Entropy Analysis of High-Definition Transcranial Electric Stimulation Effects on EEG Dynamics
Abstract
:1. Introduction
2. Methods
2.1. Overview
2.2. Background Theory
2.2.1. Transcranial Direct Current Electrical Stimulation
2.2.2. Stimulation Protocol
2.2.3. Entropy Background
2.3. Simulation
3. Results
3.1. Analyzing Complexity within Channels
3.2. Analyzing Complexity across Dose-Response Effect
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Prigogine, I. The meaning of entropy. In Evolutionary Epistemology; Springer: Berlin/Heidelberg, Germany, 1987; pp. 57–73. [Google Scholar]
- Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef] [PubMed]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pincus, S.M.; Gladstone, I.M.; Ehrenkranz, R.A. A regularity statistic for medical data analysis. J. Clin. Monit. 1991, 7, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Heintzman, N.D.; Hon, G.C.; Hawkins, R.D.; Kheradpour, P.; Stark, A.; Harp, L.F.; Ye, Z.; Lee, L.K.; Stuart, R.K.; Ching, C.W.; et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 2009, 459, 108. [Google Scholar] [CrossRef] [PubMed]
- Yentes, J.M.; Denton, W.; McCamley, J.; Raffalt, P.C.; Schmid, K.K. Effect of parameter selection on entropy calculation for long walking trials. Gait Posture 2018, 60, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Bhogal, A.S.; Mani, A.R. Pattern analysis of oxygen saturation variability in healthy individuals: Entropy of pulse oximetry signals carries information about mean oxygen saturation. Front. Physiol. 2017, 8, 555. [Google Scholar] [CrossRef]
- Cuesta-Frau, D.; Miró-Martínez, P.; Núñez, J.J.; Oltra-Crespo, S.; Picó, A.M. Noisy EEG signals classification based on entropy metrics. Performance assessment using first and second generation statistics. Comput. Biol. Med. 2017, 87, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Stam, C.J. Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field. Clin. Neurophysiol. 2005, 116, 2266–2301. [Google Scholar] [CrossRef]
- Acharya, U.R.; Hagiwara, Y.; Deshpande, S.N.; Suren, S.; Koh, J.E.W.; Oh, S.L.; Arunkumar, N.; Ciaccio, E.J.; Lim, C.M. Characterization of focal EEG signals: A review. Future Gener. Comput. Syst. 2018, 91, 290–299. [Google Scholar] [CrossRef]
- Santos, T.E.; Favoretto, D.B.; Toostani, I.G.; Nascimento, D.; Rimoli, B.P.; Bergonzoni, E.; Lemos, T.W.; Truong, D.Q.; Delbem, A.C.; Makkiabadi, B.; et al. Manipulation of human verticality using high-definition transcranial direct current stimulation. Front. Neurol. 2018, 9, 825. [Google Scholar] [CrossRef]
- Nasseri, P.; Nitsche, M.A.; Ekhtiari, H. A framework for categorizing electrode montages in transcranial direct current stimulation. Front. Hum. Neurosci. 2015, 9, 54. [Google Scholar] [CrossRef] [PubMed]
- Bikson, M.; Bestmann, S.; Edwards, D. Neuroscience: Transcranial devices are not playthings. Nature 2013, 501, 167. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, M.A.; Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 2000, 527, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Priori, A.; Berardelli, A.; Rona, S.; Accornero, N.; Manfredi, M. Polarization of the human motor cortex through the scalp. Neuroreport 1998, 9, 2257–2260. [Google Scholar] [CrossRef] [PubMed]
- Brunoni, A.R.; Nitsche, M.A.; Bolognini, N.; Bikson, M.; Wagner, T.; Merabet, L.; Edwards, D.J.; Valero-Cabre, A.; Rotenberg, A.; Pascual-Leone, A.; et al. Clinical research with transcranial direct current stimulation (tDCS): Challenges and future directions. Brain Stimul. 2012, 5, 175–195. [Google Scholar] [CrossRef] [PubMed]
- Lang, N.; Siebner, H.R.; Ward, N.S.; Lee, L.; Nitsche, M.A.; Paulus, W.; Rothwell, J.C.; Lemon, R.N.; Frackowiak, R.S. How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? Eur. J. Neurosci. 2005, 22, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Siebner, H.; Peller, M.; Willoch, F.; Minoshima, S.; Boecker, H.; Auer, C.; Drzezga, A.; Conrad, B.; Bartenstein, P. Lasting cortical activation after repetitive TMS of the motor cortex: a glucose metabolic study. Neurology 2000, 54, 956–963. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.; Siebner, H.R.; Rowe, J.B.; Rizzo, V.; Rothwell, J.C.; Frackowiak, R.S.; Friston, K.J. Acute remapping within the motor system induced by low-frequency repetitive transcranial magnetic stimulation. J. Neurosci. 2003, 23, 5308–5318. [Google Scholar] [CrossRef] [PubMed]
- Gilio, F.; Rizzo, V.; Siebner, H.R.; Rothwell, J.C. Effects on the right motor hand-area excitability produced by low-frequency rTMS over human contralateral homologous cortex. J. Physiol. 2003, 551, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Plewnia, C.; Lotze, M.; Gerloff, C. Disinhibition of the contralateral motor cortex by low-frequency rTMS. Neuroreport 2003, 14, 609–612. [Google Scholar] [CrossRef]
- Rossini, P.M.; Rossi, S. Transcranial magnetic stimulation Diagnostic, therapeutic, and research potential. Neurology 2007, 68, 484–488. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; Hallett, M.; Rossini, P.M.; Pascual-Leone, A. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 2009, 120, 2008–2039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bashir, S.; Mizrahi, I.; Weaver, K.; Fregni, F.; Pascual-Leone, A. Assessment and modulation of neural plasticity in rehabilitation with transcranial magnetic stimulation. PM&R 2010, 2, S253–S268. [Google Scholar]
- Siebner, H.R.; Hartwigsen, G.; Kassuba, T.; Rothwell, J.C. How does transcranial magnetic stimulation modify neuronal activity in the brain? Implications for studies of cognition. Cortex 2009, 45, 1035–1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khedr, E.M.; Gamal, N.F.E.; El-Fetoh, N.A.; Khalifa, H.; Ahmed, E.M.; Ali, A.M.; Noaman, M.; El-Baki, A.A.; Karim, A.A. A double-blind randomized clinical trial on the efficacy of cortical direct current stimulation for the treatment of Alzheimer’s disease. Front. Aging Neurosci. 2014, 6, 275. [Google Scholar] [CrossRef] [PubMed]
- Babyar, S.; Santos-Pontelli, T.; Will-Lemos, T.; Mazin, S.; Bikson, M.; Truong, D.Q.; Edwards, D.; Reding, M. Center of Pressure Speed Changes with tDCS Versus GVS in Patients with Lateropulsion after Stroke. Brain Stimul. Basic Transl. Clin. Res. Neuromodul. 2016, 9, 796–798. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Hao, Y.; Wang, Y.; Jor’dan, A.; Pascual-Leone, A.; Zhang, J.; Fang, J.; Manor, B. Transcranial direct current stimulation reduces the cost of performing a cognitive task on gait and postural control. Eur. J. Neurosci. 2014, 39, 1343–1348. [Google Scholar] [CrossRef]
- McMillan, B. The basic theorems of information theory. Ann. Math. Stat. 1953, 24, 196–219. [Google Scholar] [CrossRef]
- Pérez-Cruz, F. Kullback-Leibler divergence estimation of continuous distributions. In Proceedings of the 2008 IEEE International Symposium on Information Theory, Toronto, ON, Canada, 6–11 July 2008; pp. 1666–1670. [Google Scholar]
- Chiang, M.C.; Klunder, A.D.; McMahon, K.; De Zubicaray, G.I.; Wright, M.J.; Toga, A.W.; Thompson, P.M. Information-theoretic analysis of brain white matter fiber orientation distribution functions. In Biennial International Conference on Information Processing in Medical Imaging; Springer: Berlin/Heidelberg, Germany, 2007; pp. 172–182. [Google Scholar]
- Joshi, S.H.; Bowman, I.; Toga, A.W.; Van Horn, J.D. Brain pattern analysis of cortical valued distributions. In Proceedings of the 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Chicago, IL, USA, 30 March–2 April 2011; p. 1117. [Google Scholar]
- Afgani, M.; Sinanovic, S.; Haas, H. Anomaly detection using the Kullback-Leibler divergence metric. In Proceedings of the 2008 First International Symposium on Applied Sciences on Biomedical and Communication Technologies, Aalborg, Denmark, 25–28 Octorber 2008; pp. 1–5. [Google Scholar]
- Croce, P.; Zappasodi, F.; Capotosto, P. Offline stimulation of human parietal cortex differently affects resting EEG microstates. Sci. Rep. 2018, 8, 1287. [Google Scholar] [CrossRef] [Green Version]
- Croce, P.; Zappasodi, F.; Spadone, S.; Capotosto, P. Magnetic stimulation selectively affects pre-stimulus EEG microstates. NeuroImage 2018, 176, 239–245. [Google Scholar] [CrossRef]
- Bikson, M.; Grossman, P.; Thomas, C.; Zannou, A.L.; Jiang, J.; Adnan, T.; Mourdoukoutas, A.P.; Kronberg, G.; Truong, D.; Boggio, P.; et al. Safety of transcranial direct current stimulation: Evidence based update 2016. Brain Stimul. Basic Transl. Clin. Res. Neuromodul. 2016, 9, 641–661. [Google Scholar] [CrossRef] [PubMed]
- Pérennou, D. Postural disorders and spatial neglect in stroke patients: A strong association. Restor. Neurol. Neurosci. 2006, 24, 319–334. [Google Scholar] [PubMed]
Condition | Intensity | MEAN | SD | MIN | MEDIAN | MAX |
---|---|---|---|---|---|---|
Anodal | base | 0.365 | 0.260 | 0.0064 | 0.336 | 1.043 |
1 mA | 0.452 | 0.280 | 0.0004 | 0.486 | 1.133 | |
2 mA | 0.445 | 0.278 | 0.0006 | 0.448 | 1.115 | |
3 mA | 0.444 | 0.279 | 0.0006 | 0.457 | 1.116 | |
Cathodal | base | 0.397 | 0.284 | 0.0108 | 0.359 | 1.104 |
1 mA | 0.447 | 0.281 | 0.0006 | 0.449 | 1.101 | |
2 mA | 0.433 | 0.276 | 0.0006 | 0.441 | 1.121 | |
3 mA | 0.440 | 0.273 | 0.0006 | 0.445 | 1.050 | |
Sham | base | 0.430 | 0.283 | 0.0121 | 0.418 | 1.026 |
1 mA | 0.512 | 0.264 | 0.0068 | 0.536 | 1.150 | |
2 mA | 0.514 | 0.260 | 0.0005 | 0.534 | 1.220 | |
3 mA | 0.510 | 0.259 | 0.0008 | 0.532 | 1.112 |
Groups | Variance | Std.Dev. | |
---|---|---|---|
Channel | (Intercept) | 0.0012 | 0.0348 |
Key | Anodal | 0.0119 | 0.1089 |
Cathodal | 0.0113 | 0.1063 | |
Sham | 0.0165 | 0.1283 | |
Residual | 0.0634 | 0.2519 |
Estimate | Std. Error | t Value | p-Value | ||
---|---|---|---|---|---|
(Intercept) | 0.365 | 0.044 | 8.373 | 5.13e-05 | *** |
INTENSITY 1 mA -Baseline | 0.088 | 0.015 | 5.706 | 1.19e-08 | *** |
INTENSITY 2 mA -Baseline | 0.080 | 0.015 | 5.221 | 1.82e-07 | *** |
INTENSITY 3 mA -Baseline | 0.079 | 0.015 | 5.153 | 2.61e-07 | *** |
CONDITION Sham-Anodal | 0.066 | 0.052 | 1.266 | 0.2425 | |
CONDITION Cathodal-Anodal | 0.033 | 0.044 | 0.735 | 0.482 | |
INTENSITY 1 mA:Sham-Anodal | −0.006 | 0.022 | −0.298 | 0.7656 | |
INTENSITY 2 mA:Sham-Anodal | 0.003 | 0.022 | 0.137 | 0.8913 | |
INTENSITY 3 mA:Sham-Anodal | 0.000 | 0.022 | −0.006 | 0.9951 | |
INTENSITY 1 mA:Cathodal-Anodal | −0.038 | 0.022 | −1.730 | 0.0837 | . |
INTENSITY 2 mA:Cathodal-Anodal | −0.044 | 0.022 | −2.029 | 0.0425 | * |
INTENSITY 3 mA:Cathodal-Anodal | −0.037 | 0.022 | −1.693 | 0.0905 | . |
(Intr) | 1mA | 2mA | 3mA | S:A | C:A | S:A1mA | S:A2mA | S:A3mA | C:A1mA | C:A2mA | |
---|---|---|---|---|---|---|---|---|---|---|---|
1mA | −0.265 | ||||||||||
2mA | −0.265 | 0.750 | |||||||||
3mA | −0.265 | 0.750 | 0.750 | ||||||||
S:A | −0.461 | 0.222 | 0.222 | 0.22 | |||||||
C:A | −0.721 | 0.260 | 0.260 | 0.26 | 0.535 | ||||||
S:A1mA | 0.187 | −0.707 | −0.530 | −0.53 | −0.314 | −0.184 | |||||
S:A2mA | 0.187 | −0.530 | −0.707 | −0.53 | −0.314 | −0.184 | 0.75 | ||||
S:A3mA | 0.187 | −0.530 | −0.530 | −0.707 | −0.314 | −0.184 | 0.75 | 0.75 | |||
C:A1mA | 0.187 | −0.707 | −0.530 | −0.53 | −0.157 | −0.368 | 0.5 | 0.375 | 0.375 | ||
C:A2mA | 0.187 | −0.530 | −0.707 | −0.53 | −0.157 | −0.368 | 0.375 | 0.5 | 0.375 | 0.75 | |
C:A3mA | 0.187 | −0.530 | −0.530 | −0.707 | −0.157 | −0.368 | 0.375 | 0.375 | 0.5 | 0.75 | 0.75 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nascimento, D.C.; Depetri, G.; Stefano, L.H.; Anacleto, O.; Leite, J.P.; Edwards, D.J.; Santos, T.E.G.; Louzada Neto, F. Entropy Analysis of High-Definition Transcranial Electric Stimulation Effects on EEG Dynamics. Brain Sci. 2019, 9, 208. https://doi.org/10.3390/brainsci9080208
Nascimento DC, Depetri G, Stefano LH, Anacleto O, Leite JP, Edwards DJ, Santos TEG, Louzada Neto F. Entropy Analysis of High-Definition Transcranial Electric Stimulation Effects on EEG Dynamics. Brain Sciences. 2019; 9(8):208. https://doi.org/10.3390/brainsci9080208
Chicago/Turabian StyleNascimento, Diego C., Gabriela Depetri, Luiz H. Stefano, Osvaldo Anacleto, Joao P. Leite, Dylan J. Edwards, Taiza E. G. Santos, and Francisco Louzada Neto. 2019. "Entropy Analysis of High-Definition Transcranial Electric Stimulation Effects on EEG Dynamics" Brain Sciences 9, no. 8: 208. https://doi.org/10.3390/brainsci9080208
APA StyleNascimento, D. C., Depetri, G., Stefano, L. H., Anacleto, O., Leite, J. P., Edwards, D. J., Santos, T. E. G., & Louzada Neto, F. (2019). Entropy Analysis of High-Definition Transcranial Electric Stimulation Effects on EEG Dynamics. Brain Sciences, 9(8), 208. https://doi.org/10.3390/brainsci9080208