Potential Mechanisms Underlying the Deleterious Effects of Synthetic Cannabinoids Found in Spice/K2 Products
Abstract
:Introduction
Author Contributions
Funding
Conflicts of Interest
References
- Johnston, L.D.; O’Malley, P.M.; Bachman, J.G.; Schulenberg, J.E. Marijuana Use Continues to Rise Among U.S. Teens, While Alcohol Use Hits Historic Lows; University of Michigan News Service: Ann Arbor, MI, USA, 2012; Available online: https://news.umich.edu/marijuana-use-continues-to-rise-among-us-teens-while-alcohol-use-hits-historic-lows/ (accessed on 5 October 2012).
- Gaoni, Y.; Mechoulam, R. Isolation, structure and partial synthesis of an active constituent of hashish. J. Am. Chem. Soc. 1964, 86, 1646–1647. [Google Scholar] [CrossRef]
- Mehmedic, Z.; Chandra, S.; Slade, D.; Denham, H.; Foster, S.; Patel, A.S.; Ross, S.A.; Khan, I.A.; ElSohly, M.A. Potency trends of delta9-THC and other cannabinoids in confiscated cannabis preparations from 1993 to 2008. J. Forensic. Sci. 2010, 55, 1209–1217. [Google Scholar] [CrossRef]
- Pertwee, R.G. The central neuropharmacology of psychotropic cannabinoids. Pharmacol. Ther. 1988, 36, 189–261. [Google Scholar] [CrossRef]
- Basavarajappa, B.S. Major enzymes of endocannabinoid metabolism. In Frontiers in Protein and Peptide Sciences; Dunn, B., Ed.; Bentham Science Publishers: Oak Park, IL, USA, 2014; Volume 1, pp. 31–62. [Google Scholar]
- Herkenham, M.; Lynn, A.B.; de Costa, B.R.; Richfield, E.K. Neuronal localization of cannabinoid receptors in the basal ganglia of the rat. Brain Res. 1991, 547, 267–274. [Google Scholar] [CrossRef]
- Basavarajappa, B.S. Neuropharmacology of the endocannabinoid signaling system-molecular mechanisms, biological actions and synaptic plasticity. Curr. Neuropharmacol. 2007, 5, 81–97. [Google Scholar] [CrossRef]
- Battistella, G.; Fornari, E.; Annoni, J.M.; Chtioui, H.; Dao, K.; Fabritius, M.; Favrat, B.; Mall, J.F.; Maeder, P.; Giroud, C. Long-term effects of cannabis on brain structure. Neuropsychopharmacology 2014, 39, 2041–2048. [Google Scholar] [CrossRef]
- Herkenham, M.; Lynn, A.B.; Johnson, M.R.; Melvin, L.S.; de Cost, B.R.; Rice, K.C. Characterization and localization of cannabinoid receptors in rat brain: A quantitative in vitro autoradiographic study. J. Neurosci. 1991, 16, 8057–8066. [Google Scholar] [CrossRef]
- Onaivi, E.S.; Ishiguro, H.; Gong, J.P.; Patel, S.; Meozzi, P.A.; Myers, L.; Perchuk, A.; Mora, Z.; Tagliaferro, P.A.; Gardner, E.; et al. Brain neuronal CB2 cannabinoid receptors in drug abuse and depression: From mice to human subjects. PLoS ONE 2008, 3, e1640. [Google Scholar] [CrossRef]
- Ramirez, S.H.; Hasko, J.; Skuba, A.; Fan, S.; Dykstra, H.; McCormick, R.; Reichenbach, N.; Krizbai, I.; Mahadevan, A.; Zhang, M.; et al. Activation of cannabinoid receptor 2 attenuates leukocyte-endothelial cell interactions and blood-brain barrier dysfunction under inflammatory conditions. J. Neurosci. 2012, 32, 4004–4016. [Google Scholar] [CrossRef]
- Li, Y.; Kim, J. Neuronal expression of CB2 cannabinoid receptor mrnas in the mouse hippocampus. Neuroscience 2015, 311, 253–267. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Gao, M.; Liu, Q.R.; Bi, G.H.; Li, X.; Yang, H.J.; Gardner, E.L.; Wu, J.; Xi, Z.X. Cannabinoid CB2 receptors modulate midbrain dopamine neuronal activity and dopamine-related behavior in mice. Proc. Natl. Acad. Sci. USA 2014, 111, E5007–E5015. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Gao, M.; Shen, H.; Bi, G.H.; Yang, H.J.; Liu, Q.R.; Wu, J.; Gardner, E.L.; Bonci, A.; Xi, Z.X. Expression of functional cannabinoid CB2 receptor in VTA dopamine neurons in rats. Addict. Biol. 2016, 22, 752–756. [Google Scholar] [CrossRef]
- Li, Y.; Kim, J. CB2 cannabinoid receptor knockout in mice impairs contextual long-term memory and enhances spatial working memory. Neural Plast. 2016, 2016, 1–14. [Google Scholar] [CrossRef]
- Li, Y.; Kim, J. Deletion of CB2 cannabinoid receptors reduces synaptic transmission and long-term potentiation in the mouse hippocampus. Hippocampus 2016, 26, 275–281. [Google Scholar] [CrossRef]
- Stempel, A.V.; Stumpf, A.; Zhang, H.Y.; Ozdogan, T.; Pannasch, U.; Theis, A.K.; Otte, D.M.; Wojtalla, A.; Racz, I.; Ponomarenko, A.; et al. Cannabinoid type 2 receptors mediate a cell type-specific plasticity in the hippocampus. Neuron 2016, 90, 795–809. [Google Scholar] [CrossRef]
- Van Sickle, M.D.; Duncan, M.; Kingsley, P.J.; Mouihate, A.; Urbani, P.; Mackie, K.; Stella, N.; Makriyannis, A.; Piomelli, D.; Davison, J.S.; et al. Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science 2005, 310, 329–332. [Google Scholar] [CrossRef]
- Viscomi, M.T.; Oddi, S.; Latini, L.; Pasquariello, N.; Florenzano, F.; Bernardi, G.; Molinari, M.; Maccarrone, M. Selective CB2 receptor agonism protects central neurons from remote axotomy-induced apoptosis through the PI3K/AKT pathway. J. Neurosci. 2009, 29, 4564–4570. [Google Scholar] [CrossRef]
- Kearn, C.S.; Greenberg, M.J.; DiCamelli, R.; Kurzawa, K.; Hillard, C.J. Relationships between ligand affinities for the cerebellar cannabinoid receptor CB1 and the induction of GDP/GTP exchange. J. Neurochem. 1999, 72, 2379–2387. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; McIntosh, H.H.; Houston, D.B.; Howlett, A.C. The CB(1) cannabinoid receptor juxtamembrane C-terminal peptide confers activation to specific G proteins in brain. Mol. Pharmacol. 2000, 57, 162–170. [Google Scholar]
- Glass, M.; Felder, C.C. Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors augments camp accumulation in striatal neurons: Evidence for a Gs linkage to the CB1 receptor. J. Neurosci. 1997, 17, 5327–5333. [Google Scholar] [CrossRef]
- Rhee, M.H.; Bayewitch, M.; Avidor-Reiss, T.; Levy, R.; Vogel, Z. Cannabinoid receptor activation differentially regulates the various adenylyl cyclase isozymes. J. Neurochem. 1998, 71, 1525–1534. [Google Scholar] [CrossRef]
- Herrera, B.; Carracedo, A.; Diez-Zaera, M.; Gomez del Pulgar, T.; Guzman, M.; Velasco, G. The CB2 cannabinoid receptor signals apoptosis via ceramide-dependent activation of the mitochondrial intrinsic pathway. Exp. Cell Res. 2006, 312, 2121–2131. [Google Scholar] [CrossRef]
- Shi, J.; Cai, Q.; Zhang, J.; He, X.; Liu, Y.; Zhu, R.; Jin, L. AM1241 alleviates MPTP-induced Parkinson’s disease and promotes the regeneration of DA neurons in PD mice. Oncotarget 2017, 8, 67837–67850. [Google Scholar]
- Li, L.; Yun, D.; Zhang, Y.; Tao, Y.; Tan, Q.; Qiao, F.; Luo, B.; Liu, Y.; Fan, R.; Xian, J.; et al. A cannabinoid receptor 2 agonist reduces blood-brain barrier damage via induction of MKP-1 after intracerebral hemorrhage in rats. Brain Res. 2018, 1697, 113–123. [Google Scholar] [CrossRef]
- Fujii, M.; Sherchan, P.; Soejima, Y.; Hasegawa, Y.; Flores, J.; Doycheva, D.; Zhang, J.H. Cannabinoid receptor type 2 agonist attenuates apoptosis by activation of phosphorylated CREB-Bcl-2 pathway after subarachnoid hemorrhage in rats. Exp. Neurol. 2014, 261, 396–403. [Google Scholar] [CrossRef]
- Stumpf, A.; Parthier, D.; Sammons, R.P.; Stempel, A.V.; Breustedt, J.; Rost, B.R.; Schmitz, D. Cannabinoid type 2 receptors mediate a cell type-specific self-inhibition in cortical neurons. Neuropharmacology 2018, 139, 217–225. [Google Scholar] [CrossRef]
- Huffman, J.W.; Dong, D.; Martin, B.R.; Compton, D.R. Design, synthesis and pharmacology of cannabimimetic indoles. Bioorg. Med. Chem. Lett. 1994, 4, 563–566. [Google Scholar] [CrossRef]
- Vardakou, I.; Pistos, C.; Spiliopoulou, C. Spice drugs as a new trend: Mode of action, identification and legislation. Toxicol. Lett. 2010, 197, 157–162. [Google Scholar] [CrossRef]
- US Drug Enforcement Administration. Schedules of controlled substances:Temporary placement of four synthetic cannabinoids into schedule I Final order. Fed. Regist 2014, 79, 7577–7582. [Google Scholar]
- Howlett, A.C.; Barth, F.; Bonner, T.I.; Cabral, G.; Casellas, P.; Devane, W.A.; Felder, C.C.; Herkenham, M.; Mackie, K.; Martin, B.R.; et al. International union of pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol. Rev. 2002, 54, 161–202. [Google Scholar] [CrossRef]
- Castaneto, M.S.; Gorelick, D.A.; Desrosiers, N.A.; Hartman, R.L.; Pirard, S.; Huestis, M.A. Synthetic cannabinoids: Epidemiology, pharmacodynamics, and clinical implications. Drug Alcohol Depend. 2014, 144, 12–41. [Google Scholar] [CrossRef] [Green Version]
- Hermanns-Clausen, M.; Kneisel, S.; Szabo, B.; Auwarter, V. Acute toxicity due to the confirmed consumption of synthetic cannabinoids: Clinical and laboratory findings. Addiction 2013, 108, 534–544. [Google Scholar] [CrossRef]
- Pertwee, R.G. Receptors and channels targeted by synthetic cannabinoid receptor agonists and antagonists. Curr. Med. Chem. 2010, 17, 1360–1381. [Google Scholar] [CrossRef]
- Elmore, J.S.; Baumann, M.H. Repeated exposure to the “spice” cannabinoid JWH-018 induces tolerance and enhances responsiveness to 5-HT1A receptor stimulation in male rats. Front. Psychiatry 2018, 9, 55. [Google Scholar] [CrossRef]
- Lopez-Dyck, E.; Andrade-Urzua, F.; Elizalde, A.; Ferrer-Villada, T.; Dagnino-Acosta, A.; Huerta, M.; Osuna-Calleros, Z.; Rangel-Sandoval, C.; Sanchez-Pastor, E. Acpa and JWH-133 modulate the vascular tone of superior mesenteric arteries through cannabinoid receptors, bkca channels, and nitric oxide dependent mechanisms. Pharmacol. Rep. 2017, 69, 1131–1139. [Google Scholar] [CrossRef]
- Yun, J.; Yoon, K.S.; Lee, T.H.; Lee, H.; Gu, S.M.; Song, Y.J.; Cha, H.J.; Han, K.M.; Seo, H.; Shin, J.; et al. Synthetic cannabinoid, JWH-030, induces QT prolongation through herg channel inhibition. Toxicol. Res. (Camb.) 2016, 5, 1663–1671. [Google Scholar] [CrossRef]
- Brents, L.K.; Reichard, E.E.; Zimmerman, S.M.; Moran, J.H.; Fantegrossi, W.E.; Prather, P.L. Phase i hydroxylated metabolites of the k2 synthetic cannabinoid JWH-018 retain in vitro and in vivo cannabinoid 1 receptor affinity and activity. PLoS ONE 2011, 6, e21917. [Google Scholar] [CrossRef]
- Ginsburg, B.C.; Schulze, D.R.; Hruba, L.; McMahon, L.R. Jwh-018 and jwh-073: Delta(9)-tetrahydrocannabinol-like discriminative stimulus effects in monkeys. J. Pharmacol. Exp. Ther. 2012, 340, 37–45. [Google Scholar] [CrossRef]
- Jarbe, T.U.; Deng, H.; Vadivel, S.K.; Makriyannis, A. Cannabinergic aminoalkylindoles, including AM678 = JWH018 found in ‘spice’, examined using drug (delta(9)-tetrahydrocannabinol) discrimination for rats. Behav. Pharmacol. 2011, 22, 498–507. [Google Scholar] [CrossRef]
- Uchiyama, N.; Kikura-Hanajiri, R.; Matsumoto, N.; Huang, Z.; Goda, Y.; Urade, Y. Effects of synthetic cannabinoids, cannabicyclohexanol and jwh-018, on electroencephalogram power spectra and locomotor activity in rats. Sleep Biol. Rhythms. 2011, 9, 342. [Google Scholar]
- Wiebelhaus, J.M.; Poklis, J.L.; Poklis, A.; Vann, R.E.; Lichtman, A.H.; Wise, L.E. Inhalation exposure to smoke from synthetic “marijuana” produces potent cannabimimetic effects in mice. Drug Alcohol Depend. 2012, 126, 316–323. [Google Scholar] [CrossRef] [Green Version]
- Wiley, J.L.; Marusich, J.A.; Martin, B.R.; Huffman, J.W. 1-pentyl-3-phenylacetylindoles and jwh-018 share in vivo cannabinoid profiles in mice. Drug Alcohol Depend. 2012, 123, 148–153. [Google Scholar] [CrossRef]
- Macri, S.; Lanuzza, L.; Merola, G.; Ceci, C.; Gentili, S.; Valli, A.; Macchia, T.; Laviola, G. Behavioral responses to acute and sub-chronic administration of the synthetic cannabinoid jwh-018 in adult mice prenatally exposed to corticosterone. Neurotox Res. 2013, 24, 15–28. [Google Scholar] [CrossRef]
- Wilson, C.D.; Tai, S.; Ewing, L.; Crane, J.; Lockhart, T.; Yarbrough, A.L.; Fujiwara, R.; Radominska-Pandya, A.; Fantegrossi, W.E. Convulsant effects of abused synthetic cannabinoids jwh-018 and 5f-ab-pinaca are mediated by agonist actions at cb1 receptors in mice. J. Pharmacol. Exp. Ther. 2019, 368, 146–156. [Google Scholar] [CrossRef]
- Theunissen, E.L.; Hutten, N.; Mason, N.L.; Toennes, S.W.; Kuypers, K.P.C.; de Sousa Fernandes Perna, E.B.; Ramaekers, J.G. Neurocognition and subjective experience following acute doses of the synthetic cannabinoid jwh-018: A phase 1, placebo-controlled, pilot study. Br. J. Pharmacol. 2018, 175, 18–28. [Google Scholar] [CrossRef]
- Atwood, B.K.; Huffman, J.; Straiker, A.; Mackie, K. Jwh018, a common constituent of ‘spice’ herbal blends, is a potent and efficacious cannabinoid cb receptor agonist. Br. J. Pharmacol. 2010, 160, 585–593. [Google Scholar] [CrossRef]
- Hoffman, A.F.; Lycas, M.D.; Kaczmarzyk, J.R.; Spivak, C.E.; Baumann, M.H.; Lupica, C.R. Disruption of hippocampal synaptic transmission and long-term potentiation by psychoactive synthetic cannabinoid ‘spice’ compounds: Comparison with delta(9) -tetrahydrocannabinol. Addict. Biol. 2017, 22, 390–399. [Google Scholar] [CrossRef]
- Jarbe, T.U.; Tai, S.; LeMay, B.J.; Nikas, S.P.; Shukla, V.G.; Zvonok, A.; Makriyannis, A. Am2389, a high-affinity, in vivo potent cb1-receptor-selective cannabinergic ligand as evidenced by drug discrimination in rats and hypothermia testing in mice. Psychopharmacology 2012, 220, 417–426. [Google Scholar] [CrossRef]
- Uttl, L.; Szczurowska, E.; Hajkova, K.; Horsley, R.R.; Stefkova, K.; Hlozek, T.; Sichova, K.; Balikova, M.; Kuchar, M.; Micale, V.; et al. Behavioral and pharmacokinetic profile of indole-derived synthetic cannabinoids jwh-073 and jwh-210 as compared to the phytocannabinoid delta(9)-thc in rats. Front. Neurosci. 2018, 12, 703. [Google Scholar] [CrossRef]
- Banister, S.D.; Wilkinson, S.M.; Longworth, M.; Stuart, J.; Apetz, N.; English, K.; Brooker, L.; Goebel, C.; Hibbs, D.E.; Glass, M.; et al. The synthesis and pharmacological evaluation of adamantane-derived indoles: Cannabimimetic drugs of abuse. ACS Chem. Neurosci. 2013, 4, 1081–1092. [Google Scholar] [CrossRef]
- Basavarajappa, B.S.; Subbanna, S. Cb1 receptor-mediated signaling underlies the hippocampal synaptic, learning, and memory deficits following treatment with jwh-081, a new component of spice/k2 preparations. Hippocampus 2014, 24, 178–188. [Google Scholar] [CrossRef]
- Chopda, G.R.; Vemuri, V.K.; Sharma, R.; Thakur, G.A.; Makriyannis, A.; Paronis, C.A. Diuretic effects of cannabinoid agonists in mice. Eur. J. Pharmacol. 2013, 721, 64–69. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.L.; Thakur, G.A.; Stewart, W.N.; Bow, J.P.; Bajaj, S.; Makriyannis, A.; McLaughlin, P.J. Effects of a novel cb1 agonist on visual attention in male rats: Role of strategy and expectancy in task accuracy. Exp. Clin. Psychopharmacol. 2013, 21, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Desai, R.I.; Thakur, G.A.; Vemuri, V.K.; Bajaj, S.; Makriyannis, A.; Bergman, J. Analysis of tolerance and behavioral/physical dependence during chronic cb1 agonist treatment: Effects of cb1 agonists, antagonists, and noncannabinoid drugs. J. Pharmacol. Exp. Ther. 2013, 344, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Carlier, J.; Wohlfarth, A.; Salmeron, B.D.; Scheidweiler, K.B.; Huestis, M.A.; Baumann, M.H. Pharmacodynamic effects, pharmacokinetics, and metabolism of the synthetic cannabinoid am-2201 in male rats. J. Pharmacol. Exp. Ther. 2018, 367, 543–550. [Google Scholar] [CrossRef]
- Gatch, M.B.; Forster, M.J. Delta9-tetrahydrocannabinol-like effects of novel synthetic cannabinoids found on the gray market. Behav. Pharmacol. 2015, 26, 460–468. [Google Scholar] [CrossRef]
- Wiley, J.L.; Marusich, J.A.; Lefever, T.W.; Grabenauer, M.; Moore, K.N.; Thomas, B.F. Cannabinoids in disguise: Delta9-tetrahydrocannabinol-like effects of tetramethylcyclopropyl ketone indoles. Neuropharmacology 2013, 75, 145–154. [Google Scholar] [CrossRef]
- Fonseca, B.M.; Fernandes, R.; Almada, M.; Santos, M.; Carvalho, F.; Teixeira, N.A.; Correia-da-Silva, G. Synthetic cannabinoids and endometrial stromal cell fate: Dissimilar effects of jwh-122, ur-144 and win55,212-2. Toxicology 2018, 413, 40–47. [Google Scholar] [CrossRef]
- Gatch, M.B.; Forster, M.J. Cannabinoid-like effects of five novel carboxamide synthetic cannabinoids. Neurotoxicology 2018, 70, 72–79. [Google Scholar] [CrossRef]
- Hutchison, R.D.; Ford, B.M.; Franks, L.N.; Wilson, C.D.; Yarbrough, A.L.; Fujiwara, R.; Su, M.K.; Fernandez, D.; James, L.P.; Moran, J.H.; et al. Atypical pharmacodynamic properties and metabolic profile of the abused synthetic cannabinoid ab-pinaca: Potential contribution to pronounced adverse effects relative to delta(9)-thc. Front. Pharmacol. 2018, 9, 1084. [Google Scholar] [CrossRef]
- Kevin, R.C.; Wood, K.E.; Stuart, J.; Mitchell, A.J.; Moir, M.; Banister, S.D.; Kassiou, M.; McGregor, I.S. Acute and residual effects in adolescent rats resulting from exposure to the novel synthetic cannabinoids ab-pinaca and ab-fubinaca. J. Psychopharmacol. 2017, 31, 757–769. [Google Scholar] [CrossRef]
- Domoto, M.; Sasase, H.; Wada, S.; Ito, S.; Deyama, S.; Hinoi, E.; Kaneko, S.; Kaneda, K. The synthetic cannabinoid 5f-amb changes the balance between excitation and inhibition of layer V pyramidal neurons in the mouse medial prefrontal cortex. Psychopharmacology 2018, 235, 2367–2376. [Google Scholar] [CrossRef]
- Gamage, T.F.; Farquhar, C.E.; Lefever, T.W.; Marusich, J.A.; Kevin, R.C.; McGregor, I.S.; Wiley, J.L.; Thomas, B.F. Molecular and behavioral pharmacological characterization of abused synthetic cannabinoids mmb- and mdmb-fubinaca, mn-18, nnei, cumyl-pica, and 5-fluoro-cumyl-pica. J. Pharmacol. Exp. Ther. 2018, 365, 437–446. [Google Scholar] [CrossRef]
- Schreiber, S.; Bader, M.; Lenchinski, T.; Meningher, I.; Rubovitch, V.; Katz, Y.; Cohen, E.; Gabet, Y.; Rotenberg, M.; Wolf, E.U.; et al. Functional effects of synthetic cannabinoids versus delta(9) -thc in mice on body temperature, nociceptive threshold, anxiety, cognition, locomotor/exploratory parameters and depression. Addict. Biol. 2018. [Google Scholar] [CrossRef]
- Barbieri, M.; Ossato, A.; Canazza, I.; Trapella, C.; Borelli, A.C.; Beggiato, S.; Rimondo, C.; Serpelloni, G.; Ferraro, L.; Marti, M. Synthetic cannabinoid jwh-018 and its halogenated derivatives jwh-018-cl and jwh-018-br impair novel object recognition in mice: Behavioral, electrophysiological and neurochemical evidence. Neuropharmacology 2016, 109, 254–269. [Google Scholar] [CrossRef]
- Vigolo, A.; Ossato, A.; Trapella, C.; Vincenzi, F.; Rimondo, C.; Seri, C.; Varani, K.; Serpelloni, G.; Marti, M. Novel halogenated derivates of jwh-018: Behavioral and binding studies in mice. Neuropharmacology 2015, 95, 68–82. [Google Scholar] [CrossRef]
- Ossato, A.; Vigolo, A.; Trapella, C.; Seri, C.; Rimondo, C.; Serpelloni, G.; Marti, M. Jwh-018 impairs sensorimotor functions in mice. Neuroscience 2015, 300, 174–188. [Google Scholar] [CrossRef]
- Canazza, I.; Ossato, A.; Trapella, C.; Fantinati, A.; De Luca, M.A.; Margiani, G.; Vincenzi, F.; Rimondo, C.; Di Rosa, F.; Gregori, A.; et al. Effect of the novel synthetic cannabinoids akb48 and 5f-akb48 on “tetrad”, sensorimotor, neurological and neurochemical responses in mice. In vitro and in vivo pharmacological studies. Psychopharmacology 2016, 233, 3685–3709. [Google Scholar] [CrossRef]
- Ossato, A.; Canazza, I.; Trapella, C.; Vincenzi, F.; De Luca, M.A.; Rimondo, C.; Varani, K.; Borea, P.A.; Serpelloni, G.; Marti, M. Effect of jwh-250, jwh-073 and their interaction on “tetrad”, sensorimotor, neurological and neurochemical responses in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 2016, 67, 31–50. [Google Scholar] [CrossRef]
- Ossato, A.; Uccelli, L.; Bilel, S.; Canazza, I.; Di Domenico, G.; Pasquali, M.; Pupillo, G.; De Luca, M.A.; Boschi, A.; Vincenzi, F.; et al. Psychostimulant effect of the synthetic cannabinoid jwh-018 and akb48: Behavioral, neurochemical, and dopamine transporter scan imaging studies in mice. Front. Psychiatry 2017, 8, 130. [Google Scholar] [CrossRef]
- Canazza, I.; Ossato, A.; Vincenzi, F.; Gregori, A.; Di Rosa, F.; Nigro, F.; Rimessi, A.; Pinton, P.; Varani, K.; Borea, P.A.; et al. Pharmaco-toxicological effects of the novel third-generation fluorinate synthetic cannabinoids, 5f-adbinaca, ab-fubinaca, and sts-135 in mice. In vitro and in vivo studies. Hum. Psychopharmacol. 2017, 32, e2601. [Google Scholar] [CrossRef]
- Aung, M.M.; Griffin, G.; Huffman, J.W.; Wu, M.; Keel, C.; Yang, B.; Showalter, V.M.; Abood, M.E.; Martin, B.R. Influence of the n-1 alkyl chain length of cannabimimetic indoles upon cb(1) and cb(2) receptor binding. Drug Alcohol Depend. 2000, 60, 133–140. [Google Scholar] [CrossRef]
- Huffman, J.W.; Zengin, G.; Wu, M.J.; Lu, J.; Hynd, G.; Bushell, K.; Thompson, A.L.; Bushell, S.; Tartal, C.; Hurst, D.P.; et al. Structure-activity relationships for 1-alkyl-3-(1-naphthoyl)indoles at the cannabinoid cb(1) and cb(2) receptors: Steric and electronic effects of naphthoyl substituents. New highly selective cb(2) receptor agonists. Bioorg. Med. Chem. 2005, 13, 89–112. [Google Scholar] [CrossRef]
- Martin, S.J.; Grimwood, P.D.; Morris, R.G. Synaptic plasticity and memory: An evaluation of the hypothesis. Annu. Rev. Neurosci. 2000, 23, 649–711. [Google Scholar] [CrossRef]
- Uchiyama, N.; Kikura-Hanajiri, R.; Goda, Y. Identification of a novel cannabimimetic phenylacetylindole, cannabipiperidiethanone, as a designer drug in a herbal product and its affinity for cannabinoid cb(1) and cb(2) receptors. Chem. Pharm. Bull. 2011, 59, 1203–1205. [Google Scholar] [CrossRef]
- Bito, H.; Deisseroth, K.; Tsien, R.W. Creb phosphorylation and dephosphorylation: A ca(2+)- and stimulus duration-dependent switch for hippocampal gene expression. Cell 1996, 87, 1203–1214. [Google Scholar] [CrossRef]
- Rubino, T.; Parolaro, D. Long lasting consequences of cannabis exposure in adolescence. Mol. Cell. Endocrinol. 2008, 286, S108–S113. [Google Scholar] [CrossRef] [Green Version]
- Rubino, T.; Sala, M.; Vigano, D.; Braida, D.; Castiglioni, C.; Limonta, V.; Guidali, C.; Realini, N.; Parolaro, D. Cellular mechanisms underlying the anxiolytic effect of low doses of peripheral delta9-tetrahydrocannabinol in rats. Neuropsychopharmacology 2007, 32, 2036–2045. [Google Scholar] [CrossRef]
- Maurer, H.H.; Sauer, C.; Theobald, D.S. Toxicokinetics of drugs of abuse: Current knowledge of the isoenzymes involved in the human metabolism of tetrahydrocannabinol, cocaine, heroin, morphine, and codeine. Ther. Drug Monit. 2006, 28, 447–453. [Google Scholar] [CrossRef]
- Razdan, R.K.; Vemuri, V.K.; Makriyannis, A.; Huffman, J.W. Cannabinoid Receptor Ligands and Structure–Activity Relationships; Humana Press: Totowa, NJ, USA, 2009; pp. 3–94. [Google Scholar]
- Wohlfarth, A.; Scheidweiler, K.B.; Chen, X.; Liu, H.F.; Huestis, M.A. Qualitative confirmation of 9 synthetic cannabinoids and 20 metabolites in human urine using lc-ms/ms and library search. Anal. Chem. 2013, 85, 3730–3738. [Google Scholar] [CrossRef]
- Seely, K.A.; Brents, L.K.; Radominska-Pandya, A.; Endres, G.W.; Keyes, G.S.; Moran, J.H.; Prather, P.L. A major glucuronidated metabolite of jwh-018 is a neutral antagonist at cb1 receptors. Chem. Res. Toxicol. 2012, 25, 825–827. [Google Scholar] [CrossRef]
- Compton, D.M.; Seeds, M.; Pottash, G.; Gradwohl, B.; Welton, C.; Davids, R. Adolescent exposure of jwh-018 “spice” produces subtle effects on learning and memory performance in adulthood. J. Behav. Brain Sci. 2012, 2, 146–155. [Google Scholar] [CrossRef]
- Chin, C.N.; Murphy, J.W.; Huffman, J.W.; Kendall, D.A. The third transmembrane helix of the cannabinoid receptor plays a role in the selectivity of aminoalkylindoles for cb2, peripheral cannabinoid receptor. J. Pharmacol. Exp. Ther. 1999, 291, 837–844. [Google Scholar]
- Irie, T.; Kikura-Hanajiri, R.; Usami, M.; Uchiyama, N.; Goda, Y.; Sekino, Y. Mam-2201, a synthetic cannabinoid drug of abuse, suppresses the synaptic input to cerebellar purkinje cells via activation of presynaptic cb1 receptors. Neuropharmacology 2015, 95, 479–491. [Google Scholar] [CrossRef]
- Tomiyama, K.; Funada, M. Cytotoxicity of synthetic cannabinoids found in “spice” products: The role of cannabinoid receptors and the caspase cascade in the ng 108-15 cell line. Toxicol. Lett. 2011, 207, 12–17. [Google Scholar] [CrossRef]
- Silva, J.P.; Carmo, H.; Carvalho, F. The synthetic cannabinoid xlr-11 induces in vitro nephrotoxicity by impairment of endocannabinoid-mediated regulation of mitochondrial function homeostasis and triggering of apoptosis. Toxicol. Lett. 2018, 287, 59–69. [Google Scholar] [CrossRef]
- Rajasekaran, M.; Brents, L.K.; Franks, L.N.; Moran, J.H.; Prather, P.L. Human metabolites of synthetic cannabinoids jwh-018 and jwh-073 bind with high affinity and act as potent agonists at cannabinoid type-2 receptors. Toxicol. Appl. Pharmacol. 2013, 269, 100–108. [Google Scholar] [CrossRef]
- Funada, M.; Takebayashi-Ohsawa, M. Synthetic cannabinoid am2201 induces seizures: Involvement of cannabinoid cb1 receptors and glutamatergic transmission. Toxicol. Appl. Pharmacol. 2018, 338, 1–8. [Google Scholar] [CrossRef]
- Koller, V.J.; Auwarter, V.; Grummt, T.; Moosmann, B.; Misik, M.; Knasmuller, S. Investigation of the in vitro toxicological properties of the synthetic cannabimimetic drug cp-47,497-c8. Toxicol. Appl. Pharmacol. 2014, 277, 164–171. [Google Scholar] [CrossRef]
- Patton, A.L.; Seely, K.A.; Yarbrough, A.L.; Fantegrossi, W.; James, L.P.; McCain, K.R.; Fujiwara, R.; Prather, P.L.; Moran, J.H.; Radominska-Pandya, A. Altered metabolism of synthetic cannabinoid jwh-018 by human cytochrome p450 2c9 and variants. Biochem. Biophys. Res. Commun. 2018, 498, 597–602. [Google Scholar] [CrossRef]
- Schindler, C.W.; Gramling, B.R.; Justinova, Z.; Thorndike, E.B.; Baumann, M.H. Synthetic cannabinoids found in “spice” products alter body temperature and cardiovascular parameters in conscious male rats. Drug Alcohol Depend. 2017, 179, 387–394. [Google Scholar] [CrossRef] [PubMed]
Class | Examples |
---|---|
Classical cannabinoids | Δ9-THC, HU-210, AM-906, AM-411, O-1184. |
Non-classical cannabinoids | CP-47,497-C8, CP-55,940, CP-55,244. |
Hybrid cannabinoids | AM-4030. |
Aminoalkylindoles | JWH-018, JWH-073, JWH-398, JWH-015, JWH-122, JWH-210, JWH-081, JWH-200, WIN-55,212, JWH-250, JWH-251, Pravadoline, AM-694, RSC-4. |
Eicosanoids | Anandamide and methanandamide. |
Others | Diarylpyrazoles (SR141716A), naphtoylpyrroles (JWH-307), naphthylmethylindenes or derivatives of naphthalene-1-yl-(4-pentyloxynaphthalen-1-yl) methanone (CRA-13). |
Raised heart rate & blood pressure |
Altered state of consciousness |
Mild euphoria and relaxation |
Perceptual alterations (time distortion) |
Intensification of sensory experiences |
Pronounced cognitive effects |
Impaired short-term memory |
Agitation, seizures, hypertension, emesis and hypokalemia |
Increase in reaction times |
SPCs | Dose | Animal | Exposure | Parameter | Effects | Reference |
---|---|---|---|---|---|---|
JWH-018 | 3 mg/kg (i.p.) | Mouse | Acute | Cannabinoid tetrad | >Δ9-THC | [39] |
0.032 mg/kg (i.v.) | Monkey | Acute | Drug discrimination | >Δ9-THC | [40] | |
3 mg/kg (i.p.) | Rat | Acute | Drug discrimination | >AM5983 >AM2233 >WIN 55, 212-2 >Δ9-THC | [41] | |
2.5 mg/kg (i.p.) | Rat | Acute | Locomotion and catalepsy | >Δ9-THC | [42] | |
5.8% (10–50 mg plant material), inhale | Mouse | Acute | Cannabinoid tetrad | >Δ9-THC | [43] | |
0.1–1.8 μmol/kg (i.v.) | Mouse | Acute | Cannabinoid tetrad | >Δ9-THC | [44] | |
0.03–0.3 mg/kg (i.p.) | Mouse | Acute | Cannabinoid tetrad | Induced | [45] | |
10 mg/kg (i.p.) | Mice | Acute | convulsion | Induced | [46] | |
2 and 3 mg/kg (vapor) | Human | Acute | neurocognitive function and subjective feelings | Impaired | [47] | |
1 and 100 nM | HP Neuron | Acute | mEPSC frequency | Reduced | [48] | |
5 nM–5 μM | Mouse brain slice | Acute | fEPSP | Impaired | [49] | |
JWH018 4-hydroxyindole metabolite | 10 mg/kg (i.p.) | Mouse | Acute | Cannabinoid tetrad | >Δ9-THC | [39] |
JWH-167 | 0.1–6.0 μmol/kg (i.v.) | Mouse | Acute | Cannabinoid tetrad | >Δ9-THC | [44] |
JWH-203 | 0.13–13 μmol/kg (i.v.) | Mouse | Acute | Cannabinoid tetrad | >Δ9-THC | [44] |
JWH-204 | 0.8–2 μmol/kg (i.v.) | Mouse | Acute | Cannabinoid tetrad | >Δ9-THC | [44] |
JWH-205 | 13–19 μmol/kg (i.v.) | Mouse | Acute | Cannabinoid tetrad | >Δ9-THC | [44] |
JWH-251 | 0.9–6 μmol/kg (i.v.) | Mouse | Acute | Cannabinoid tetrad | >Δ9-THC | [44] |
JWH-208 | 2.8–38 μmol/kg (i.v.) | Mouse | Acute | Cannabinoid tetrad | >Δ9-THC | [44] |
JWH-237 | 1.5–3.0 μmol/kg (i.v.) | Mouse | Acute | Cannabinoid tetrad | >Δ9-THC | [44] |
JWH-306 | 1.1–2.9 μmol/kg (i.v.) | Mouse | Acute | Cannabinoid tetrad | >Δ9-THC | [44] |
AM2389 | 0.1–0.3 mg/kg (i.p.) | Rat | Acute | Hypothermia and Drug discrimination | >AM5983 >Δ9-THC | [50] |
AM5983 | 3 mg/kg (i.p.) | Rat | Acute | Drug discrimination | >JWH-018 >AM2233 >WIN 55, 212-2 >Δ9-THC | [41] |
CP47,497 | 2.5 mg/kg | Rat | Acute | Locomotion and catalepsy | >JWH-018 >Δ9-THC | [42] |
Cannabicyclo-hexanol | 2.5 mg/kg | Rat | Acute | Locomotion and catalepsy | >CP47,497 >JWH-018 >Δ9-THC | [42] |
JWH-073 | 3.2–32 mg/kg (i.v.) | Monkey | Acute | Drug discrimination | >Δ9-THC | [40] |
0.1–5 mg/kg | Rat | Acute | Locomotor activity, Anxiety and Sensorimotor gating | Reduced locomotor activity | [51] | |
JWH-210 | 0.1–5 mg/kg | Rat | Acute | Locomotor activity, Anxiety and Sensorimotor gating | Reduced locomotor activity | [51] |
AB-001 | 0.3–30 mg/kg (i.p.) | Mouse | Acute | Hypothermia | > JWH-018 >Δ9-THC | [52] |
JWH-081 | 0.625–1.25 mg/kg (i.p.) | mouse | Acute | LTP, Learning and memory | Impaired | [53] |
AM-4054 | 0.1–1 mg/kg (s.c.) | Mouse | Chronic | Analgesia | Induced antinociception | [54] |
AM-4054 | 0.01–0.16 mg/kg (i.p.) | Rat | Acute | Two-choice operant | Impaired | [55] |
AM-7418 | 0.03-1 mg/kg (s.c.) | Mouse | Chronic | Analgesia | Induced antinociception | [54] |
AM-411 | 0.32–1 mg/kg (i.m.) | Monkey | Acute and Chronic | Drug tolerance | >WIN 55,212-2 >Δ9-THC | [56] |
AM-4054 | 0.0032–0.1 mg/kg (i.m.) | Monkey | Acute and Chronic | Drug tolerance | >AM-411 >WIN 55,212-2 >Δ9-THC | [56] |
AM-2201 | 0.1–1 mg/kg (s.c.) | Rat | Acute | Hypothermia and Catalepsy | Induced | [57] |
AM-2201 | 20 nM–2μM | Mouse brain slice | Acute | fEPSP | Impaired | [49] |
UR-144 | 5.6 mg/kg (i.p.) | Mouse | Acute | Cannabinoid tetrad and Drug discrimination | >Δ9-THC | [58] |
XLR-11 | 5.6 mg/kg (i.p.) | Mouse | Acute | Cannabinoid tetrad and Drug discrimination | =UR-144 >Δ9-THC | [59] |
20 nM–5μM | Mouse | Acute | fEPSP | Impaired | [49] | |
JWH-122 | 0.01–25 µM | Human | Endometrial stromal cell line | Stress and Cell death | Enhanced stress. No effect on cell death | [60] |
5F-MDMB-PINACA | 1.1 mg/kg (i.p.) | Rat | Acute | Locomotion | Reduced (30 min) | [61] |
MDMB-CHIMICA | 0.024 mg/kg (i.p.) | Rat | Acute | Locomotion | Reduced (30 min) | [61] |
ADB-FUBINACA | 0.19 mg/kg (i.p.) | Rat | Acute | Locomotion | Reduced (60–90 min) | [61] |
AMB-FUBINACA | 0.19 mg/kg (i.p.) | Rat | Acute | Locomotion | Reduced (60–90 min) | [61] |
MDMB-FUBINACA | 0.04 mg/kg (i.p.) | Rat | Acute | Locomotion | Reduced (150 min) | [61] |
5F-AB-PINACA | 10 mg/kg (i.p.) | Mice | Acute | Convulsion | Induced | [46] |
AB-PINACA | 1–10 mg/kg (i.p.) | Mice | Acute | Hypothermia | Induced | [62] |
0.2 mg/kg | Rat | Chronic | Learning and memory Locomotion Anxiety | Impaired Decreased Decreased | [63] | |
4-OH-AB-PINACA | 30 and 10 mg/kg (i.p.) | Mice | Acute | Hypothermia | induced | [62] |
5F-AMB | 300 nM | Mice mPFC slices | Acute | Excitatory and inhibitory synaptic transmission | Impaired sEPSP, mEPSP, sIPSP and mIPSC | [64] |
MMB-FUBINACA | Dose responses (i.p.) | Mice | Acute | Drug discrimination | Substituted for THC | [65] |
CUMYL-PICA | Dose responses (i.p.) | Mice | Acute | Drug discrimination | Substituted for THC | [65] |
5F-CUMYL-PICA | Dose responses (i.p.) | Mice | Acute | Drug discrimination | Substituted for THC | [65] |
NNEI | Dose responses (i.p.) | Mice | Acute | Drug discrimination | Substituted for THC | [65] |
MN-18 | Dose responses (i.p.) | Mice | Acute | Drug discrimination | Substituted for THC | [65] |
AB-FUBINACA | 4.0 mg/kg (i.p.) | Rat | Chronic | Learning and memory Locomotion anxiety | Impaired Decreased Decreased | [66] |
AB-CHMINACA | 1.0 mg/kg (i.p.) | Rat | Chronic | Hypothermia Antinociception Anxiety Spatial memory depression | Induced No effect Reduced Impaired No effect | [66] |
PB-22 | 0.4 mg/kg (i.p.) | Rat | Chronic | Hypothermia Antinociception Anxiety Spatial memory Depression | Induced No effect Reduced Impaired Induced | [66] |
JWH-018 JWH-018-R | 0.01–1 mg/kg (i.p.) | Mice | Acute | Locomotion Learning and memory LTP | Impaired Impaired Impaired | [67] |
JWH018 Cl JWH-018 Br | 0.01–1 mg/kg (i.p.) | Mice | Acute | Hypothermia Catalepsy Locomotion | Induced Induced Impaired | [68] |
JWH-018 | 0.01–6 mg/kg (i.p.) | Mice | Acute | Convulsions Seizures Hyperreflexia Myoclonias Visual placing response Visual object response Acoustic Response Locomotion | Induced Induced Induced Induced Reduced Reduced Reduced Reduced | [69] |
AKB48 5F-AKB48 | 0.01–6 mg/kg (i.p.) | Mice | Acute | Convulsions Hyperreflexia Myoclonias Catalepsy Hypothermia Immobility Acoustic response Visual placing response DA release | Induced Induced Induced Induced Induced Induced Reduced Reduced Increased | [70] |
JWH-250 and JWH-073 | 0.01–15 mg/kg (i.p.) | Mice | Acute | Convulsions Hyperreflexia Myoclonias Aggressive responses Visual object response Visual placing response Hypothermia DA release | Induced Induced Induced Induced Induce Induced Reduced Increased | [71] |
JWH018 AKB48 | 0.03–1 mg/kg (i.p.) | Mice | Acute | Locomotion DA release | Increased Increased | [72] |
5F-ADBINACA AB FUBINACA STS-135 | 0.01–6 mg/kg (i.p.) | Mice | Acute | Hypothermia Catalepsy Locomotion Sensorimotor responses Pain threshold Seizures Myoclonia Hyperreflexia Aggressiveness | Induced Induced Reduced Reduced Increased Induced Induced Induced Increased | [73] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basavarajappa, B.S.; Subbanna, S. Potential Mechanisms Underlying the Deleterious Effects of Synthetic Cannabinoids Found in Spice/K2 Products. Brain Sci. 2019, 9, 14. https://doi.org/10.3390/brainsci9010014
Basavarajappa BS, Subbanna S. Potential Mechanisms Underlying the Deleterious Effects of Synthetic Cannabinoids Found in Spice/K2 Products. Brain Sciences. 2019; 9(1):14. https://doi.org/10.3390/brainsci9010014
Chicago/Turabian StyleBasavarajappa, Balapal S., and Shivakumar Subbanna. 2019. "Potential Mechanisms Underlying the Deleterious Effects of Synthetic Cannabinoids Found in Spice/K2 Products" Brain Sciences 9, no. 1: 14. https://doi.org/10.3390/brainsci9010014
APA StyleBasavarajappa, B. S., & Subbanna, S. (2019). Potential Mechanisms Underlying the Deleterious Effects of Synthetic Cannabinoids Found in Spice/K2 Products. Brain Sciences, 9(1), 14. https://doi.org/10.3390/brainsci9010014