Feasibility of Equivalent Dipole Models for Electroencephalogram-Based Brain Computer Interfaces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Head Models
2.2. Source Localization Error
3. Results and Discussion
3.1. Spherical Head Model
3.2. Realistic Head Model
3.3. Local vs. Global Minima
3.4. Summary and Applicability
- (a)
- When a spherical head model is used, the inverted azimuth of the dipole is unreliable in the face of even modest amounts of noise, although the elevation of the dipole is reliable.
- (b)
- All components of the location are reasonably reliable when a realistic head model is used.
- (c)
- The residual cost function for locating the dipole exhibits local minima, and thus a global search strategy should be used.
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Sellers, E.W.; Arbel, Y.; Donchin, E.; Pfurtscheller, G.; McFarland, D.J.; Allison, B.Z.; Faller, J.; Neuper, C. Existing BCIs. In Brain-Computer Interfaces, Principles and Practices; Wolpaw, J.R., Wolpaw, E.W., Eds.; Oxford University Press: New York, NY, USA, 2012; pp. 215–249. ISBN 978-0-19-538885-5. [Google Scholar]
- Kabanikhin, S.I. Definitions and examples of inverse and ill-posed problems. J. Inverse Ill-Posed Probl. 2008, 16, 317–357. [Google Scholar] [CrossRef]
- Weinstein, D.; Zhukov, L.; Johnson, C. Lead-field bases for electroencephalography source imaging. Ann. Biomed. Eng. 2000, 28, 1059–1065. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Ding, L.; He, B. Motor Imagery Classification by Means of Source Analysis for Brain Computer Interface Applications. J. Neural Eng. 2005, 2, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Pfurtscheller, G. Event-Related Desynchronization; Elsevier: New York, NY, USA, 1999; pp. 303–325. [Google Scholar]
- Hyvärinen, A.; Oja, E. A Fast Fixed-Point Algorithm for Independent Component Analysis. Neural Comput. 1997, 9, 1483–1492. [Google Scholar] [CrossRef]
- Hansen, P.C. Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev. 1992, 34, 561–580. [Google Scholar] [CrossRef]
- Kowalik, J.; Osborne, M.R. Methods for Unconstrained Optimization Problems; Elsevier: New York, NY, USA, 1968. [Google Scholar]
- Rush, S.; Driscoll, D. Current distribution in the brain from surface electrodes. Anesth. Analg. 1968, 47, 717–723. [Google Scholar] [CrossRef] [PubMed]
- Kamousi, B.; Liu, Z.; He, B. Classification of motor imagery tasks for brain-computer interface applications by means of two equivalent dipoles analysis. IEEE Trans. Neural Sys. Rehabil. Eng. 2005, 13, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H. Computation of the potential distribution in a four-layer anisotropic concentric spherical volume conductor. IEEE Trans. Biomed. Eng. 1992, 39, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Hoesk, R.S., Jr.; Sances, A.; Larson, S.J. The contributions of intracerebral currents of the EEG and evoked potentials. IEEE Trans. Biomed. Eng. 1978, 25, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Stok, C.J. The influence of model parameters on EEG/MEG single dipole source estimation. IEEE Trans. Biomed. Eng. 1987, 34, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Schimpf, P.H.; Ramon, C.; Haueisen, J. Dipole models for the EEG and MEG. IEEE Trans. Biomed. Eng. 2002, 49, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Schimpf, P.H. Application of Quasi-static Magnetic Reciprocity to Finite Element Models of the MEG Lead-Field. IEEE Trans. Biomed. Eng. 2007, 54, 2082–2088. [Google Scholar] [CrossRef] [PubMed]
- Geddes, A.; Baker, L.E. The specific resistance of biological material—A compendium of data for the biomedical engineer and physiologist. Med. Biol. Eng. 1967, 5, 271–293. [Google Scholar] [CrossRef] [PubMed]
- Rush, S.; Driscoll, D. EEG-electrode sensitivity—An application of reciprocity. IEEE Trans. Biomed. Eng. 1969, 16, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Oostendorp, T.F.; Delbecke, J.; Stegman, D.F. The conductivity of the human skull: Results in vivo and in vitro measurements. IEEE Trans. Biomed. Eng. 2000, 47, 1487–1492. [Google Scholar] [CrossRef] [PubMed]
- Hoekema, R.; Huiskamp, G.J.M.; Wieneke, G.H.; Leijten, F.S.S.; van Veelen, C.W.M.; van Rijen, P.C.; van Huffelen, A.C. Measurement of the conductivity of skull, temporarily removed during epilepsy surgery. Brain Topogr. 2004, 16, 29–38. [Google Scholar] [CrossRef]
- Deserno, M. How to Generate Equidistributed Points on the Surface of a Sphere. Available online: http://www.cmu.edu/biolphys/deserno/pdf/sphere_equi.pdf (accessed on 22 May 2017).
- Shrinidhi, N.; Haynor, D.R.; Wang, Y.; Joregenson, D.B.; Bardy, G.H.; Kim, Y. An efficient tissue classifier for building patient-specific finite element models from X-ray CT images. IEEE Trans. Biomed. Eng. 1996, 43, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Schimpf, P.; Haueisen, J.; Ramon, C.; Nowak, H. Realistic computer modeling of electric and magnetic fields of human head and torso. Parallel Comput. 1998, 24, 1433–1460. [Google Scholar] [CrossRef]
- GalerWin. Available online: https://sites.google.com/site/pschimpf99/home/software/galerwin (accessed on 14 September 2017).
- GNU Octave. Available online: https://www.gnu.org/software/octave/ (accessed on 14 September 2017).
- Lancaster, J.L.; Woldorff, M.G.; Parsons, L.M.; Liotti, M.; Freitas, C.S.; Rainey, L.; Kochunov, P.V.; Nickerson, D.; Mikiten, S.A.; Fox, P.T. Automated Talairach Atlas labels for functional brain mapping. Hum. Brain Mapp. 2000, 10, 120–131. [Google Scholar] [CrossRef]
- Weiskopf, N.; Mathiak, K.; Bock, S.W.; Scharnowski, F.; Veit, R.; Grodd, W.; Goebel, R.; Birbaumer, N. Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI). IEEE Trans. Biomed. Eng. 2004, 51, 966–970. [Google Scholar] [CrossRef] [PubMed]
- Naseer, N.; Hong, K.S. fNIRS-based BCIs: A review. Front. Hum. Neurosci. 2015, 9, 3. [Google Scholar] [CrossRef] [PubMed]
- Stytsenko, K.; Jablonskis, E.; Prahm, C. Evaluation of consumer EEG device Emotiv EPOC. In Proceedings of the MEi: CogSci Conference, Ljubljana, Slovenia, 17 June–18 June 2011. [Google Scholar]
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schimpf, P.H. Feasibility of Equivalent Dipole Models for Electroencephalogram-Based Brain Computer Interfaces. Brain Sci. 2017, 7, 118. https://doi.org/10.3390/brainsci7090118
Schimpf PH. Feasibility of Equivalent Dipole Models for Electroencephalogram-Based Brain Computer Interfaces. Brain Sciences. 2017; 7(9):118. https://doi.org/10.3390/brainsci7090118
Chicago/Turabian StyleSchimpf, Paul H. 2017. "Feasibility of Equivalent Dipole Models for Electroencephalogram-Based Brain Computer Interfaces" Brain Sciences 7, no. 9: 118. https://doi.org/10.3390/brainsci7090118
APA StyleSchimpf, P. H. (2017). Feasibility of Equivalent Dipole Models for Electroencephalogram-Based Brain Computer Interfaces. Brain Sciences, 7(9), 118. https://doi.org/10.3390/brainsci7090118