Clinical Development of Targeted Fragile X Syndrome Treatments: An Industry Perspective
Abstract
:1. Introduction
2. FXS Phenotypes
3. Current State of FXS Treatment
4. Development of Targeted Therapies
4.1. Preclinical Rationale
4.2. Clinical Development
4.2.1. BPN14770
4.2.2. OV101/Gaboxadol
4.2.3. ZYN002
4.2.4. AFQ056
5. Considerations for Future Preclinical Research
6. Considerations for Conducting Clinical Trials
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Riley, C.; Mailick, M.; Berry-Kravis, E.; Bolen, J. The future of fragile X syndrome: CDC Stakeholder Meeting summary. Pediatrics 2017, 139, S147–S152. [Google Scholar] [CrossRef] [PubMed]
- Thurman, A.J.; McDuffie, A.; Hagerman, R.; Abbeduto, L. Psychiatric symptoms in boys with fragile X syndrome: A comparison with nonsyndromic autism spectrum disorder. Res. Dev. Disabil. 2014, 35, 1072–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaufmann, W.E.; Kidd, S.A.; Andrews, H.F.; Budimirovic, D.B.; Esler, A.; Haas-Givler, B.; Stackhouse, T.; Riley, C.; Peacock, G.; Sherman, S.L.; et al. Autism Spectrum Disorder in fragile X syndrome: Cooccurring conditions and current treatment. Pediatrics 2017, 139, S194–S206. [Google Scholar] [CrossRef] [PubMed]
- Grigsby, J. The fragile X mental retardation 1 gene (FMR1): Historical perspective, phenotypes, mechanism, pathology, and epidemiology. Clin. Neuropsychol. 2016, 30, 815–833. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Ifrim, M.F.; Valdez, A.N.; Raj, N.; Bassell, G.J. Aberrant RNA translation in fragile X syndrome: From FMRP mechanisms to emerging therapeutic strategies. Brain Res. 2018, 1693, 24–36. [Google Scholar] [CrossRef] [PubMed]
- Rajaratnam, A.; Shergill, J.; Salcedo-Arellano, M.; Saldarriaga, W.; Duan, X.; Hagerman, R. Fragile X syndrome and fragile X-associated disorders. F1000Research 2017, 6, 2112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coffee, B.; Ikeda, M.; Budimirovic, D.B.; Hjelm, L.N.; Kaufmann, W.E.; Warren, S.T. MosaicFMR1 deletion causes fragile X syndrome and can lead to molecular misdiagnosis: A case report and review of the literature. Am. J. Med. Genet. A 2008, 146A, 1358–1367. [Google Scholar] [CrossRef] [PubMed]
- Garber, K.B.; Visootsak, J.; Warren, S.T. Fragile X syndrome. Eur. J. Hum. Genet. 2008, 16, 666–672. [Google Scholar] [CrossRef] [Green Version]
- Kidd, S.A.; Lachiewicz, A.; Barbouth, D.; Blitz, R.K.; Delahunty, C.; McBrien, D.; Visootsak, J.; Berry-Kravis, E. Fragile X syndrome: A review of associated medical problems. Pediatrics 2014, 134, 995–1005. [Google Scholar] [CrossRef]
- Hagerman, R.J.; Berry-Kravis, E.; Hazlett, H.C.; Bailey, D.B.; Moine, H.; Kooy, R.F.; Tassone, F.; Gantois, I.; Sonenberg, N.; Mandel, J.L.; et al. Fragile X syndrome. Nat. Rev. Dis. Primers 2017, 3, 17065. [Google Scholar] [CrossRef]
- Hinton, R.; Budimirovic, D.B.; Marschik, P.B.; Talisa, V.B.; Einspieler, C.; Gipson, T.; Johnston, M.V. Parental reports on early language and motor milestones in fragile X syndrome with and without autism spectrum disorders. Dev. Neurorehabil. 2013, 16, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, L.; Ballinger, E.; Hagerman, R.; Hessl, D. Clinical assessment of DSM-IV anxiety disorders in fragile X syndrome: Prevalence and characterization. J. Neurodev. Disord. 2011, 3, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, W.E.; Capone, G.; Clarke, M.; Budimirovic, D.B. Autism in genetic intellectual disability: Insights into idiopathic autism. In Autism: Current Theories and Evidence; The Humana Press Inc.: Totowa, NJ, USA, 2008; pp. 81–108. [Google Scholar]
- Smith, L.E.; Seltzer, M.M.; Greenberg, J.S. Daily health symptoms of mothers of adolescents and adults with fragile X syndrome and mothers of adolescents and adults with autism spectrum disorder. J. Autism Dev. Disord. 2012, 42, 1836–1846. [Google Scholar] [CrossRef] [PubMed]
- Abbeduto, L.; Seltzer, M.M.; Shattuck, P.; Krauss, M.W.; Orsmond, G.; Murphy, M.M. Psychological well-being and coping in mothers of youths with autism, down syndrome, or fragile X syndrome. Am. J. Ment. Retard. 2004, 109, 237–254. [Google Scholar] [CrossRef]
- Kronk, R.; Bishop, E.E.; Raspa, M.; Bickel, J.O.; Mandel, D.A.; Bailey, D.B. Prevalence, nature, and correlates of sleep problems among children with fragile X syndrome based on a large scale parent survey. Sleep 2010, 33, 679–687. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, A.; Hallahan, B. Fragile X-associated disorders: A clinical overview. J. Neurol. 2012, 259, 401–413. [Google Scholar] [CrossRef]
- Berry-Kravis, E.M.; Lindemann, L.; Jønch, A.E.; Apostol, G.; Bear, M.F.; Carpenter, R.L.; Crawley, J.N.; Curie, A.; Des Portes, V.; Hossain, F.; et al. Drug development for neurodevelopmental disorders: Lessons learned from fragile X syndrome. Nat. Rev. Drug Discov. 2017, 17, 280–299. [Google Scholar] [CrossRef]
- Hagerman, R.J.; Jackson, C.; Amiri, K.; Silverman, A.; O-Connor, R.; Sobesky, W. Girls with fragile X syndrome: Physical and neurocognitive status and outcome. Pediatrics 1992, 89, 395–400. [Google Scholar]
- Wright-Talamante, C.; Cheema, A.; Riddle, J.E.; Luckey, D.W.; Taylor, A.K.; Hagerman, R.J. A controlled study of longitudinal IQ changes in females and males with fragile X syndrome. Am. J. Med. Genet. 1996, 64, 350–355. [Google Scholar] [CrossRef]
- Sansone, S.M.; Schneider, A.; Bickel, E.; Berry-Kravis, E.; Prescott, C.; Hessl, D. Improving IQ measurement in intellectual disabilities using true deviation from population norms. J. Neurodev. Disord. 2014, 6, 16. [Google Scholar] [CrossRef]
- Raspa, M.; Wheeler, A.C.; Riley, C. Public health literature review of fragile X syndrome. Pediatrics 2017, 139, S153–S171. [Google Scholar] [CrossRef]
- Hagerman, R.J.; Berry-Kravis, E.; Kaufmann, W.E.; Ono, M.Y.; Tartaglia, N.; Lachiewicz, A.; Kronk, R.; Delahunty, C.; Hessl, D.; Visootsak, J.; et al. Advances in the treatment of fragile X syndrome. Pediatrics 2009, 123, 378–390. [Google Scholar] [CrossRef] [PubMed]
- Lozano, R.; Azarang, A.; Wilaisakditipakorn, T.; Hagerman, R.J. Fragile X syndrome: A review of clinical management. Intractable Rare Dis. Res. 2016, 5, 145–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devys, D.; Lutz, Y.; Bellocq, J.-P.; Mandel, J.-L. The FMR-1 protein is cytoplasmic, most abundant in neurons and appears normal in carriers of a fragile X premutation. Nat. Genet. 1993, 4, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Tamanini, F. Differential expression of FMR1, FXR1 and FXR2 proteins in human brain and testis. Hum. Mol. Genet. 1997, 6, 1315–1322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakker, C.E.; de Diego Otero, Y.; Bontekoe, C.; Raghoe, P.; Luteijn, T.; Hoogeveen, A.T.; Oostra, B.A.; Willemsen, R. Immunocytochemical and biochemical characterization of FMRP, FXR1P, and FXR2P in the mouse. Exp. Cell Res. 2000, 258, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Erickson, C.A.; Davenport, M.H.; Schaefer, T.L.; Wink, L.K.; Pedapati, E.V.; Sweeney, J.A.; Fitzpatrick, S.E.; Brown, W.T.; Budimirovic, D.; Hagerman, R.J.; et al. Fragile X targeted pharmacotherapy: Lessons learned and future directions. J. Neurodev. Disord. 2017, 9, 7. [Google Scholar] [CrossRef]
- Busquets-Garcia, A.; Maldonado, R.; Ozaita, A. New insights into the molecular pathophysiology of fragile X syndrome and therapeutic perspectives from the animal model. Int. J. Biochem. Cell Biol. 2014, 53, 121–126. [Google Scholar] [CrossRef] [Green Version]
- He, C.X.; Portera-Cailliau, C. The trouble with spines in fragile X syndrome: Density, maturity and plasticity. Neuroscience 2013, 251, 120–128. [Google Scholar] [CrossRef]
- Budimirovic, D.; Duy, P. Neurobehavioral features and targeted treatments in fragile X syndrome: Current insights and future directions. Engrami 2015, 37, 5–26. [Google Scholar] [CrossRef] [Green Version]
- Bear, M.F.; Huber, K.M.; Warren, S.T. The mGluR theory of fragile X mental retardation. Trends Neurosci. 2004, 27, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Paluszkiewicz, S.M.; Martin, B.S.; Huntsman, M.M. Fragile X syndrome: The GABAergic system and circuit dysfunction. Dev. Neurosci. 2011, 33, 349–364. [Google Scholar] [CrossRef] [PubMed]
- Budimirovic, D.B.; Berry-Kravis, E.; Erickson, C.A.; Hall, S.S.; Hessl, D.; Reiss, A.L.; King, M.K.; Abbeduto, L.; Kaufmann, W.E. Updated report on tools to measure outcomes of clinical trials in fragile X syndrome. J. Neruodev. Disord. 2017, 9, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- US National Library of Medicine Fragile X Syndrome. Available online: https://clinicaltrials.gov (accessed on 11 October 2018).
- Gurney, M.E.; Cogram, P.; Deacon, R.M.; Rex, C.; Tranfaglia, M. Multiple behavior phenotypes of the fragile-X syndrome mouse model respond to chronic inhibition of phosphodiesterase-4D (PDE4D). Sci. Rep. 2017, 7, 14653. [Google Scholar] [CrossRef] [PubMed]
- Kelley, D.J.; Davidson, R.J.; Elliott, J.L.; Lahvis, G.P.; Yin, J.C.P.; Bhattacharyya, A. The cyclic AMP cascade is altered in the fragile X nervous system. PLoS ONE 2007, 2, e931. [Google Scholar] [CrossRef] [PubMed]
- Berry-Kravis, E.; Huttenlocher, P.R. Cyclic AMP metabolism in fragile X syndrome. Ann. Neurol. 1992, 31, 22–26. [Google Scholar] [CrossRef]
- Berry-Kravis, E.; Sklena, P. Demonstration of abnormal cyclic AMP production in platelets from patients with fragile X syndrome. Am. J. Med. Genet. 1993, 45, 81–87. [Google Scholar] [CrossRef]
- Choi, C.H.; Schoenfeld, B.P.; Weisz, E.D.; Bell, A.J.; Chambers, D.B.; Hinchey, J.; Choi, R.J.; Hinchey, P.; Kollaros, M.; Gertner, M.J.; et al. PDE-4 Inhibition rescues aberrant synaptic plasticity in drosophila and mouse models of fragile X syndrome. J. Neurosci. 2015, 35, 396–408. [Google Scholar] [CrossRef]
- Kanellopoulos, A.K.; Semelidou, O.; Kotini, A.G.; Anezaki, M.; Skoulakis, E.M.C. Learning and memory deficits consequent to reduction of the fragile X mental retardation protein result from metabotropic glutamate receptor-mediated inhibition of cAMP signaling in drosophila. J. Neurosci. 2012, 32, 13111–13124. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, Y.; Chowdhary, A.; Fox, D.; Gurney, M.E.; Zhang, H.-T.; Auerbach, B.D.; Salvi, R.J.; Yang, M.; Li, G.; et al. Memory enhancing effects of BPN14770, an allosteric inhibitor of phosphodiesterase-4D, in wild-type and humanized mice. Neuropsychopharmacology 2018, 43, 2299–2309. [Google Scholar] [CrossRef]
- Prickaerts, J.; Heckman, P.R.A.; Blokland, A. Investigational phosphodiesterase inhibitors in phase I and phase II clinical trials for Alzheimer’s disease. Expert Opin. Investig. Drugs 2017, 26, 1033–1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meera, P.; Wallner, M.; Otis, T.S. Molecular basis for the high THIP/gaboxadol sensitivity of extrasynaptic GABA A receptors. J. Neurophysiol. 2011, 106, 2057–2064. [Google Scholar] [CrossRef] [PubMed]
- Belelli, D. Extrasynaptic GABAA Receptors of Thalamocortical Neurons: A Molecular Target for Hypnotics. J. Neurosci. 2005, 25, 11513–11520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, N.; Kerby, J.; Bonnert, T.P.; Whiting, P.J.; Wa, K.A. Pharmacological characterization of a novel cell line expressing human a4b3d GABAA receptors. Br. J. Pharmacol. 2002, 136, 965–974. [Google Scholar] [CrossRef] [PubMed]
- Wafford, K.A.; Macaulay, A.J.; Fradley, R.; O’Meara, G.F.; Reynolds, D.S.; Rosahl, T.W. Differentiating the role of γ-aminobutyric acid type A (GABAA) receptor subtypes. Biochem. Soc. Trans. 2004, 32, 553–556. [Google Scholar] [CrossRef] [PubMed]
- D’Hulst, C.; Heulens, I.; Brouwer, J.R.; Willemsen, R.; De Geest, N.; Reeve, S.P.; De Deyn, P.P.; Hassan, B.A.; Kooy, R.F. Expression of the GABAergic system in animal models for fragile X syndrome and fragile X associated tremor/ataxia syndrome (FXTAS). Brain Res. 2009, 1253, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Olmos-Serrano, J.L.; Paluszkiewicz, S.M.; Martin, B.S.; Kaufmann, W.E.; Corbin, J.G.; Huntsman, M.M. Defective GABAergic neurotransmission and pharmacological rescue of neuronal hyperexcitability in the amygdala in a mouse model of fragile X syndrome. J. Neurosci. 2010, 30, 9929–9938. [Google Scholar] [CrossRef]
- Olmos-Serrano, J.L.; Corbin, J.G. Amygdala regulation of fear and emotionality in fragile X syndrome. Dev. Neurosci. 2011, 33, 365–378. [Google Scholar] [CrossRef]
- Cogram, P.; Deacon, R.J.; von Schimmelmann, M.J.; During, M.J.; Abrahams, B.S. Gaboxadol normalizes behavioral abnormalities in a mouse model of fragile X syndrome (P1.323). Neurology 2018, 19, 323. [Google Scholar]
- Heussler, H.S.; Cohen, J.; Silove, N.; Tich, N.; O’Neill, C.; Bonn-Miller, M.O. Transdermal Cannabidiol (CBD) Gel for the Treatment of Fragile X Syndrome (FXS); Zynerba Pharmaceuticals: Devon, PA, USA, 2018. [Google Scholar]
- Russo, E.B. Cannabidiol claims and misconceptions. Trends Pharmacol. Sci. 2017, 38, 198–201. [Google Scholar] [CrossRef]
- McPartland, J.M.; Duncan, M.; Di Marzo, V.; Pertwee, R.G. Are cannabidiol and Δ9-tetrahydrocannabivarin negative modulators of the endocannabinoid system? A systematic review: Mechanistic studies (in vivo and ex vivo) of CBD and THCV. Br. J. Pharmacol. 2015, 172, 737–753. [Google Scholar] [CrossRef] [PubMed]
- Russo, E.B. Taming THC: Potential cannabis synergy and phytocannabinoid-terpenoid entourage effects: Phytocannabinoid-terpenoid entourage effects. Br. J. Pharmacol. 2011, 163, 1344–1364. [Google Scholar] [CrossRef] [PubMed]
- Merrick, J.; Lane, B.; Sebree, T.; Yaksh, T.; O’Neill, C.; Banks, S.L. Identification of psychoactive degradants of cannabidiol in simulated gastric and physiological fluid. Cannabis Cannabiniod Res. 2016, 1, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Alger, B.E. Enhanced endocannabinoid signaling elevates neuronal excitability in fragile X syndrome. J. Neurosci. 2010, 30, 5724–5729. [Google Scholar] [CrossRef] [PubMed]
- Busquets-Garcia, A.; Gomis-González, M.; Guegan, T.; Agustín-Pavón, C.; Pastor, A.; Mato, S.; Pérez-Samartín, A.; Matute, C.; de la Torre, R.; Dierssen, M.; et al. Targeting the endocannabinoid system in the treatment of fragile X syndrome. Nat. Med. 2013, 19, 603–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maccarrone, M.; Rossi, S.; Bari, M.; De Chiara, V.; Rapino, C.; Musella, A.; Bernardi, G.; Bagni, C.; Centonze, D. Abnormal mGlu 5 receptor/endocannabinoid coupling in mice lacking FMRP and BC1 RNA. Neuropsychopharmacology 2010, 35, 1500–1509. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.-M.; Sepers, M.; Henstridge, C.M.; Lassalle, O.; Neuhofer, D.; Martin, H.; Ginger, M.; Frick, A.; DiPatrizio, N.V.; Mackie, K.; et al. Uncoupling of the endocannabinoid signalling complex in a mouse model of fragile X syndrome. Nat. Commun. 2012, 3, 1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, M.; Zeidler, Z.; Moulton, K.; Krych, L.; Xia, Z.; Smith, C.B. Endocannabinoid-mediated improvement on a test of aversive memory in a mouse model of fragile X syndrome. Behav. Brain Res. 2015, 291, 164–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonn-Miller, M.; Sebree, T.; O’Neill, C.; Messenheimer, J. Neuropsychological Effects of ZYN002 (Synthetic Cannabidiol) Transdermal Gel in Healthy Subjects and Patients with Epilepsy: Phase 1, Randomized, Double-Blind, Placebo-Controlled Studies; Zynerba Pharmaceuticals: Devon, PA, USA, 2016. [Google Scholar]
- Sebree, T.; O’Neill, C.; Messenheimer, J.; Gutterman, D. Safety and Tolerability of ZYN002 (Synthetic Cannabidiol) Transdermal Permeation-Enhanced Gel in Healthy Subjects and Patients with Epilepsy: Three Phase 1, Randomized, Double-Blind, Placebo-Controlled Studies; Zynerba Pharmaceuticals: Devon, PA, USA, 2016. [Google Scholar]
- Gross, C.; Hoffmann, A.; Bassell, G.J.; Berry-Kravis, E.M. Therapeutic strategies in fragile X syndrome: From bench to bedside and back. Neurotherapeutics 2015, 12, 584–608. [Google Scholar] [CrossRef] [PubMed]
- Berry-Kravis, E.; Hessl, D.; Coffey, S.; Hervey, C.; Schneider, A.; Yuhas, J.; Hutchison, J.; Snape, M.; Tranfaglia, M.; Nguyen, D.V.; et al. A pilot open label, single dose trial of fenobam in adults with fragile X syndrome. J. Med. Genet. 2009, 46, 266–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacquemont, S.; Curie, A.; des Portes, V.; Torrioli, M.G.; Berry-Kravis, E.; Hagerman, R.J.; Ramos, F.J.; Cornish, K.; He, Y.; Paulding, C.; et al. Epigenetic modification of the FMR1 gene in fragile X syndrome is associated with differential response to the mGluR5 antagonist AFQ056. Sci. Transl. Med. 2011, 3, 64ra1. [Google Scholar] [CrossRef]
- Berry-Kravis, E.; des Portes, V.; Hagerman, R.; Jacquemont, S.; Charles, P.; Visootsak, J.; Brinkman, M.; Rerat, K.; Koumaras, B.; Zhu, L.; et al. Mavoglurant in fragile X syndrome: Results of two randomized, double-blind, placebo-controlled trials. Sci. Transl. Med. 2016, 8, 321ra5. [Google Scholar] [CrossRef] [PubMed]
- Duy, P.Q.; Budimirovic, D.B. Fragile X syndrome: Lessons learned from the most translated neurodevelopmental disorder in clinical trials. Transl. Neurosci. 2017, 8, 7–8. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, P. A test battery for attentional performance. In Applied Neuropsychology of Attention Theory, Diagnosis and Rehabilatation; Leclercq, M., Zimmermann, P., Eds.; Psychology Press: London, UK, 2004. [Google Scholar]
- Knox, A.; Schneider, A.; Abucayan, F.; Hervey, C.; Tran, C.; Hessl, D.; Berry-Kravis, E. Feasibility, reliability, and clinical validity of the Test of Attentional Performance for Children (KiTAP) in Fragile X syndrome (FXS). J. Neurodev. Disord. 2012, 4, 2. [Google Scholar] [CrossRef] [PubMed]
- Berry-Kravis, E.; Doll, E.; Sterling, A.; Kover, S.T.; Schroeder, S.M.; Mathur, S.; Abbeduto, L. Development of an expressive language sampling procedure in fragile X syndrome: A pilot study. J. Dev. Behav. Pediatr. 2013, 34, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Weintraub, S.; Dikmen, S.S.; Heaton, R.K.; Tulsky, D.S.; Zelazo, P.D.; Bauer, P.J.; Carlozzi, N.E.; Slotkin, J.; Blitz, D.; Wallner-Allen, K.; et al. Cognition assessment using the NIH Toolbox. Neurology 2013, 80, S54–S64. [Google Scholar] [CrossRef] [Green Version]
- Hessl, D.; Sansone, S.M.; Berry-Kravis, E.; Riley, K.; Widaman, K.F.; Abbeduto, L.; Schneider, A.; Coleman, J.; Oaklander, D.; Rhodes, K.C.; et al. The NIH Toolbox Cognitive Battery for intellectual disabilities: Three preliminary studies and future directions. J. Neurodev. Disord. 2016, 8, 35. [Google Scholar] [CrossRef]
- Maenner, M.J.; Smith, L.E.; Hong, J.; Makuch, R.; Greenberg, J.S.; Mailick, M.R. Evaluation of an activities of daily living scale for adolescents and adults with developmental disabilities. Disabil. Health J. 2013, 6, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Hauser, C.T.; Kover, S.T.; Abbeduto, L. Maternal well-being and child behavior in families with fragile X syndrome. Res. Dev. Disabil. 2014, 35, 2477–2486. [Google Scholar] [CrossRef] [Green Version]
- Gross, C.; Berry-Kravis, E.M.; Bassell, G.J. Therapeutic strategies in fragile X syndrome: Dysregulated mGluR signaling and beyond. Neuropsychpharmacology 2012, 37, 178–195. [Google Scholar] [CrossRef]
Neurocognitive [8] | Developmental Delays (Motor and/or Language) Cognitive Deficits/Intellectual Disabilities |
---|---|
Behavioral [8] | Hand flapping and/or biting Gaze avoidance Tactile defensiveness Hyperarousal to sensory stimuli Impaired social skills Social anxiety and mood disorders Hyperactivity Impulsivity Aggression Perseverative behavior |
Physical Features [8,9] | Large ears Long, narrow face Prominent forehead or chin Large testicles in teen/adults High palate Flat feet Hyperflexible joints |
Other [9] | Recurrent otitis media Strabismus Sleep disorders Gastroesophageal reflux Seizures Weight gain |
Phase | Compound | Identifier | Industry-Sponsored? (Y/N) |
---|---|---|---|
1 | AZD7325 | NCT03140813 | N |
2 | Acamprosate, lovastatin, minocycline | NCT02998151 | N |
2 | AFQ056 | NCT02920892 | N |
2 | BPN14770 | NCT03569631 | Y (Tetra Discovery Partners/FRAXA/RUMC) |
2 | Metformin | NCT03722290 | N |
2 | OV101/gaboxadol | NCT03697161/ROCKET | Y (Ovid Therapeutics Inc.) |
2/3 | Acamprosate | NCT01911455 | N |
2/3 | Metformin | NCT03479476 | N |
2/3 | ZYN002 | NCT03614663/CONNECT-FX | Y (Zynerba Pharmaceuticals Inc.) |
4 | Lovastatin | NCT02642653 | N |
4 | Methylphenidate, fluoxetine, risperidone | NCT00768820 | N |
Tests a broad range of ability Overcomes cooperation/variable performance problems Results can be reproduced Quantifies core defects Correlates with quality of life/true functional improvement |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, A.W.; Ventola, P.; Budimirovic, D.; Berry-Kravis, E.; Visootsak, J. Clinical Development of Targeted Fragile X Syndrome Treatments: An Industry Perspective. Brain Sci. 2018, 8, 214. https://doi.org/10.3390/brainsci8120214
Lee AW, Ventola P, Budimirovic D, Berry-Kravis E, Visootsak J. Clinical Development of Targeted Fragile X Syndrome Treatments: An Industry Perspective. Brain Sciences. 2018; 8(12):214. https://doi.org/10.3390/brainsci8120214
Chicago/Turabian StyleLee, Anna W., Pamela Ventola, Dejan Budimirovic, Elizabeth Berry-Kravis, and Jeannie Visootsak. 2018. "Clinical Development of Targeted Fragile X Syndrome Treatments: An Industry Perspective" Brain Sciences 8, no. 12: 214. https://doi.org/10.3390/brainsci8120214
APA StyleLee, A. W., Ventola, P., Budimirovic, D., Berry-Kravis, E., & Visootsak, J. (2018). Clinical Development of Targeted Fragile X Syndrome Treatments: An Industry Perspective. Brain Sciences, 8(12), 214. https://doi.org/10.3390/brainsci8120214