Oxidative Stability, Carcass Traits, and Muscle Fatty Acid and Amino Acid Profiles in Heat-Stressed Broiler Chickens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Birds and Management
2.2. Carcass Traits
2.3. Muscle Fatty Acid and Amino Acid Profiles
2.4. Determination of Muscle Malondialdehyde and Antioxidant Activity
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, H.; Jiao, H.C.; Buyse, J.; Decuypere, E. Strategies for preventing heat stress in poultry. World’s Poult. Sci. J. 2006, 62, 71–85. [Google Scholar] [CrossRef]
- Hansen, J.; Ruedy, R.; Sato, M.; Lo, K. Global surface temperature change. Rev. Geophys. 2010, 48. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.Y.; Jia, G.Q.; Zuo, J.J.; Zhang, Y.; Lei, J.; Ren, L.; Feng, D.Y. Effects of constant and cyclic heat stress on muscle metabolism and meat quality of broiler breast fillet and thigh meat. Poult. Sci. 2012, 91, 2931–2937. [Google Scholar] [CrossRef]
- Quinteiro-Filho, W.M.; Ribeiro, A.; Ferraz-de-Paula, V.; Pinheiro, M.L.; Sakai, M.; Sá, L.R.M.; Ferreira, A.J.P.; Palermo-Neto, J. Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens. Poult. Sci. 2010, 89, 1905–1914. [Google Scholar] [CrossRef]
- Wang, R.H.; Liang, R.R.; Lin, H.; Zhu, L.X.; Zhang, Y.M.; Mao, Y.W.; Dong, P.C.; Niu, L.B.; Zhang, M.H.; Luo, X.; et al. Effect of acute heat stress and slaughter processing on poultry meat quality and postmortem carbohydrate metabolism. Poult. Sci. 2017, 96, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Northcutt, J.K.; Foegeding, E.A.; Edens, F.W. Water-holding properties of thermally preconditioned chicken breast and leg meat. Poult. Sci. 1994, 73, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Wen, J.; Zhang, H. Effect of chronic heat exposure on fat deposition and meat quality in two genetic types of chicken. Poult. Sci. 2007, 86, 1059–1064. [Google Scholar] [CrossRef]
- Mello, J.L.M.; Boiago, M.M.; Giampietro-Ganeco, A.; Berton, M.P.; Vieira, L.D.C.; Souza, R.A.; Ferrari, F.; Borba, H. Periods of heat stress during the growing affects negatively the performance and carcass yield of broilers. Arch. Zootec. 2015, 64, 339–345. [Google Scholar] [CrossRef] [Green Version]
- Shakeri, M.; Cottrell, J.; Wilkinson, S.; Ringuet, M.; Furness, J.; Dunshea, F. Betaine and Antioxidants Improve Growth Performance, Breast Muscle Development and Ameliorate Thermoregulatory Responses to Cyclic Heat Exposure in Broiler Chickens. Animals 2018, 8, 162. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; He, X.; Ma, B.; Zhang, L.; Li, J.; Jiang, Y.; Zhou, G.; Gao, F. Chronic heat stress Impairs the quality of breast-muscle meat in broilers by affecting redox status and energy-substance metabolism. J. Agric. Food Chem. 2017, 65, 11251–11258. [Google Scholar] [CrossRef] [PubMed]
- Lara, L.J.; Rostagno, M.H. Impact of heat stress on poultry production. Animals 2013, 3, 356–369. [Google Scholar] [CrossRef] [PubMed]
- Shakeri, M.; Cottrell, J.J.; Wilkinson, S.; Le, H.H.; Suleria, H.A.; Warner, R.D.; Dunshea, F.R. Growth performance and characterization of meat quality of broiler chickens supplemented with betaine and antioxidants under cyclic heat stress. Antioxidants 2019, 8, 336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mujahid, A.; Pumford, N.R.; Bottje, W.; Nakagawa, K.; Miyazawa, T.; Akiba, Y.; Toyomizu, M. Mitochondrial oxidative damage in chicken skeletal muscle induced by acute heat stress. J. Poult. Sci. 2007, 44, 439–445. [Google Scholar] [CrossRef] [Green Version]
- Fouad, A.M.; Chen, W.; Ruan, D.; Wang, S.; Xia, W.G.; Zheng, C.T. Impact of heat stress on meat, egg quality, immunity and fertility in poultry and nutritional factors that overcome these effects: A review. Int. J. Poult. Sci. 2016, 15, 81. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Wen, J.; Fang, G.Y.; Li, Z.R.; Dong, Z.Y.; Liu, J. The effects of raising system on the lipid metabolism and meat quality traits of slow-growing chickens. J. Appl. Anim. Res. 2015, 43, 147–152. [Google Scholar] [CrossRef] [Green Version]
- NRC. Nutrient Requirements of Poultry, 9th ed.; National Academy Press: Washington, DC, USA, 1994. [Google Scholar]
- JAKIM (Department of Islamic Development Malaysia). Malaysian Protocol for the Halal Meat and Poultry Productions; JAKIM: Putrajaya, Malaysia, 2011; pp. 1–30.
- Radwan, O.K.; Ahmed, R.F. Amendment effect of resveratrol on diclofenac idiosyncratic toxicity: Augmentation of the anti-inflammatory effect by assessment of Arachidonic acid and IL-1β levels. J. Appl. Pharm. Sci. 2016, 6, 170–177. [Google Scholar] [CrossRef] [Green Version]
- Hughes, M.C.; Kerry, J.P.; Arendt, E.K.; Kenneally, P.M.; McSweeney, P.L.H.; O’Neill, E.E. Characterization of proteolysis during the ripening of semi-dry fermented sausages. Meat Sci. 2002, 62, 205–216. [Google Scholar] [CrossRef]
- Karalas, F.; Karatepe, M.; Baysar, A. Determination of free malondialdehyde in human serum by high performance liquid chromatography. Anal. Biochem. 2002, 311, 76–79. [Google Scholar] [CrossRef]
- Geraert, P.A.; Guillaumin, S.; Leclercq, B. Are genetically lean broilers more resistant to hot climate? Br. Poult. Sci. 1993, 34, 643–653. [Google Scholar] [CrossRef]
- Oliveira, G.A.; Oliveira, R.F.M.; Donzele, J.L.; Cecon, P.R.; Vaz, R.G.M.V.; Orlando, U.A.D. Effect of environmental temperature on performance and carcass characteristics of broilers from 22 to 42 days old. Rev. Bras. Zootec. 2006, 35, 1398–1405. [Google Scholar] [CrossRef] [Green Version]
- Rosa, P.S.; Faria Filho, D.E.; Dahlke, F.; Vieira, B.S.; Macari, M.; Furlan, R.L. Performance and carcass characteristics of broiler chickens with different growth potential and submitted to heat stress. Braz. J. Poult. Sci. 2007, 9, 181–186. [Google Scholar] [CrossRef]
- Faria Filho, D.E.; Rosa, P.S.; Figueiredo, D.F.; Dahlke, F.; Macari, M.; Furlan, R.L. Low-protein diets on broilers performance reared under different temperatures. Pesqui. Agropecu. Bras. 2006, 41, 101–106. [Google Scholar] [CrossRef] [Green Version]
- Bai, S.; Wang, G.; Zhang, W.; Zhang, S.; Rice, B.B.; Cline, M.A.; Gilbert, E.R. Broiler chicken adipose tissue dynamics during the first two weeks post-hatch. Comp. Biochem. Physiol. A 2015, 189, 115–123. [Google Scholar] [CrossRef]
- Ain Baziz, H.; Geraert, P.A.; Guillaumin, S. Chronic heat exposure enhances fat deposition and modifies muscle and fat partition in broiler carcasses. Poult. Sci. 1996, 75, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Geraert, P.A.; Padilha, J.C.F.; Guillaumin, S. Metabolic and endocrine changes induced by chronic heat exposure in broiler chickens: Growth performance, body composition and energy retention. Br. J. Nutr. 1996, 75, 195–204. [Google Scholar] [CrossRef]
- Smith, M.O.; Teeter, R.G. Effects of feed intake and environmental temperature on chick growth and development. J. Agric. Sci. 1993, 121, 421–425. [Google Scholar] [CrossRef]
- Zaboli, G.; Huang, X.; Feng, X.; Ahn, D.U. How can heat stress affect chicken meat quality?—A review. Poult. Sci. 2019, 98, 1551–1556. [Google Scholar] [CrossRef]
- Wang, R.R.; Pan, X.J.; Peng, Z.Q. Effects of heat exposure on muscle oxidation and protein functionalities of pectoralis majors in broilers. Poult. Sci. 2009, 88, 1078–1084. [Google Scholar] [CrossRef]
- Mujahid, A.; Akiba, Y.; Toyomizu, M. Olive oil-supplemented diet alleviates acute heat stress-induced mitochondrial ROS production in chicken skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009, 297, R690–R698. [Google Scholar] [CrossRef] [Green Version]
- Pamplona, R.; Costantini, D. Molecular and structural antioxidant defenses against oxidative stress in animals. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 301, R843–R863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosseindoust, A.; Oh, S.M.; Ko, H.S.; Jeon, S.M.; Ha, S.H.; Jang, A.; Son, J.S.; Kim, G.Y.; Kang, H.K.; Kim, J.S. Muscle Antioxidant Activity and Meat Quality Are Altered by Supplementation of Astaxanthin in Broilers Exposed to High Temperature. Antioxidants 2020, 9, 1032. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, M.A.; Pérez, D.D.; Leighton, F.M. Modification of fatty acid composition in broiler chickens fed canola oil. Biol. Res. 2012, 45, 149–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zulkifli, I.; Norma, M.T.C.; Israf, D.A.; Omar, A.R. The effect of early-age food restriction on heat shock protein 70 response in heat-stressed female broiler chickens. Br. Poult. Sci. 2002, 43, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Missoten, J.; De Smet, S.; Raes, K.; Doran, O. Effect of supplementation of the maternal diet with fi shoil or linseed oil on fatty acid composition and expression of D5- and D6- desaturase in tissues of piglets. Animal 2009, 3, 1196–1204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watkins, B.A. Importance of essential fatty acids and their derivatives in poultry. J. Nutr. 1991, 121, 1475–1485. [Google Scholar] [CrossRef]
- Zhao, L.; McMillan, R.P.; Xie, G.; Giridhar, S.G.; Baumgard, L.H.; El-Kadi, S.; Selsby, J.; Ross, J.; Gabler, N.; Hulver, M.W.; et al. Heat stress decreases metabolic flexibility in skeletal muscle of growing pigs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 315, R1096–R1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akbarian, A.; Michiels, J.; Degroote, J.; Majdeddin, M.; Golian, A.; De Smet, S. Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals. J. Anim. Sci. Biotechnol. 2016, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Biedasek, K.; Andres, J.; Mai, K.; Adams, S.; Spuler, S.; Fielitz, J.; Spranger, J. Skeletal muscle 11beta-HSD1 controls glucocorticoid-induced proteolysis and expression of E3 ubiquitin ligases atrogin-1 and MuRF-1. PLoS ONE 2011, 6, e16674. [Google Scholar] [CrossRef]
- Ma, B.; Zhang, L.; Li, J.; Xing, T.; Jiang, Y.; Gao, F. Heat stress alters muscle protein and amino acid metabolism and accelerates liver gluconeogenesis for energy supply in broilers. Poult. Sci. 2021, 100, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Pedroso, F.E.; Spalding, P.B.; Cheung, M.C.; Yang, R.; Gutierrez, J.C.; Bonetto, A.; Zhan, R.; Chan, H.L.; Namias, N.; Koniaris, L.; et al. Inflammation, organomegaly, and muscle wasting despite hyperphagia in a mouse model of burn cachexia. J. Cachexia Sarcopenia Muscle 2012, 3, 199–211. [Google Scholar] [CrossRef] [Green Version]
- Niu, J.L.; Zhang, J.; Wei, L.Q.; Zhang, W.J.; Nie, C.X. Effect of fermented cottonseed meal on the lipid-related indices and serum metabolic profiles in broiler chickens. Animals 2019, 9, 930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahebi-Ala, F.; Hassanabadi, A.; Golian, A. Effect of replacement different methionine levels and sources with betaine on blood metabolites, breast muscle morphology and immune response in heat-stressed broiler chickens. It. J. Anim. Sci. 2021, 20, 33–45. [Google Scholar] [CrossRef]
- Azad, M.A.; Kikusato, M.; Maekawa, T.; Shirakawa, H.; Toyomizu, M. Metabolic characteristics and oxidative damage to skeletal muscle in broiler chickens exposed to chronic heat stress. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2010, 155, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Xue, B.; Song, J.; Liu, L.; Luo, J.; Tian, G.; Yang, Y. Effect of epigallocatechin gallate on growth performance and antioxidant capacity in heat-stressed broilers. Arch. Anim. Nutr. 2017, 71, 362–372. [Google Scholar] [CrossRef]
- Zeng, T.; Li, J.J.; Wang, D.Q.; Li, G.Q.; Wang, G.L.; Lu, L.Z. Effects of heat stress on antioxidant defense system, inflammatory injury, and heat shock proteins of Muscovy and Pekin ducks: Evidence for differential thermal sensitivities. Cell Stress Chaperones 2014, 19, 895–901. [Google Scholar] [CrossRef]
Parameters (%) | Group | |||
---|---|---|---|---|
TN 1 | HS 2 | SEM 3 | p-Value | |
Dressing percentage | 75.39 | 71.42 | 1.14 | 0.040 |
Breast | 41.40 | 38.56 | 0.96 | 0.042 |
Legs | 34.24 | 31.71 | 0.71 | 0.104 |
Liver | 2.32 | 2.14 | 0.04 | 0.064 |
Heart | 0.42 | 0.36 | 0.03 | 0.060 |
Abdominal fat | 0.67 | 1.17 | 0.08 | 0.001 |
Parameters | Group | |||
---|---|---|---|---|
TN 1 | HS 2 | SEM 3 | p-Value | |
Myristic (C14:0) | 0.79 | 0.95 | 0.03 | 0.001 |
Palmitic (C16:0) | 31.07 | 36.31 | 0.95 | 0.012 |
Stearic (C18:0) | 12.54 | 13.20 | 0.22 | 0.145 |
Myristoleic acid (C14:1) | 1.12 | 0.91 | 0.04 | 0.005 |
Palmitoleic (C16:1) | 1.21 | 0.94 | 0.05 | 0.012 |
Oleic (C18:1) | 22.02 | 17.68 | 0.86 | 0.007 |
Linoleic (C18:2n6) | 15.68 | 12.56 | 0.78 | 0.003 |
α-linolenic acid (C18:3n3) | 0.91 | 0.92 | 0.03 | 0.818 |
Docosahexaenoic acid (C22:6n3) | 0.60 | 0.45 | 0.02 | 0.002 |
Eicosapentaenoic acid (C20:5n3) | 0.71 | 0.53 | 0.02 | 0.001 |
Parameters | Group | |||
---|---|---|---|---|
TN 1 | HS 2 | SEM 3 | p-Value | |
Myristic (C14:0) | 1.25 | 1.34 | 0.03 | 0.018 |
Palmitic (C16:0) | 29.27 | 32.88 | 0.92 | 0.006 |
Stearic (C18:0) | 11.05 | 12.22 | 0.35 | 0.224 |
Myristoleic acid (C14:1) | 1.12 | 0.79 | 0.05 | 0.003 |
Palmitoleic (C16:1) | 2.01 | 1.61 | 0.07 | 0.018 |
Oleic (C18:1) | 29.46 | 20.98 | 1.32 | 0.008 |
Linoleic (C18:2n6) | 20.45 | 13.69 | 0.47 | 0.001 |
α-linolenic acid (C18:3n3) | 0.57 | 0.66 | 0.02 | 0.060 |
Docosahexaenoic acid (C22:6n3) | 0.51 | 0.36 | 0.01 | 0.009 |
Eicosapentaenoic acid (C 20:5n3) | 0.84 | 0.58 | 0.04 | 0.003 |
Parameters | Group | |||
---|---|---|---|---|
TN 1 | HS 2 | SEM 3 | p-Value | |
Lysine | 7.52 | 5.88 | 0.36 | 0.017 |
Leucine | 7.69 | 5.83 | 0.43 | 0.018 |
Isoleucine | 3.26 | 2.54 | 0.17 | 0.012 |
Valine | 3.95 | 3.18 | 0.18 | 0.016 |
Methionine | 1.54 | 1.22 | 0.03 | 0.035 |
Tyrosine | 2.30 | 1.83 | 0.11 | 0.083 |
Threonine | 3.50 | 2.84 | 0.10 | 0.052 |
Phenylalanine | 1.85 | 1.62 | 0.08 | 0.214 |
Histidine | 2.69 | 2.23 | 0.13 | 0.028 |
Glycine | 4.98 | 3.81 | 0.26 | 0.009 |
Proline | 1.47 | 1.14 | 0.08 | 0.036 |
Arginine | 4.99 | 3.86 | 0.18 | 0.057 |
Serine | 2.61 | 2.14 | 0.12 | 0.055 |
Aspartic acid | 8.55 | 6.71 | 0.44 | 0.022 |
Glutamic acid | 11.29 | 9.40 | 0.65 | 0.157 |
Alanine | 5.26 | 4.13 | 0.30 | 0.074 |
Parameters | Group | |||
---|---|---|---|---|
TN 1 | HS 2 | SEM 3 | p-Value | |
Lysine | 7.32 | 5.87 | 0.37 | 0.024 |
Leucine | 7.43 | 5.12 | 0.58 | 0.018 |
Isoleucine | 3.23 | 2.29 | 0.21 | 0.001 |
Valine | 4.28 | 2.93 | 0.15 | 0.008 |
Methionine | 1.56 | 1.23 | 0.04 | 0.002 |
Tyrosine | 2.25 | 1.77 | 0.11 | 0.001 |
Threonine | 3.58 | 2.57 | 0.08 | 0.018 |
Phenylalanine | 1.89 | 1.45 | 0.05 | 0.002 |
Histidine | 2.78 | 2.09 | 0.12 | 0.006 |
Glycine | 5.08 | 3.68 | 0.26 | 0.009 |
Proline | 1.53 | 1.07 | 0.10 | 0.011 |
Arginine | 4.91 | 3.62 | 0.16 | 0.015 |
Serine | 2.83 | 1.88 | 0.05 | 0.001 |
Aspartic acid | 7.78 | 3.36 | 0.21 | 0.003 |
Glutamic acid | 11.72 | 8.57 | 0.41 | 0.009 |
Alanine | 5.51 | 3.89 | 0.25 | 0.005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Tarabany, M.S.; Ahmed-Farid, O.A.; Nassan, M.A.; Salah, A.S. Oxidative Stability, Carcass Traits, and Muscle Fatty Acid and Amino Acid Profiles in Heat-Stressed Broiler Chickens. Antioxidants 2021, 10, 1725. https://doi.org/10.3390/antiox10111725
El-Tarabany MS, Ahmed-Farid OA, Nassan MA, Salah AS. Oxidative Stability, Carcass Traits, and Muscle Fatty Acid and Amino Acid Profiles in Heat-Stressed Broiler Chickens. Antioxidants. 2021; 10(11):1725. https://doi.org/10.3390/antiox10111725
Chicago/Turabian StyleEl-Tarabany, Mahmoud S., Omar A. Ahmed-Farid, Mohamed Abdo Nassan, and Ayman S. Salah. 2021. "Oxidative Stability, Carcass Traits, and Muscle Fatty Acid and Amino Acid Profiles in Heat-Stressed Broiler Chickens" Antioxidants 10, no. 11: 1725. https://doi.org/10.3390/antiox10111725
APA StyleEl-Tarabany, M. S., Ahmed-Farid, O. A., Nassan, M. A., & Salah, A. S. (2021). Oxidative Stability, Carcass Traits, and Muscle Fatty Acid and Amino Acid Profiles in Heat-Stressed Broiler Chickens. Antioxidants, 10(11), 1725. https://doi.org/10.3390/antiox10111725