe, R.; Cartwright, S.; Barclay, N.L.; Eley, T.C. Associations between sleep quality and anxiety and depression symptoms in a sample of young adult twins and siblings. J. Psychosom. Res. 2011, 71, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Lind, M.J.; Hawn, S.; Sheerin, C.; Aggen, S.H.; Kirkpartrick, R.M.; Kendler, K.S.; Amstadter, A.B. An examination of the etiologic overlap between the genetic and environmental influences on insomnia and common psychopathology. Depression Anxiety 2016, in press. [Google Scholar]
- Serretti, A.; Gaspar-Barba, E.; Calati, R.; Cruz-Fuentes, C.S.; Gomez-Sanchez, A.; Perez-Molina, A.; De Ronchi, D. 3111T/C clock gene polymorphism is not associated with sleep disturbances in untreated depressed patients. Chronobiol. Int. 2010, 27, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Serretti, A.; Benedetti, F.; Mandelli, L.; Lorenzi, C.; Pirovano, A.; Colombo, C.; Smeraldi, E. Genetic dissection of psychopathological symptoms: Insomnia in mood disorders and clock gene polymorphism. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2003, 121, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Utge, S.J.; Soronen, P.; Loukola, A.; Kronholm, E.; Ollila, H.M.; Pirkola, S.; Porkka-Heiskanen, T.; Partonen, T.; Paunio, T. Systematic analysis of circadian genes in a population-based sample reveals association of timeless with depression and sleep disturbance. PLoS ONE 2010, 5, e9259. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Huang, C.; Lan, Y.; Wang, Y. A cross-sectional study on the relationships among the polymorphism of period2 gene, work stress, and insomnia. Sleep Breath 2015, 19, 1399–1406. [Google Scholar] [CrossRef] [PubMed]
- Brower, K.J.; Wojnar, M.; Sliwerska, E.; Armitage, R.; Burmeister, M. PER3 polymorphism and insomnia severity in alcohol dependence. Sleep 2012, 35, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Purves, D.; Augustine, G.J.; Fitzpatrick, D.; Hall, W.C.; LaMantia, A.-S.; White, L.E. Neuroscience, 5th ed.; Sinauer Associates, Inc.: Sunderland, MA, USA, 2012. [Google Scholar]
- Schwartz, M.D.; Kilduff, T.S. The neurobiology of sleep and wakefulness. Psychiatr. Clin. N. Am. 2015, 38, 615–644. [Google Scholar] [CrossRef] [PubMed]
- Brummett, B.H.; Krystal, A.D.; Ashley-Koch, A.; Kuhn, C.M.; Zuchner, S.; Siegler, I.C.; Barefoot, J.C.; Ballard, E.L.; Gwyther, L.P.; Williams, R.B. Sleep quality varies as a function of 5-HTTLPR genotype and stress. Psychosom. Med. 2007, 69, 621–624. [Google Scholar] [CrossRef] [PubMed]
- Bouvette-Turcot, A.A.; Pluess, M.; Bernier, A.; Pennestri, M.H.; Levitan, R.; Sokolowski, M.B.; Kennedy, J.L.; Minde, K.; Steiner, M.; Pokhvisneva, I.; et al. Effects of genotype and sleep on temperament. Pediatrics 2015, 136, e914–e921. [Google Scholar] [CrossRef] [PubMed]
- Brummett, B.H.; Krystal, A.D.; Siegler, I.C.; Kuhn, C.; Surwit, R.S.; Zuchner, S.; Ashley-Koch, A.; Barefoot, J.C.; Williams, R.B. Associations of a regulatory polymorphism of monoamine oxidase-A gene promoter (MAOA-uVNTR) with symptoms of depression and sleep quality. Psychosom. Med. 2007, 69, 396–401. [Google Scholar] [CrossRef] [PubMed]
- Perlis, R.H.; Mischoulon, D.; Smoller, J.W.; Wan, Y.J.; Lamon-Fava, S.; Lin, K.M.; Rosenbaum, J.F.; Fava, M. Serotonin transporter polymorphisms and adverse effects with fluoxetine treatment. Biol. Psychiatry 2003, 54, 879–883. [Google Scholar] [CrossRef]
- Du, L.; Bakish, D.; Ravindran, A.; Hrdina, P.D. MAO-A gene polymorphisms are associated with major depression and sleep disturbance in males. Neuroreport 2004, 15, 2097–2101. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Li, J.; Lu, L.; Ren, X.; Li, Y.; Huang, Q.; Lan, Y.; Wang, Y. Interaction between serotonin transporter gene-linked polymorphic region (5-HTTLPR) and job-related stress in insomnia: A cross-sectional study in Sichuan, China. Sleep Med. 2014, 15, 1269–1275. [Google Scholar] [CrossRef] [PubMed]
- Harvey, C.J.; Gehrman, P.; Espie, C.A. Who is predisposed to insomnia: A review of familial aggregation, stress-reactivity, personality and coping style. Sleep Med. Rev. 2014, 18, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, S.; Liu, T.; Borjigin, J.; Lin, J.D. Transcriptional coactivator PGC-1α integrates the mammalian clock and energy metabolism. Nature 2007, 447, 477–481. [Google Scholar] [CrossRef] [PubMed]
- Jawinski, P.; Tegelkamp, S.; Sander, C.; Hantzsch, M.; Huang, J.; Mauche, N.; Scholz, M.; Spada, J.; Ulke, C.; Burkhardt, R.; et al. Time to wake up: No impact of COMT Val158Met gene variation on circadian preferences, arousal regulation and sleep. Chronobiol. Int. 2016, 33, 893–905. [Google Scholar] [CrossRef] [PubMed]
- Valomon, A.; Holst, S.C.; Bachmann, V.; Viola, A.U.; Schmidt, C.; Zurcher, J.; Berger, W.; Cajochen, C.; Landolt, H.P. Genetic polymorphisms of dat1 and comt differentially associate with actigraphy-derived sleep-wake cycles in young adults. Chronobiol. Int. 2014, 31, 705–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dauvilliers, Y.; Tafti, M.; Landolt, H.P. Catechol-O-methyltransferase, dopamine, and sleep-wake regulation. Sleep Med. Rev. 2015, 22, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.C.; Lung, F.W. The role of PGC-1 and apoepsilon4 in insomnia. Psychiatr. Genet. 2012, 22, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Ziv-Gal, A.; Flaws, J.A.; Mahoney, M.M.; Miller, S.R.; Zacur, H.A.; Gallicchio, L. Genetic polymorphisms in the aryl hydrocarbon receptor-signaling pathway and sleep disturbances in middle-aged women. Sleep Med. 2013, 14, 883–887. [Google Scholar] [CrossRef] [PubMed]
- Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium; Ripke, S.; Wray, N.R.; Lewis, C.M.; Hamilton, S.P.; Weissman, M.M.; Breen, G.; Byrne, E.M.; Blackwood, D.H.; Boomsma, D.I.; et al. A mega-analysis of genome-wide association studies for major depressive disorder. Mol. Psychiatry 2013, 18, 497–511. [Google Scholar]
- Converge Consortium. Sparse whole-genome sequencing identifies two loci for major depressive disorder. Nature 2015, 523, 588–591. [Google Scholar]
- Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014, 511, 421–427. [Google Scholar] [Green Version]
- Ollila, H.M.; Kettunen, J.; Pietilainen, O.; Aho, V.; Silander, K.; Kronholm, E.; Perola, M.; Lahti, J.; Raikkonen, K.; Widen, E.; et al. Genome-wide association study of sleep duration in the finnish population. J. Sleep Res. 2014, 23, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, D.J.; Hek, K.; Chen, T.H.; Watson, N.F.; Eiriksdottir, G.; Byrne, E.M.; Cornelis, M.; Warby, S.C.; Bandinelli, S.; Cherkas, L.; et al. Novel loci associated with usual sleep duration: The charge consortium genome-wide association study. Mol. Psychiatry 2015, 20, 1232–1239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ban, H.J.; Kim, S.C.; Seo, J.; Kang, H.B.; Choi, J.K. Genetic and metabolic characterization of insomnia. PLoS ONE 2011, 6, e18455. [Google Scholar] [CrossRef] [PubMed]
- Byrne, E.M.; Gehrman, P.R.; Medland, S.E.; Nyholt, D.R.; Heath, A.C.; Madden, P.A.; Hickie, I.B.; Van Duijn, C.M.; Henders, A.K.; Montgomery, G.W.; et al. A genome-wide association study of sleep habits and insomnia. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2013, 162B, 439–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parsons, M.J.; Lester, K.J.; Barclay, N.L.; Nolan, P.M.; Eley, T.C.; Gregory, A.M. Replication of genome-wide association studies (GWAS) loci for sleep in the British G1219 cohort. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2013, 162B, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Spada, J.; Scholz, M.; Kirsten, H.; Hensch, T.; Horn, K.; Jawinski, P.; Ulke, C.; Burkhardt, R.; Wirkner, K.; Loeffler, M.; et al. Genome-wide association analysis of actigraphic sleep phenotypes in the life adult study. J. Sleep Res. 2016. [Google Scholar] [CrossRef] [PubMed]
- Amin, N.; Allebrandt, K.V.; van der Spek, A.; Muller-Myhsok, B.; Hek, K.; Teder-Laving, M.; Hayward, C.; Esko, T.; van Mill, J.G.; Mbarek, H.; et al. Genetic variants in RBFOX3 are associated with sleep latency. Eur. J. Hum. Genet. 2016, 24, 1488–1495. [Google Scholar] [CrossRef] [PubMed]
- O’Donovan, M.C. What have we learned from the psychiatric genomics consortium. World Psychiatry 2015, 14, 291–293. [Google Scholar] [CrossRef] [PubMed]
- Psychiatric Genomics Consortium. What is the PGC? Available online: http://pgc.unc.edu (accessed on 19 December 2016).
- Gressier, F.; Calati, R.; Balestri, M.; Marsano, A.; Alberti, S.; Antypa, N.; Serretti, A. The 5-HTTLPR polymorphism and posttraumatic stress disorder: A meta-analysis. J. Trauma. Stress 2013, 26, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Risch, N.; Herrell, R.; Lehner, T.; Liang, K.Y.; Eaves, L.; Hoh, J.; Griem, A.; Kovacs, M.; Ott, J.; Merikangas, K.R. Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: A meta-analysis. JAMA 2009, 301, 2462–2471. [Google Scholar] [CrossRef] [PubMed]
- Van der Werf, Y.D.; Altena, E.; van Dijk, K.D.; Strijers, R.L.; De Rijke, W.; Stam, C.J.; van Someren, E.J. Is disturbed intracortical excitability a stable trait of chronic insomnia? A study using transcranial magnetic stimulation before and after multimodal sleep therapy. Biol. Psychiatry 2010, 68, 950–955. [Google Scholar] [CrossRef] [PubMed]
- Buysse, D.J.; Germain, A.; Hall, M.; Monk, T.H.; Nofzinger, E.A. A neurobiological model of insomnia. Drug Discov. Today Dis. Models 2011, 8, 129–137. [Google Scholar] [CrossRef] [PubMed]
- GeneCards Human Gene Database. Cacna1c Gene (Protein Coding). Available online: http://www.genecards.org (accessed on 4 October 2016).
- Allebrandt, K.V.; Amin, N.; Muller-Myhsok, B.; Esko, T.; Teder-Laving, M.; Azevedo, R.V.; Hayward, C.; van Mill, J.; Vogelzangs, N.; Green, E.W.; et al. A K(ATP) channel gene effect on sleep duration: From genome-wide association studies to function in Drosophila. Mol. Psychiatry 2013, 18, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Drake, C.L.; Pillai, V.; Roth, T. Stress and sleep reactivity: A prospective investigation of the stress-diathesis model of insomnia. Sleep 2014, 37, 1295–1304. [Google Scholar] [CrossRef] [PubMed]
- Kalmbach, D.A.; Pillai, V.; Arnedt, J.T.; Drake, C.L. Identifying at-risk individuals for insomnia using the ford insomnia response to stress test. Sleep 2016, 39, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Vargas, I.; Friedman, N.P.; Drake, C.L. Vulnerability to stress-related sleep disturbance and insomnia: Investigating the link with comorbid depressive symptoms. Transl. Issues Psychol. Sci. 2015, 1, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Mendoza, J.; Shaffer, M.L.; Olavarrieta-Bernardino, S.; Vgontzas, A.N.; Calhoun, S.L.; Bixler, E.O.; Vela-Bueno, A. Cognitive-emotional hyperarousal in the offspring of parents vulnerable to insomnia: A nuclear family study. J. Sleep Res. 2014, 23, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Lee, S.H.; Goddard, M.E.; Visscher, P.M. Gcta: A tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 2011, 88, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Pearson, R.; Palmer, R.H.; Brick, L.A.; McGeary, J.E.; Knopik, V.S.; Beevers, C.G. Additive genetic contribution to symptom dimensions in major depressive disorder. J. Abnorm. Psychol. 2016, 125, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Cross-Disorder Group of the Psychiatric Genomics Consortium; Lee, S.H.; Ripke, S.; Neale, B.M.; Faraone, S.V.; Purcell, S.M.; Perlis, R.H.; Mowry, B.J.; Thapar, A.; Goddard, M.E.; et al. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat. Genet. 2013, 45, 984–994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Schizophrenia Consortium; Purcell, S.M.; Wray, N.R.; Stone, J.L.; Visscher, P.M.; O’Donovan, M.C.; Sullivan, P.F.; Sklar, P. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009, 460, 748–752. [Google Scholar] [CrossRef] [PubMed]
- Bulik-Sullivan, B.K.; Loh, P.R.; Finucane, H.K.; Ripke, S.; Yang, J.; Schizophrenia Working Group of the Psychiatric Genomics Consortium; Patterson, N.; Daly, M.J.; Price, A.L.; Neale, B.M. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 2015, 47, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Byrne, E.M.; Gehrman, P.R.; Trzaskowski, M.; Tiemeier, H.; Pack, A.I. Genetic correlation analysis suggests association between increased self-reported sleep duration in adults and schizophrenia and type 2 diabetes. Sleep 2016, 39, 1853–1857. [Google Scholar] [CrossRef] [PubMed]
- QIAGEN Redwood City. QIAGEN’s Ingenuity® Pathway Analysis. Available online: http://www.qiagen.com/ingenuity (accessed on 19 December 2016).
- Palagini, L.; Biber, K.; Riemann, D. The genetics of insomnia--evidence for epigenetic mechanisms? Sleep Med. Rev. 2014, 18, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Gill, J.M.; Lee, H.; Baxter, T.; Reddy, S.Y.; Barr, T.; Kim, H.S.; Wang, D.; Mysliwiec, V. A diagnosis of insomnia is associated with differential expression of sleep-regulating genes in military personnel. Biol. Res. Nurs. 2015, 17, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Livingston, W.S.; Rusch, H.L.; Nersesian, P.V.; Baxter, T.; Mysliwiec, V.; Gill, J.M. Improved sleep in military personnel is associated with changes in the expression of inflammatory genes and improvement in depression symptoms. Front. Psychiatry 2015, 6, 59. [Google Scholar] [CrossRef] [PubMed]
- Irwin, M.R.; Olmstead, R.; Breen, E.C.; Witarama, T.; Carrillo, C.; Sadeghi, N.; Arevalo, J.M.; Ma, J.; Nicassio, P.; Bootzin, R.; et al. Cognitive behavioral therapy and tai chi reverse cellular and genomic markers of inflammation in late-life insomnia: A randomized controlled trial. Biol. Psychiatry 2015, 78, 721–729. [Google Scholar] [CrossRef] [PubMed]
Method | Brief Explanation | Output |
---|---|---|
Quantitative | ||
Family study | Compares prevalence of a phenotype in family members of affected vs. unaffected individuals. | Degree of familial resemblance. |
Twin study | Utilizes the approximate genetic relationships between MZ and DZ twins to estimate the proportion of variance in a trait that is due to additive genetic (A), shared environmental (C), and unique environmental (E) influences. | Proportion of variance explained by genetic (i.e., heritability) and/or environmental effects. |
Measured genes | ||
Candidate gene study | Gene to be examined are chosen a priori based on the literature. Association analyses are run to determine whether or not allele/genotype frequencies differ between cases and controls. | Strength of association (e.g., reported through beta or odds ratio) for variant(s) tested. |
GWAS | Agnostic approach that simultaneously tests genetic associations across all available SNPs (often thousands to millions, depending on the method used). | Strength of association (e.g., reported through beta or odds ratio) for SNP(s) tested. Note that statistical corrections must be applied given the large number of tests. |
Author (Year) | Sample | Phenotype Ascertainment | Phenotype | Heritability |
---|---|---|---|---|
Adults | ||||
Webb and Campbell, 1983 [18] | 14 MZ, 14 DZ * | EEG | Sleep latency Wake time | N/A |
Partinen et al. 1983 [19] | 2238 MZ, 4545 DZ | Self-report (questionnaire) | Sleep length | h2 = 0.44 |
Sleep quality | h2 = 0.44 | |||
Heath et al. 1990 [20] | 1792 MZ, 2101 DZ | Self-report (questionnaire) | Sleep quality | h2 = 0.32 |
Initial insomnia | h2 = 0.32 | |||
Sleep latency | h2 = 0.44 (M), 0.32 (F) | |||
Anxious insomnia | h2 = 0.44 | |||
Depressed insomnia | h2 = 0.44 | |||
Heath et al. 1998 [21] | 1792 MZ, 2101 DZ | Self-report (questionnaire) | Composite score | 12.1% of variance (F), 8.3% (M) |
McCarren et al. 1994 [22] | 1605 MZ, 1200 DZ male veterans | Self-report (questionnaire) | Trouble falling asleep | h2 = 0.28 |
Trouble staying asleep | h2 = 0.42 | |||
Waking up several times | h2 = 0.26 | |||
Waking up tired | h2 = 0.21 | |||
Composite score | h2 = 0.28 | |||
de Castro 2002 [23] | 86 MZ, 129 DZ (“good sleepers“) | Self-report (sleep diary) | Sleep duration | h2 = 0.30 |
Number of wakeups | h2 = 0.21 | |||
Watson et al. 2006 [24] | 1042 MZ, 828 DZ * | Self-report (questionnaire) | Insomnia | h2 = 0.57 |
Boomsma et al. 2008 [25] | 548 twins, 265 siblings | Self-report (questionnaire) | Insomnia factor | h2 = 0.20 |
Barclay et al. 2010 [26] | 420 MZ, 773 DZ, 363 siblings * | Self-report (PSQI) | Subjective sleep quality | h2 = 0.41 |
Sleep latency | h2 = 0.21 | |||
Sleep duration | h2 = 0.00 | |||
Habitual sleep efficiency | h2 = 0.30 | |||
Sleep disturbances | h2 = 0.39 | |||
Daytime dysfunction | h2 = 0.47 | |||
Hublin et al. 2011 [27] | 1554 MZ and 2991 DZ | Self-report (questionnaire) | Insomnia-Symptom | h2 = 0.42 (M & F) |
Difficulty initiating sleep | h2 = 0.41 | |||
Sleep latency | h2 = 0.41 | |||
Nocturnal awakening | h2 = 0.45 | |||
Early morning awakening | h2 = 0.34 | |||
Non-restorative sleep (morning) | h2 = 0.37 | |||
Non-restorative sleep (day) | h2 = 0.35 | |||
Drake et al. 2011 [28] | 988 MZ, 1086 DZ | Self-report (DSM-IV-TR criteria) | Insomnia | h2 = 0.43 (M), 0.55 (F) |
Difficulty staying asleep | h2 = 0.25 (M), 0.35 (F) | |||
Non-refreshing sleep | h2 = 0.34 (M), 0.35 (F) | |||
Difficulty falling asleep | h2 = 0 (M & F) | |||
Hur, Burri, and Spector 2012 [29] | 893 MZ, 884 DZ, 204 individual twins | Self-report (questionnaire) | Insomnia symptom | h2 = 0.28 |
Genderson et al. 2013 [30] | 339 MZ, 257 DZ, 26 individual twins | Self-report (PSQI) | PSQI global score | h2 = 0.34 |
Subjective sleep quality | h2 = 0.31 | |||
Sleep latency | h2 = 0.24 | |||
Sleep duration | h2 = 0.29 | |||
Habitual sleep efficiency | h2 = 0.23 | |||
Sleep disturbances | h2 = 0.34 | |||
Daytime dysfunction | h2 = 0.23 | |||
“Poor sleep” | h2 = 0.31 | |||
Lind et al. 2015 [31] | Total sample n = 7500 | Self-report (Symptom Checklist-90 sleep items) | Insomnia symptoms (Time 1) | h2 = 0.25 |
Insomnia symptoms (Time 2) | h2 = 0.22 | |||
Insomnia symptoms (longitudinal) | h2 = 0.59 (F), 0.38 (M) | |||
Children | ||||
Gregory et al. 2004 [32] | 2162 MZ, 4229 DZ Age 3–7 years | Self-report (parents reporting on children) | Sleep problems scale | h2 = 0.18 (M), 0.20 (F) |
Gregory, Rijsdijk and Eley 2006 [33] | 100 MZ, 200 DZ Age 8 | Sleep Self Report (completed by children), CSHQ (completed by parents) | Sleep onset delay | h2 = 0.17 (child report), 0.79 (parental report) |
Night wakings | h2 = 0.27 (child report), 0.32 (parental report) | |||
Gregory et al. 2006 [34] | 192 MZ, 384 DZ Age 8 | CSHQ (completed by parents) | Sleep problems score | h2 = 0.61 |
Gregory 2008 [35] | 100 MZ, 200 DZ Age 8 | CSHQ (completed by parents) | Dyssomnia scale | h2 = 0.71 |
Gehrman et al. 2011 [36] | 689 MZ, 666 DZ Age 8–16 | Interview (sleep module of the CAPA) | Insomnia symptoms | h2 = 0.31 |
Moore et al. 2011 [37] | 270 MZ, 246 DZ Avg age 12 | Self-report (Child Behavioral Checklist, Youth Self-Report) | Sleep problems | h2 = 0.30 |
Taylor et al. 2015 [38] | 1722 MZ, 1553 DZ Age 16 | Self-report (Insomnia Severity Index and PSQI) | Sleep composite scores | h2 = 0.41 |
Barclay et al. 2015 [39] | 739 MZ, 672 DZ Ages 8, 10, 14, 15 | Clinical interview (CAPA) | “Clinically significant insomnia” | h2 = 0.14 (Wave 3) |
Author (Year) | Sample | Phenotype Assessment | Insomnia Phenotype (s) | Main Findings |
---|---|---|---|---|
Ban et al. 2011 [68] | Korean epidemiologic study, total n = 8719 (1439 cases, 7280 controls) | Self-report (questionnaire) | Insomnia (self-report) | No genome-wide significant results. Top SNPs included rs11208305 (PCLB1; prior associations with schizophrenia) and rs718712 (ROR1; prior associations with bipolar). |
Byrne et al. 2013 [69] | Australian twin registry, total n = 2323 | Self-report (questionnaire) | Insomnia factor score, sleep latency, sleep time, sleep quality, sleep depth, sleep duration | No significant SNPs for insomnia factor score or other phenotypes. Of interest for sleep latency was rs7316184 (CACNA1C; prior associations with bipolar and schizophrenia), which did not replicate. |
Parsons et al. 2013 [70] * | G1219 British sample, total n = 952 | Self-report (PSQI) | Sleep quality, sleep duration, sleep latency (from the PSQI) | The CACNA1C gene was replicated, with rs16929277 associated with sleep quality in all models. This SNP was also associated with sleep latency and depression symptoms in recessive models. For the ABCC9 gene, rs11046209 was only associated with sleep duration in a recessive model with rare genotypes, and rs11046205 was associated with depression symptoms. |
Spada et al. 2016 [71] | LIFE Adult Study, Germany, total n = 956 | Actigraphy | 14 actigraphy parameters (e.g., sleep quality, sleep latency) | Significant SNPs: rs75842709 (UFL1; sleep efficiency on weekdays), chr9:865201D (DMRT1; sleep latency), and rs2919869 (SMYD1, sleep offset). Nominally significant SNPs: rs74448913 CSNK2A1; sleep latency) and rs12069385 (ZMYM4; sleep latency). |
Amin et al. 2016 [72] | 7 European cohorts, total n = 4242 | Self-report (Munich Chronotype Questionnaire) | Sleep latency | Three correlated SNPs (rs9900428, rs9907432 and rs7211029) in RBFOX3 were significant and could be replicated. Functional analyses indicated that this gene may be involved in GABA and monoamine release. |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lind, M.J.; Gehrman, P.R. Genetic Pathways to Insomnia. Brain Sci. 2016, 6, 64. https://doi.org/10.3390/brainsci6040064
Lind MJ, Gehrman PR. Genetic Pathways to Insomnia. Brain Sciences. 2016; 6(4):64. https://doi.org/10.3390/brainsci6040064
Chicago/Turabian StyleLind, Mackenzie J., and Philip R. Gehrman. 2016. "Genetic Pathways to Insomnia" Brain Sciences 6, no. 4: 64. https://doi.org/10.3390/brainsci6040064
APA StyleLind, M. J., & Gehrman, P. R. (2016). Genetic Pathways to Insomnia. Brain Sciences, 6(4), 64. https://doi.org/10.3390/brainsci6040064