Improved EOG Artifact Removal Using Wavelet Enhanced Independent Component Analysis
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
3.1. Independent Component Analysis
3.2. EEG Datasets
3.3. EOG Artifact Removal Algorithm
- Step 1
- Each measured dataset is bandpass filtered (1–47 Hz, zero phase 4th order Butterworth), then re-referenced to the average reference.
- Step 2
- Infomax ICA is applied to the signal to estimate the source independent components.
- Step 3
- Automatic identification of the EOG component: the EOG component is identified based on the correlation between each component and data of each frontal EEG channel. The component with the highest correlation and above a threshold weight is selected as an EOG component.
- Step 4
- The identified EOG components are searched for EOG peaks.
- Step 5
- One-second windows are placed around the detected EOG peaks.
- (a)
- If the windows cover more than 60 percent of the given component, the entire component is marked for rejection. Continue at Step 7.
- (b)
- Otherwise, the EOG windows in the component are set as the target of artifact removal.
- Step 6
- Wavelet decomposition using Symlet sym4 [17,39,40] wavelets of five levels is applied to decompose signals in each target window to different wavelet components, and only the high frequency components are retained for the signal reconstruction process. These retained components are used in the inverse wavelet transform to reconstruct the cleaned independent component.
- Step 7
- Using the inverse ICA process, the artifact free signals are estimated from the corrected components.
3.4. Method Details
3.5. Performance Metrics
4. Results
4.1. Semi-Simulated EEG Dataset
4.2. Resting State EEG Dataset
4.3. PhysioNet P300 ERP Dataset
4.3.1. Peak Detection Performance
4.3.2. Artifact Removal Performance
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Urigüen, J.A.; Garcia-Zapirain, B. EEG artifact removal—State-of-the-art and guidelines. J. Neural Eng. 2015, 12, 031001. [Google Scholar] [CrossRef] [PubMed]
- Vigário, R.; Särelä, J.; Jousmäki, V.; Hämäläinen, M.; Oja, E. Independent component approach to the analysis of EEG and MEG recordings. IEEE Trans. Biomed. Eng. 2000, 47, 589–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burger, C.; Jacobus Van Den Heever, D. Removal of EOG artefacts by combining wavelet neural network and independent component analysis. Biomed. Signal Process. Control 2015, 15, 67–79. [Google Scholar] [CrossRef] [Green Version]
- Joyce, C.A.; Gorodnitsky, I.F.; Kutas, M.; Joyce, C.A.; Gorodnitsky, I.F.; Kutas, M. Automatic removal of eye movement and blink artifacts from EEG data using blind component separation. Psychophysiology 2004, 41, 313–325. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Xu, P.; Liu, T.; Tian, Y.; Lei, X.; Yao, D. Robust removal of ocular artifacts by combining independent component analysis and system identification. Biomed. Signal Process. Control 2014, 10, 250–259. [Google Scholar] [CrossRef]
- Castellanos, N.P.; Makarov, V.A. Recovering EEG brain signals: Artifact suppression with wavelet enhanced independent component analysis. J. Neurosci. Methods 2006, 158, 300–312. [Google Scholar] [CrossRef]
- Shoker, L.; Sanei, S.; Wang, W.; Chambers, J.A. Removal of eye blinking artifact from the electro-encephalogram, incorporating a new constrained blind source separation algorithm. Med Biol. Eng. Comput. 2005, 43, 290–295. [Google Scholar] [CrossRef]
- Klados, M.A.; Papadelis, C.; Braun, C. REG-ICA: A hybrid methodology combining Blind Source Separation and regression techniques for the rejection of ocular artifacts. Biomed. Signal Process. Control 2011, 6, 291–300. [Google Scholar] [CrossRef]
- Croft, R.J.; Barry, R.J. Removal of ocular artifact from the EEG: A review. Neurophysiol. Clin. Neurophysiol. 2000, 30, 5–19. [Google Scholar] [CrossRef]
- Hyvärinen, A.; Oja, E. Independent component analysis: Algorithms and applications. Neural Netw. 2000, 13, 411–430. [Google Scholar] [CrossRef] [Green Version]
- Makeig, S.; Jung, T.-P.; Bell, A.J.; Sejnowski, T.J. Independent component analysis of electroencephalographic data. In Proceedings of the 8th International Conference on Neural Information Processing Systems, Denver, CO, USA, 27 November–2 December 1995; pp. 145–151. [Google Scholar]
- Nolan, H.; Whelan, R.; Reilly, R.B. FASTER: Fully automated statistical thresholding for EEG artifact rejection. J. Neurosci. Methods 2010, 192, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Lawhern, V.; Hairston, W.D.; Robbins, K. DETECT: A MATLAB toolbox for event detection and identification in time series, with applications to artifact detection in EEG signals. PLoS ONE 2013, 8, e62944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mognon, A.; Jovicich, J.; Bruzzone, L.; Buiatti, M. ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features. Psychophysiology 2011, 48, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.K.; Rastegarnia, A.; Yang, Z. Methods for artifact detection and removal from scalp EEG: A review. Neurophysiol. Clin. 2016, 46, 287–305. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; He, L. Removal of ocular artifacts from EEG signals using ICA-RLS in BCI. In Proceedings of the 2014 IEEE Workshop on Electronics, Computer and Applications, IWECA 2014, Ottawa, ON, Canada, 8–9 May 2014; IEEE Computer Society: Washington, DC, USA, 2014; pp. 544–547. [Google Scholar]
- Amorim, P.; Moraes, T.; Fazanaro, D.; Silva, J.; Pedrini, H. Electroencephalogram signal classification based on shearlet and contourlet transforms. Expert Syst. Appl. 2017, 67, 140–147. [Google Scholar] [CrossRef]
- Hamaneh, M.B.; Chitravas, N.; Kaiboriboon, K.; Lhatoo, S.D.; Loparo, K.A. Automated removal of EKG artifact from EEG data using independent component analysis and continuous wavelet transformation. IEEE Trans. Biomed. Eng. 2014, 61, 1634–1641. [Google Scholar] [CrossRef]
- Mak, J.N.F.; Hu, Y.; Luk, K.D.K. An automated ECG-artifact removal method for trunk muscle surface EMG recordings. Med. Eng. Phys. 2010, 32, 840–848. [Google Scholar] [CrossRef]
- Mishra, A.; Bhateja, V.; Gupta, A.; Mishra, A. Noise removal in EEG signals using SWT–ICA combinational approach. In Smart Innovation, Systems and Technologies; Springer Science and Business Media Deutschland GmbH: Berlin, Germany, 2019; Volume 105, pp. 217–224. [Google Scholar]
- Jadhav, P.N.; Shanamugan, D.; Chourasia, A.; Ghole, A.R.; Acharyya, A.; Naik, G. Automated detection and correction of eye blink and muscular artefacts in EEG signal for analysis of Autism Spectrum Disorder. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014, Chicago, IL, USA, 26–30 August 2014; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2014; pp. 1881–1884. [Google Scholar]
- Mammone, N.; La Foresta, F.; Morabito, F.C. Automatic artifact rejection from multichannel scalp EEG by wavelet ICA. IEEE Sens. J. 2012, 12, 533–542. [Google Scholar] [CrossRef]
- Greco, A.; Mammone, N.; Morabito, F.C.; Versaci, M. Kurtosis, Renyi’s entropy and independent component scalp maps for the automatic artifact rejection from EEG data. Int. J. Signal Process. 2006, 2, 240–244. [Google Scholar]
- Kelly, J.W.; Siewiorek, D.P.; Smailagic, A.; Collinger, J.L.; Weber, D.J.; Wang, W.; Kelly, J.W.; Siewiorek, D.P.; Smailagic, A.; Weber, D.J.; et al. Fully automated reduction of ocular artifacts in high-dimensional neural data. IEEE Trans. Biomed. Eng. 2011, 58, 598–606. [Google Scholar] [CrossRef]
- Krishnaveni, V.; Jayaraman, S.; Aravind, S.; Hariharasudhan, V.; Ramadoss, K. Automatic identification and removal of ocular artifacts from EEG using wavelet transform. Meas. Sci. Rev. 2006, 6, 45–57. [Google Scholar]
- Nguyen, H.-A.T.; Musson, J.; Li, F.; Wang, W.; Zhang, G.; Xu, R.; Richey, C.; Schnell, T.; McKenzie, F.D.; Li, J. EOG artifact removal using a wavelet neural network. Neurocomputing 2012, 97, 374–389. [Google Scholar] [CrossRef]
- Cheng, J.; Li, L.; Li, C.; Liu, Y.; Liu, A.; Qian, R.; Chen, X. Remove diverse artifacts simultaneously from a single-channel EEG based on SSA and ICA: A semi-simulated study. IEEE Access 2019, 7, 60276–60289. [Google Scholar] [CrossRef]
- Burel, G. Blind separation of sources: A nonlinear neural algorithm. Neural Netw. 1992, 5, 937–947. [Google Scholar] [CrossRef]
- Sahonero-Alvarez, G.; Calderón, H. A comparison of SOBI, FastICA, JADE and Infomax algorithms. In Proceedings of the 8th International Multi-Conference on Complexity, Informatics and Cyberneti, Orlando, FL, USA, 21–24 March 2017; pp. 17–22. [Google Scholar]
- Gordon, S.M.; Lawhern, V.; Passaro, A.D.; McDowell, K. Informed decomposition of electroencephalographic data. J. Neurosci. Methods 2015, 256, 41–55. [Google Scholar] [CrossRef] [Green Version]
- Bell, A.J.; Sejnowski, T.J. An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 1995, 7, 1129–1159. [Google Scholar] [CrossRef]
- Shen, M.; Zhang, X.; Li, X. Independent component analysis of electroencephalographic signals. In Proceedings of the International Conference on Signal Processing, Beijing, China, 26–30 August 2002; Volume 2, pp. 1548–1551. [Google Scholar]
- Winkler, I.; Haufe, S.; Tangermann, M. Automatic classification of artifactual ICA-components for artifact removal in EEG signals. Behav. Brain Funct. 2011, 7, 30. [Google Scholar] [CrossRef] [Green Version]
- Ichimaru, Y.; Moody, G.B. Development of the polysomnographic database on CD-ROM. Psychiatry Clin. Neurosci. 1999, 53, 175–177. [Google Scholar] [CrossRef] [Green Version]
- Rutledge, D.N.; Jouan-Rimbaud Bouveresse, D. Independent components analysis with the JADE algorithm. TrAC Trends Anal. Chem. 2013, 50, 22–32. [Google Scholar] [CrossRef]
- Klados, M.A.; Bamidis, P.D. A semi-simulated EEG/EOG dataset for the comparison of EOG artifact rejection techniques. Data Br. 2016, 8, 1004–1006. [Google Scholar] [CrossRef] [Green Version]
- Citi, L.; Poli, R.; Cinel, C. Documenting, modelling and exploiting P300 amplitude changes due to variable target delays in Donchin’s speller. J. Neural Eng. 2010, 7, 056006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.-K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, e215–e220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasoda, K. Certain analysis on EEG for the detection of EOG artifact using symlet wavelet. J. Theor. Appl. Inf. Technol. 2014, 67, 54–58. [Google Scholar]
- Jiang, J.A.; Chao, C.F.; Chiu, M.J.; Lee, R.G.; Tseng, C.L.; Lin, R. An automatic analysis method for detecting and eliminating ECG artifacts in EEG. Comput. Biol. Med. 2007, 37, 1660–1671. [Google Scholar] [CrossRef] [PubMed]
- Langford, E. Quartiles in elementary statistics. J. Stat. Educ. 2006, 14. [Google Scholar] [CrossRef]
- Thomas George, B.; Weir Maurice, D.; Hass, J. Thomas’ Calculus Early Transcendentals, 12th ed.; Addison-Wesley: Boston, MA, USA, 2010. [Google Scholar]
- Fang, F.; Shinozaki, T. Electrooculography-based continuous eye-writing recognition system for efficient assistive communication systems. PLoS ONE 2018, 13, e0192684. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.S.; Baek, H.J.; Kim, J.S.; Lee, H.B.; Choi, J.M.; Park, K.S. Helmet-based physiological signal monitoring system. Eur. J. Appl. Physiol. 2009, 105, 365–372. [Google Scholar] [CrossRef] [Green Version]
- Kevric, J.; Subasi, A. Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system. Biomed. Signal Process. Control 2017, 31, 398–406. [Google Scholar] [CrossRef]
- Sanjeeva Reddy, M.; Narasimha, B.; Suresh, E.; Subba Rao, K. Analysis of EOG signals using wavelet transform for detecting eye blinks. In Proceedings of the 2010 International Conference on Wireless Communications & Signal Processing (WCSP), Suzhou, China, 21–23 October 2010; pp. 1–3. [Google Scholar]
- Khatwani, P.; Tiwari, A. Removal of noise from EEG signals using cascaded filter—Wavelet transforms method. Int. J. Adv. Res. Electr. Electron. Instrum. Energy 2014, 3, 13713–13719. [Google Scholar]
- Daubechies, I.; Society for Industrial and Applied Mathematics. Ten Lectures on Wavelets; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1992; ISBN 1611970105. [Google Scholar]
- Zhao, Q.; Hu, B.; Shi, Y.; Li, Y.; Moore, P.; Sun, M.; Peng, H. Automatic identification and removal of ocular artifacts in EEG—Improved adaptive predictor filtering for portable applications. IEEE Trans. Nanobiosci. 2014, 13, 109–117. [Google Scholar] [CrossRef]
- Islam, M.K.; Rastegarnia, A.; Nguyen, A.T.; Yang, Z. Artifact characterization and removal for in vivo neural recording. J. Neurosci. Methods 2014, 226, 110–123. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, K.T.; McLoone, S.F.; Ward, T.E. The use of ensemble empirical mode decomposition with canonical correlation analysis as a novel artifact removal technique. IEEE Trans. Biomed. Eng. 2013, 60, 97–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carter, G.; Knapp, C.; Nuttall, A. Estimation of the magnitude-squared coherence function via overlapped fast Fourier transform processing. IEEE Trans. Audio Electroacoust. 1973, 21, 337–344. [Google Scholar] [CrossRef] [Green Version]
- Majmudar, C.A.; Mahajan, R.; Morshed, B.I. Real-time hybrid ocular artifact detection and removal for single channel EEG. In Proceedings of the IEEE International Conference on Electro/Information Technology (EIT), Dekalb, IL, USA, 21–23 May 2015; pp. 330–334. [Google Scholar]
- Mahajan, R.; Morshed, B.I. Unsupervised eye blink artifact denoising of EEG data with modified multiscale sample entropy, kurtosis, and wavelet-ICA. IEEE J. Biomed. Health. Inform. 2014, 19, 158–165. [Google Scholar] [CrossRef]
- Khatun, S.; Mahajan, R.; Morshed, B.I. Comparative study of wavelet-based unsupervised ocular artifact removal techniques for single-channel EEG data. IEEE J. Transl. Eng. Health Med. 2016, 4, 1–8. [Google Scholar] [CrossRef]
- Gudmundsson, S.; Runarsson, T.P.; Sigurdsson, S.; Eiriksdottir, G.; Johnsen, K. Reliability of quantitative EEG features. Clin. Neurophysiol. 2007, 118, 2162–2171. [Google Scholar] [CrossRef]
- Malekpour, S.; Gubner, J.A.; Sethares, W.A. Measures of generalized magnitude-squared coherence: Differences and similarities. J. Frankl. Inst. 2018, 355, 2932–2950. [Google Scholar] [CrossRef]
- Jung, T.P.; Makeig, S.; Humphries, C.; Lee, T.W.; McKeown, M.J.; Iragui, V.; Sejnowski, T.J. Removing electroencephalographic artifacts by blind source separation. Psychophysiology 2000, 37, 163–178. [Google Scholar] [CrossRef]
Dataset, Channel | Contaminated EEG | Cleaned EEG | ||
---|---|---|---|---|
Rejection ICA | wICA | Proposed Method | ||
Dataset 1, FP1 | 34.9 | 16.3 | 12.6 | 7.9 |
Dataset 1, F8 | 13.7 | 9.4 | 7.3 | 3.2 |
Dataset 2, FP1 | 37.8 | 14.6 | 8.7 | 4.6 |
Dataset 2, F8 | 15.9 | 8.4 | 5.4 | 1.5 |
Dataset 9, FP1 | 30.8 | 18.9 | 9.2 | 3.2 |
Dataset 9, F8 | 15.5 | 12.7 | 6.4 | 2.6 |
Dataset 12, FP1 | 38.4 | 14.9 | 9.8 | 7.2 |
Dataset 12, F8 | 18.8 | 11.3 | 7.2 | 3.5 |
Dataset | RMSE Improvement (%) | ||
---|---|---|---|
PM vs. rej ICA | PM vs. wICA | wICA vs. rej ICA | |
s03, rc02 | 17.16 (p = 4.74 × 10−4) | 34.18 (p = 0.0286) | 20.55 (p = 0.049) |
s04, rc02 | 24.64 (p = 0.0018) | 16.46 (p = 0.0264) | 9.79 (p = 0.2062) |
s08, rc02 | 25.62 (p = 0012) | 14.43 (p = 0.0348) | 13.08 (p = 0.0992) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Issa, M.F.; Juhasz, Z. Improved EOG Artifact Removal Using Wavelet Enhanced Independent Component Analysis. Brain Sci. 2019, 9, 355. https://doi.org/10.3390/brainsci9120355
Issa MF, Juhasz Z. Improved EOG Artifact Removal Using Wavelet Enhanced Independent Component Analysis. Brain Sciences. 2019; 9(12):355. https://doi.org/10.3390/brainsci9120355
Chicago/Turabian StyleIssa, Mohamed F., and Zoltan Juhasz. 2019. "Improved EOG Artifact Removal Using Wavelet Enhanced Independent Component Analysis" Brain Sciences 9, no. 12: 355. https://doi.org/10.3390/brainsci9120355
APA StyleIssa, M. F., & Juhasz, Z. (2019). Improved EOG Artifact Removal Using Wavelet Enhanced Independent Component Analysis. Brain Sciences, 9(12), 355. https://doi.org/10.3390/brainsci9120355