Is High Folic Acid Intake a Risk Factor for Autism?—A Review
Abstract
:1. Introduction
2. Unmetabolized Folic Acid
3. Neural Development
4. Metabolic Abnormalities and Autoantibodies in Autism
5. Autism Risk Studies
5.1. Surén et al., 2013 [10]
5.2. Schmidt et al., 2012 [9]
5.3. Raghavan et al., 2016 [15], Raghavan et al., 2017 [49]
5.4. DeSoto & Hitlan, 2012 [14]
5.5. The Autism Risk Studies
6. Discussion
Author Contributions
Conflicts of Interest
References
- Shane, B. Folate chemistry and metabolism. In Folate in Health and Disease; Bailey, L.B., Ed.; CRC Press: New York, NY, USA, 2010; pp. 2–3. [Google Scholar]
- Rosenquist, T.H. Folate, homocysteine and the cardiac neural crest. Dev. Dyn. 2013, 242, 201–218. [Google Scholar] [CrossRef] [PubMed]
- Smithells, R.W.; Sheppard, S.; Schorah, C.J.; Seller, M.J.; Nevin, N.C.; Harris, R.; Read, A.P.; Fielding, D.W. Possible prevention of neural-tube defects by periconceptional vitamin supplementation. Lancet 1980, 1, 339–340. [Google Scholar] [CrossRef]
- Smithells, R.W.; Nevin, N.C.; Seller, M.J.; Sheppard, S.; Harris, R.; Read, A.P.; Fielding, D.W.; Walker, S.; Schorah, C.J.; Wild, J. Further experience of vitamin supplementation for prevention of neural tube defect recurrences. Lancet 1983, 1, 1027–1031. [Google Scholar] [CrossRef]
- Holmes, L.B. Does taking vitamins at the time of conception prevent neural tube defects? JAMA 1988, 260, 3181. [Google Scholar] [CrossRef] [PubMed]
- Milunsky, A.; Jick, H.; Jick, S.S.; Bruell, C.L.; MacLaughlin, D.S.; Rothman, K.J.; Willett, W. Multivitamin/folic acid supplementation in early pregnancy reduces the prevalence of neural tube defects. JAMA 1989, 262, 2847–2852. [Google Scholar] [CrossRef] [PubMed]
- Mulinare, J.J.; Cordero, F.; Erickson, J.D.; Berry, R.J. Periconceptional use of multivitamins and the occurrence of neural tube defects. JAMA 1988, 260, 3141–3145. [Google Scholar] [CrossRef] [PubMed]
- Källén, B. Folic Acid and Neural Tube Defects: Effective Primary Prevention or Wishful Thinking? Avid Science Monograph Series; Avid Science: Berlin, Germany, 2017; pp. 1–27. [Google Scholar]
- Schmidt, R.J.; Tancredi, D.J.; Ozonoff, S.; Hansen, R.L.; Hartiala, J.; Allayee, H.; Schmidt, L.C.; Tassone, F.; Hertz-Picciotto, I. Maternal periconceptional folic acid intake and risk of autism spectrum disorders and developmental delay in the CHARGE (Childhood Autism Risks from Genetics and Environment) case-control study. Am. J. Clin. Nutr. 2012, 96, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Surén, P.; Roth, C.; Bresnahan, M.; Haugen, M.; Hornig, M.; Hirtz, D.; Lie, K.K.; Lipkin, W.I.; Magnus, P.; Reichborn-Kjennerud, T.R.; et al. Association between maternal use of folic acid supplements and risk of autism spectrum disorders in children. JAMA 2013, 309, 570–577. [Google Scholar] [CrossRef] [PubMed]
- Julvez, J.; Fortuny, J.; Mendez, M.; Torrent, M.; Ribas-Fit, N.; Sunyer, J. Maternal use of folic acid supplements during pregnancy and four-year-old neurodevelopment in a population-based birth cohort. Paediatr. Perinat. Epidemiol. 2009, 23, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Sheng, C.; Xie, R.H.; Sun, W.; Asztalos, E.; Moddemann, D.; Zwaigenbaum, L.; Walker, M.; Wen, S.W. New perspective on Impact of folic acid supplementation during pregnancy on neurodevelopment/autism in the offspring children—A systematic review. PLoS ONE 2016, 11, e0165626. [Google Scholar] [CrossRef] [PubMed]
- Moussa, H.N.; Hosseini Nasab, S.; Haidar, Z.A.; Blackwell, S.C.; Sibai, B.M. Folic acid supplementation: What is new? Fetal, obstetric and long-term benefits and risks. Future Sci. OA 2016, 2, FSO116. [Google Scholar] [CrossRef] [PubMed]
- DeSoto, M.C.; Hitlan, R. Synthetic folic acid supplementation during pregnancy may increase the risk of developing autism. J. Pediatr. Biochem. 2012, 2, 251–261. [Google Scholar] [CrossRef]
- Raghavan, R.; Fallin, M.D.; Wang, X. Maternal plasma folate, vitamin B12 levels and multivitamin supplementation during pregnancy and risk of Autism Spectrum Disorder in the Boston Birth Cohort. FASEB J. 2016, 30, 151–156. [Google Scholar]
- Valera-Gran, D.; Navarete-Munoz, E.M.; Garcia de la Hera, M.; Fernandez-Somoano, A.; Tardon, A.; Ibarluzea, J.; Balluerka, N.; Murcia, M.; Gonzalez-Safont, L.; Romaguera, D.; et al. Effect of maternal high dosages of folic acid supplements on neurocognitive development in children at 4–5 years of age: The prospective birth cohort Infancia y Medio Ambiente (INMA) study. Am. J. Clin. Nutr. 2017, 106, 878–887. [Google Scholar] [CrossRef] [PubMed]
- Rogers, E.J. Has enhanced folate status during pregnancy altered natural selection and possibly autism prevalence? A closer look at possible link. Med. Hypotheses 2008, 71, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Leeming, R.J.; Lucock, M. Autism: Is there a folate connection? J. Inherit. Metab. Dis. 2009, 32, 400–402. [Google Scholar] [CrossRef] [PubMed]
- Beard, C.; Panser, L.; Katusic, K. Is excess folic acid supplementation a risk factor for autism? Med. Hypotheses 2011, 77, 15–17. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.-H.; Yates, Z.; Veysey, M.; Heo, Y.-R.; Lucock, M. Contemporary issues surrounding folic acid fortification initiatives. Prev. Nutr. Food Sci. 2014, 19, 247–260. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, P.; McNulty, H.; Mastroiacovo, P.; McDowell, I.F.W.; Melse-Boonstra, A.; Finglas, P.M.; Gregory, J.F., III. Folate bioavailability: UK food standards agency workshop report. Br. J. Nutr. 2003, 90, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Powers, H.J. Folic acid under scrutiny. Br. J. Nutr. 2007, 98, 665–666. [Google Scholar] [CrossRef] [PubMed]
- Bailey, S.W.; Ayling, J.E. The extremely slow and variable activity of dihydrofolate reductase in human liver and its implications for high folic acid intake. Proc. Natl. Acad. Sci. USA 2009, 106, 15424–15429. [Google Scholar] [CrossRef] [PubMed]
- Kalmbach, R.D.; Choumenkovitch, S.F.; Troen, A.M.; D’Agostino, R.; Jacques, P.F.; Selhub, J. Circulating folic acid in plasma: Relation to folic acid fortification. Am. J. Clin. Nutr. 2008, 88, 763–768. [Google Scholar] [PubMed]
- Sweeney, M.R.; McPartlin, J.; Weir, D.G.; Daly, L.; Scott, J.M. Postprandial serum folic acid response to multiple doses of folic acid in fortified bread. Br. J. Nutr. 2006, 95, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Kelly, P.; McPartlin, J.; Goggins, M.; Weir, D.G.; Scott, J.M. Unmetabolized folic acid in serum: Acute studies in subjects consuming fortified food and supplements. Am. J. Clin. Nutr. 1997, 65, 1790–1795. [Google Scholar] [PubMed]
- Troen, A.M.; Mitchell, B.; Sorensen, B.; Wener, M.H.; Johnston, A.; Wood, B.; Selhub, J.; McTiernan, A.; Yasui, Y.; Oral, E.; et al. Unmetabolized folic acid in plasma is associated with reduced natural killer cell cytotoxicity among postmenopausal women. J. Nutr. 2006, 136, 189–194. [Google Scholar] [PubMed]
- Obeid, R.; Kasoha, M.; Kirsch, S.H.; Munz, W.; Hermann, W. Concentrations of unmetabolized folic acid and primary folate forms in pregnant women at delivery and in umbilical cord blood. Am. J. Clin. Nutr. 2010, 92, 1416–1422. [Google Scholar] [CrossRef] [PubMed]
- Quinlivan, E.P.; Gregory, J.F. Effect of food fortification on folic acid intake in the United States. Am. J. Clin. Nutr. 2003, 77, 221–225. [Google Scholar] [PubMed]
- Tam, C.; O’Connor, D.; Koren, G. Circulating unmetabolized folic acid: Relationship to folate status and effect of supplementation. Obstet. Gynecol. Int. 2012, 212, 485179. [Google Scholar] [CrossRef] [PubMed]
- Ashokkumar, B.; Nabokina, S.M.; Ma, T.Y.; Said, H.M. Effect of folate oversupplementation on folate uptake by human intestinal and renal epithelial cells. Am. J. Clin. Nutr. 2007, 81, 159–166. [Google Scholar]
- Juniad, M.A.; Kuizon, S.; Cardona, J.; Azher, T.; Murakami, N.; Pullarkat, R.K.; Brown, W.T. Folic acid supplementation dysregulates gene expression in lymphoblastoid cells—Implications in nutrition. Biochem. Biophys. Res. Commun. 2011, 412, 688–692. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.S.; Jacques, P. Folate and neurological function—Epidemiological perspective. In Folate in Health and Disease; Bailey, L.B., Ed.; CRC Press: New York, NY, USA, 2010; pp. 325–346. [Google Scholar]
- Reynolds, E. Vitamin B12, folic acid, and the nervous system. Lancet Neurol. 2006, 5, 949–960. [Google Scholar] [CrossRef]
- Vohr, B.R.; Boney, C.M. Gestational diabetes: The forerunner for the development of maternal and childhood obesity and metabolic syndrome? J. Matern. Fetal Neonatal Med. 2008, 21, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Krakowiak, P.; Walker, C.K.; Bremer, A.A.; Baker, A.S.; Ozonoff, S.; Hansen, R.L.; Hertz-Picciotto, I. Maternal metabolic conditions and risk for autism and other neurodevelopmental disorders. Pediatrics 2012, 129, e1121–e1128. [Google Scholar] [CrossRef] [PubMed]
- Girotto, F.; Scott, L.; Avchalumov, Y.; Harris, J.; Iannattone, S.; Drummond-Main, C.; Tobias, R.; Bello-Espinosa, L.; Rho, J.M.; Davidsen, J.; et al. High dose folic acid supplementation of rats alters synaptic transmission and seizure susceptibility in offspring. Sci. Rep. 2013, 3, 1465. [Google Scholar] [CrossRef] [PubMed]
- Barua, B.; Chadman, K.K.; Kuizon, S.; Buenaventura, D.; Stapley, N.W.; Ruocco, F.; Begum, U.; Guariglia, S.R.; Brown, W.T.; Juniad, M.A. Increasing maternal or post-weaning folic acid alters gene expression and moderately changes behavior in the offspring. PLoS ONE 2014, 9, e101674. [Google Scholar] [CrossRef] [PubMed]
- Barua, S.; Kuizon, S.K.; Chadman, K.; Brown, W.T.; Juniad, M. Microarray analysis reveals higher gestational folic acid alters expression of genes in the cerebellum of mice offspring—A pilot study. Brain Sci. 2015, 5, 14–31. [Google Scholar] [CrossRef] [PubMed]
- Barua, S.; Kuizon, S.; Brown, W.T.; Junaid, M. ADNA methylation profiling at single-base resolution reveals gestational folic acid supplementation influences the epigenome of mouse offspring cerebellum. Front. Neurosci. 2016, 10, 168. [Google Scholar] [CrossRef] [PubMed]
- Wiens, D.; DeWitt, A.; Kosar, M.; Underriner, C.; Finsand, M.; Freese, M. Influence of Folic Acid on Neural Connectivity during Dorsal Root Ganglia Neurogenesis. Cells Tissues Organs 2016, 201, 342–353. [Google Scholar] [CrossRef] [PubMed]
- Vitriol, E.A.; Zheng, J.Q. Growth cone travel in space and time: The cellular ensemble of cytoskeleton, adhesion, and membrane. Neuron 2012, 73, 1068–1081. [Google Scholar] [CrossRef] [PubMed]
- Lowery, L.A.; Vactor, D.V. The trip of the tip: Understanding the growth cone machinery. Nat. Rev. Mol. Cell Biol. 2009, 10, 332–343. [Google Scholar] [CrossRef] [PubMed]
- Cammarata, G.M.; Bearce, E.A.; Lowery, L.A. Cytoskeletal social networking in the growth cone: How + TIPs mediate microtubule-actin cross-linking to drive axon outgrowth and guidance. Cytoskeleton 2016, 73, 461–476. [Google Scholar] [CrossRef] [PubMed]
- Wiens, D. Could folic acid influence growth cone motility during the development of neural connectivity? Neurogenesis 2016, 3, e1230167. [Google Scholar] [CrossRef] [PubMed]
- Gill, I.; Droubi, S.; Giovedi, S.; Fedder, K.N.; Bury, L.A.; Bosco, F.; Sceniak, M.P.; Benfenati, F.; Sabo, S.L. Presynaptic NMDA receptors-dynamics and distribution in developing axons in vitro and in vivo. J. Cell Sci. 2015, 128, 768–780. [Google Scholar] [CrossRef] [PubMed]
- Ebert, D.H.; Greenberg, M.E. Activity-dependent neuronal signaling and autism spectrum disorder. Nature 2013, 493, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Price, C.S.; Thompson, W.W.; Goodson, B.; Weintraub, E.S.; Croen, L.A.; Hinrichsen, V.L.; Marcy, M.; Robertson, A.; Eriksen, E.; Lewis, E.; et al. Prenatal and infant exposure to thimerosal from vaccines and immunoglobulins and risk of autism. Pediatrics 2010, 126, 655–664. [Google Scholar] [CrossRef] [PubMed]
- Raghavan, R.; Riley, A.W.; Volk, H.; Caruso, D.; Hironaka, L.; Sices, L.; Hong, X.; Wang, G.; Ji, Y.; Brucato, M.; et al. Maternal multivitamin intake, plasma folate and vitamin B12 levels and autism spectrum disorder risk in offspring. Paediatr. Perinat. Epidemiol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Rossiognol, D.A.; Frye, R.E. A review of research trends in physiological abnormalities in autism spectrum disorders: Immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures. Mol. Psychiatry 2012, 17, 389–401. [Google Scholar] [CrossRef] [PubMed]
- Frye, R.E.; James, S.J. Metabolic pathology of autism in relation to redox metabolism. Biomark. Med. 2014, 8, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Ramaekers, V.T.; Hausler, M.; Opladen, T.; Heimann, G.; Blau, N. Psychomotor retardation, spastic paraplegia, cerebellar ataxia and dyskinesia associated with low 5-methyltetrahydrofolate in cerebrospinal fluid: A novel neurometabolic condition responding to folinic acid substitution. Neuropediatrics 2002, 33, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Frye, R.E.; Slattery, J.; Delhey, L.; Furgerson, B.; Strickland, T.; Tippett, M.; Sailey, A.; Wynne, R.; Rose, S.; Melnyk, S.; et al. Folinic acid improves verbal communication in children with autism and language impairment: A randomized double-blind placebo-controlled trial. Mol. Psychiatry 2016. [Google Scholar] [CrossRef] [PubMed]
- Grapp, M.; Just, I.A.; Linnankivi, T.; Wolf, P.; Lucke, T.; Hausler, M.; Gärtner, J.; Steinfeld, R. Molecular characterization of folate receptor 1 mutations delineates cerebral folate transport deficiency. Brain 2012, 135, 2022–2031. [Google Scholar] [CrossRef] [PubMed]
- Ramaekers, V.T.; Sequeira, J.M.; Blau, N.; Quadros, E.V. A milk-free diet downregulates folate receptor autoimmunity in cerebral folate deficiency syndrome. Dev. Med. Child Neurol. 2008, 50, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Frye, R.E.; Sequeira, J.M.; Quadros, E.V.; James, S.J.; Rossignol, D.A. Cerebral folate receptor autoantibodies in autism spectrum disorder. Mol. Psychiatry 2013, 18, 369–381. [Google Scholar] [CrossRef] [PubMed]
- Ramaekers, V.T.; Quadros, E.V.; Sequeira, J.M. Role of folate receptor autoantibodies in infantile autism. Mol. Psychiatry 2013, 18, 270–271. [Google Scholar] [CrossRef] [PubMed]
- Sequeira, J.M.; Desai, A.; Berrocal-Zaragoza, M.I.; Murphy, M.M. Exposure to folate receptor alpha antibodies during gestation and weaning leads to severe behavioral deficits in rate: A pilot study. PLoS ONE 2016, 11, e0152249. [Google Scholar] [CrossRef] [PubMed]
- Hoyo, C.; Murtha, A.P.; Schildkraut, J.M.; Forman, M.R.; Calingaert, B.; Demark-Wahnefried, W.; Kurtzberg, J.; Jirtle, R.L.; Murphy, S.K. Folic acid supplementation before and during pregnancy in the Newborn Epigenetics Study (NEST). BMC Public Health 2011, 11, 46. [Google Scholar] [CrossRef] [PubMed]
FA Supplementation Actual Intakes are Higher than Were Projected When Supplementation Was Instituted. | Quinlivan & Gregory, 2003 [29] |
Unmetabolized FA occurs in cord blood, and in a dose dependent manner in serum when FA supplementation is more than about 200 μg/d. | Sweeney at al., 2006 [25]; Kalmbach et al., 2008 [24]; Troen et al., 2006 [27]; Obeid et al., 2010 [28] |
Evidence from rodent studies showed that FA exposure during gestation caused changes in gene expression and anxiety, and hyperactivity in offspring. Exposure to higher-dose FA diet during gestation caused dysregulation of expression of many genes, including neuro-developmental genes, and epigenomic changes. | Barua et al., 2014 [38]; 2015 [39], 2016 [40] |
Some women exceed recommended levels of FA during pregnancy. | Hoyo et al., 2011 [48]; Raghavan et al., 2016 [15], 2017 [49] |
Folic acid can inhibit neurite extension, growth cone activity and synaptogenesis. | Wiens et al., 2016 [41] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiens, D.; DeSoto, M.C. Is High Folic Acid Intake a Risk Factor for Autism?—A Review. Brain Sci. 2017, 7, 149. https://doi.org/10.3390/brainsci7110149
Wiens D, DeSoto MC. Is High Folic Acid Intake a Risk Factor for Autism?—A Review. Brain Sciences. 2017; 7(11):149. https://doi.org/10.3390/brainsci7110149
Chicago/Turabian StyleWiens, Darrell, and M. Catherine DeSoto. 2017. "Is High Folic Acid Intake a Risk Factor for Autism?—A Review" Brain Sciences 7, no. 11: 149. https://doi.org/10.3390/brainsci7110149
APA StyleWiens, D., & DeSoto, M. C. (2017). Is High Folic Acid Intake a Risk Factor for Autism?—A Review. Brain Sciences, 7(11), 149. https://doi.org/10.3390/brainsci7110149