Development of Optimized Ultrasound-Assisted Extraction Methods for the Recovery of Total Phenolic Compounds and Anthocyanins from Onion Bulbs
Abstract
:1. Introduction
Publication Year | Extraction Method | Anthocyanins Analyzed 1 | Onion Variety | Total Anthocyanins Measured (mg g−1) | Reference |
---|---|---|---|---|---|
2020 | Homogenization (1 min), sonication (30 min), and centrifugation. The supernatant residue was re-extracted twice | 1, 2, 3, 4, 5, 6, 7 | Honeysuckle red onions and sweet Italian red onions | Honeysuckle 0.103 ± 2.206 Sweet Italian 0.086 ± 1.843 | [25] |
2019 | Centrifugation at 3214 g. The supernatant residue was re-extracted until the samples turned colourless | 1, 2, 4, 5 | Red onion | 0.056 | [26] |
2018 | Sonication at 60 °C for 1 h | Total anthocyanins measured by colourimetric methods | Red onions from eight different cultivars | 0.02 ± 0.01–0.12 ± 0.01 | [27] |
2018 | Three different methods: maceration (24 h), percolation (8 h), reflux and Soxhlet method (2 h). The extractions were repeated three times | 1, 4, 5, 8 | Bima Brebes and Maja Cipanas | Maceration: 1.463 ± 0.013 and 1.181 ± 0.008 Percolation: 0.328 ± 0.010 and 0.597 ± 0.015 Reflux: 1.415 ± 0.08 and 1.449 ± 0.013 Soxhlet: 0.218 ± 0.021 and 0.342 ± 0.022 | [28] |
2017 | Sonication in an ultrasonic bath at 4 °C for 24 h | 1, 4, 11, 12, 13 | Dark-red onion cultivar ‘Xiu Qiu’ and white onion cultivar ‘Ring Master’ | Xiu Qui: 0.3587 ± 0.0054 Ring Master: 0.0142 ± 0.0087 | [29] |
2013 | Extraction at 4 °C, overnight or for 2 h | Total anthocyanins measured by colourimetric methods | Red onion | 0.9966 | [30] |
2012 | The extraction was carried out on a rotary shaker overnight (15 h; 400 rpm) at room temperature | 1, 4, 9, 14 | Red onion Pier-C and Red onion Pearl | Red onion Pier-C: 0.0777 ± 0.0038 Red onion Pearl: 0.1895 ± 0.0363 | [11] |
2011 | Centrifugation at 1200 rpm (3 min) and agitation (15 min). Each homogenate was extracted three | 1, 2, 4, 5, 6 | Red onion “Vermelha da Povoa” | 0.059 | [31] |
2011 | Shaking (15 min) and centrifugation. Two additional extractions were performed for each sample | 1, 2, 4, 5, 6 | Red onion “Vermelha da Povoa” | 0.003 ± 0.016 | [32] |
2010 | Incubating (1 h) at room temperature with alternative shaking and subsequently centrifuged at 4000 rpm for 15 min at 28 °C. Two additional extractions were performed | 1, 2, 4, 5, 6, 9, 10, 15 | Red Onion Vermelha da Povoa, improved Vermelha da Povoa and Red Creole | Vermelha da Povoa: 0.057 ± 0.018 Improved Vermelha: 0.128 ± 0.046 Red Creole: 0.286 ± 0.08 | [14] |
2. Materials and Methods
2.1. Biological Material
2.2. Chemical Reagents
2.3. Extraction of Bioactive Compounds
2.4. Analysis of Bioactive Compounds
2.4.1. Analysis of Total Phenolic Compounds
2.4.2. Identification of the Anthocyanins
2.4.3. Analysis of the Anthocyanins
2.4.4. Determining Antioxidant Activity
2.5. Applying Box–Behnken Design to Optimize the UAE Methods
2.6. Multi-Response Optimization by Desirability Functions
3. Results and Discussion
3.1. Developing a UAE Method for Total Phenolic Compounds by Means of a Box–Behnken Design
3.2. Developing a UAE Method for Total Anthocyanins Using a Box–Behnken Design
3.3. Optimal Conditions, Extraction Time, and Precision of the Two Developed Methods
3.4. Multi-Response Optimization and Application to Different Onion Varieties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Puizina, J.; Javornik, B.; Bohanec, B.; Schweizer, D.; Maluszynska, J.; Papeš, D. Random amplified polymorphic DNA analysis, genome size, and genomic in situ hybridization of triploid viviparous onions. Genome 1999, 42, 1208–1216. [Google Scholar] [CrossRef] [PubMed]
- Fredotovic, Z.; Sprung, M.; Soldo, B.; Ljubenkov, I.; Budic-Leto, I.; Bilusic, T.; Cikes-Culic, V.; Puizina, J. Chemical composition and biological activity of Allium cepa L. and Allium × cornutum (Clementi ex Visiani 1842) methanolic extracts. Molecules 2017, 22, 448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tedesco, I.; Carbone, V.; Spagnuolo, C.; Minasi, P.; Russo, G.L. Identification and quantification of flavonoids from two southern italian cultivars of Allium cepa L., Tropea (Red Onion) and Montoro (Copper Onion), and their capacity to protect human erythrocytes from oxidative stress. J. Agric. Food Chem. 2015, 63, 5229–5238. [Google Scholar] [CrossRef] [PubMed]
- Corzo-Martínez, M.; Corzo, N.; Villamiel, M. Biological properties of onions and garlic. Trends Food Sci. Technol. 2007, 18, 609–625. [Google Scholar] [CrossRef]
- Lanzotti, V. The analysis of onion and garlic. J. Chromatogr. A 2006, 1112, 3–22. [Google Scholar] [CrossRef] [Green Version]
- Kendler, B.S. Garlic (Allium sativum) and onion (Allium cepa): A review of their relationship to cardiovascular disease. Prev. Med. 1987, 16, 670–685. [Google Scholar] [CrossRef]
- Nicastro, H.L.; Ross, S.A.; Milner, J.A. Garlic and onions: Their cancer prevention properties. Cancer Prev. Res. 2015, 8, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Yang, E.J.; Kim, G.S.; Kim, J.; Song, K.S. Protective effects of onion-derived quercetin on glutamate-mediated hippocampal neuronal cell death. Pharmacogn. Mag. 2013, 9, 302–308. [Google Scholar] [CrossRef] [Green Version]
- González-de-Peredo, A.V.; Vázquez-Espinosa, M.; Espada-Bellido, E.; Carrera, C.; Ferreiro-González, M.; Barbero, G.F.; Palma, M. Flavonol composition and antioxidant activity of onions (Allium cepa L.) based on the development of new analytical ultrasound-assisted extraction methods. Antioxidants 2021, 10, 273. [Google Scholar] [CrossRef]
- Carrera, C.; Aliaño-González, M.J.; Valaityte, M.; Ferreiro-González, M.; Barbero, G.F.; Palma, M. A Novel Ultrasound-Assisted Extraction Method for the Analysis of Anthocyanins in Potatoes (Solanum tuberosum L.). Antioxidants 2021, 10, 1375. [Google Scholar] [CrossRef]
- Li, H.; Deng, Z.; Zhu, H.; Hu, C.; Liu, R.; Young, J.C.; Tsao, R. Highly pigmented vegetables: Anthocyanin compositions and their role in antioxidant activities. Food Res. Int. 2021, 46, 250–259. [Google Scholar] [CrossRef]
- del Pilar Garcia-Mendoza, M.; Espinosa-Pardo, F.A.; Baseggio, A.M.; Barbero, G.F.; Junior, M.R.M.; Rostagno, M.A.; Martínez, J. Extraction of phenolic compounds and anthocyanins from juçara (Euterpe edulis Mart.) residues using pressurized liquids and supercritical fluids. J. Supercrit. Fluids 2017, 119, 9–16. [Google Scholar] [CrossRef]
- Ren, F.; Reilly, K.; Kerry, J.P.; Gaffney, M.; Hossain, M.; Rai, D.K. Higher Antioxidant Activity, Total Flavonols, and Specific Quercetin Glucosides in Two Different Onion (Allium cepa L.) Varieties Grown under Organic Production: Results from a 6-Year Field Study. J. Agric. Food Chem. 2017, 65, 5122–5132. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Gregorio, R.M.; García-Falcón, M.S.; Simal-Gándara, J.; Rodrigues, A.S.; Almeida, D.P.F. Identification and quantification of flavonoids in traditional cultivars of red and white onions at harvest. J. Food Compos. Anal. 2010, 23, 592–598. [Google Scholar] [CrossRef]
- Wu, X.; Prior, R.L. Identification and characterization of anthocyanins by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry in common foods in the United States: Vegetables, nuts, and grains. J. Agric. Food Chem. 2005, 53, 3101–3113. [Google Scholar] [CrossRef]
- Gennaro, L.; Leonardi, C.; Esposito, F.; Salucci, M.; Maiani, G.; Quaglia, G.; Fogliano, V. Flavonoid and carbohydrate contents in tropea red onions: Effects of homelike peeling and storage. J. Agric. Food Chem. 2002, 50, 1904–1910. [Google Scholar] [CrossRef]
- Petersson, E.V.; Puerta, A.; Bergquist, J.; Turner, C. Analysis of anthocyanins in red onion using capillary electrophoresis-time of flight-mass spectrometry. Electrophoresis 2008, 29, 2723–2730. [Google Scholar] [CrossRef]
- Liu, J.; Sandahl, M.; Sjöberg, P.J.R.; Turner, C. Pressurised hot water extraction in continuous flow mode for thermolabile compounds: Extraction of polyphenols in red onions. Anal. Bioanal. Chem. 2014, 406, 441–445. [Google Scholar] [CrossRef] [Green Version]
- Chaves, J.O.; De Souza, M.C.; Da Silva, L.C.; Lachos-Perez, D.; Torres-Mayanga, P.C.; da Fonseca Machado, A.P.; Forster-Carneiro, T.; Vázquez-Espinosa, M.; González-de-Peredo, A.V.; Barbero, G.F.; et al. Extraction of Flavonoids From Natural Sources Using Modern Techniques. Front. Chem. 2020, 8, 507887. [Google Scholar] [CrossRef]
- Chen, S.; Zeng, Z.; Hu, N.; Bai, B.; Wang, H.; Suo, Y. Simultaneous optimization of the ultrasound-assisted extraction for phenolic compounds content and antioxidant activity of Lycium ruthenicum Murr. fruit using response surface methodology. Food Chem. 2018, 242, 1–8. [Google Scholar] [CrossRef]
- Vázquez-Espinosa, M.; González-de-Peredo, A.V.; Espada-Bellido, E.; Ferreiro-González, M.; Toledo-Domínguez, J.J.; Carrera, C.; Palma, M.; Barbero, G.F. Ultrasound-Assisted Extraction of Two Types of Antioxidant Compounds (TPC and TA) from Black Chokeberry (Aronia melanocarpa L.): Optimization of the Individual and Simultaneous Extraction Methods. Agronomy 2019, 9, 456. [Google Scholar] [CrossRef] [Green Version]
- Espada-Bellido, E.; Ferreiro-González, M.; Carrera, C.; Palma, M.; Barroso, C.G.; Barbero, G.F. Optimization of the ultrasound-assisted extraction of anthocyanins and total phenolic compounds in mulberry (Morus nigra) pulp. Food Chem. 2017, 219, 23–32. [Google Scholar] [CrossRef]
- V González de Peredo, A.; Vázquez-Espinosa, M.; Espada-Bellido, E.; Ferreiro-González, M.; Amores-Arrocha, A.; Palma, M.; Barbero, G.F.; Jiménez-Cantizano, A. Alternative Ultrasound-Assisted Method for the Extraction of the Bioactive Compounds Present in Myrtle (Myrtus communis L.). Molecules 2019, 24, 882. [Google Scholar] [CrossRef] [Green Version]
- Rao, J.S.; Kumar, B. 3D Blade root shape optimization. In Proceedings of the 10th International Conference on Vibrations in Rotating Machinery, London, UK, 11–13 September 2012; Woodhead Publishing: Sawston, UK, 2012; pp. 173–188. [Google Scholar] [CrossRef]
- Metrani, R.; Singh, J.; Acharya, P.; Jayaprakasha, G.K.; Patil, B.S. Comparative Metabolomics Profiling of Polyphenols, Nutrients and Antioxidant Activities of Two Red Onion (Allium cepa L.) Cultivars. Plants 2020, 9, 1077. [Google Scholar] [CrossRef] [PubMed]
- Frond, A.D.; Luhas, C.I.; Stirbu, I.; Leopold, L.; Socaci, S.; Andreea, S.; Ayvaz, H.; Andreea, S.; Mihai, S.; Diaconeasa, Z.; et al. Phytochemical characterization of five edible purple-reddish vegetables: Anthocyanins, flavonoids, and phenolic acid derivatives. Molecules 2019, 24, 1536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, M.J.; Ryu, D.H.; Cho, J.Y.; Ha, I.J.; Moon, J.S.; Kang, Y.H. Comparison of the antioxidant properties and flavonols in various parts of Korean red onions by multivariate data analysis. Hortic. Environ. Biotechnol. 2018, 59, 919–927. [Google Scholar] [CrossRef]
- Saptarini, N.M.; Herawati, I.E. Extraction methods and varieties affect total anthocyanins content in acidified extract of papery skin of onion (Allium cepa L.). Drug Invent. Today 2018, 10, 471–474. [Google Scholar]
- Zhang, C.; Li, X.; Zhan, Z.; Cao, L.; Zeng, A.; Chang, G.; Liang, Y. Transcriptome Sequencing and Metabolism Analysis Reveals the role of Cyanidin Metabolism in Dark-red Onion (Allium cepa L.) Bulbs. Sci. Rep. 2018, 8, 14109. [Google Scholar] [CrossRef]
- Oancea, S.; Drǎghici, O. pH and thermal stability of anthocyanin-based optimised extracts of romanian red onion cultivars. Czech J. Food Sci. 2013, 283–291. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, A.S.; Pérez-Gregorio, M.R.; García-Falcón, M.S.; Simal-Gándara, J.; Almeida, D.P.F. Effect of meteorological conditions on antioxidant flavonoids in Portuguese cultivars of white and red onions. Food Chem. 2011, 124, 303–308. [Google Scholar] [CrossRef]
- Pérez-Gregorio, M.R.R.; García-Falcón, M.S.S.; Simal-Gándara, J. Flavonoids changes in fresh-cut onions during storage in different packaging systems. Food Chem. 2011, 124, 652–658. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- González-de-Peredo, A.V.; Vázquez-Espinosa, M.; Espada-Bellido, E.; Jiménez-Cantizano, A.; Ferreiro-González, M.; Amores-Arrocha, A.; Palma, M.; Barroso, C.G.; Barbero, G.F. Development of New Analytical Microwave-Assisted Extraction Methods for Bioactive Compounds from Myrtle (Myrtus communis L.). Molecules 2018, 23, 2992. [Google Scholar] [CrossRef] [Green Version]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Miliauskas, G.; Venskutonis, P.R.; Van Beek, T.A. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem. 2004, 85, 231–237. [Google Scholar] [CrossRef]
- Razali, M.A.A.N.; Sanusi, N.; Ismail, H.; Othman, N.; Ariffin, A. Application of response surface methodology (RSM) for optimization of cassava starch grafted polyDADMAC synthesis for cationic properties. Starch Stärke 2012, 64, 935–943. [Google Scholar] [CrossRef]
- Ferreira, S.L.C.; Bruns, R.E.; Ferreira, H.S.; Matos, G.D.; David, J.M.; Brandao, G.C.; da Silva, E.G.P. Box-Behnken design: An alternative for the optimization of analytical methods. Anal. Chim. Acta 2007, 597, 179–186. [Google Scholar] [CrossRef]
- Pasquel Reátegui, J.L.; Machado, A.P.D.F.; Barbero, G.F.; Rezende, C.A.; Martínez, J. Extraction of antioxidant compounds from blackberry (Rubus sp.) bagasse using supercritical CO2 assisted by ultrasound. J. Supercrit. Fluids 2014, 94, 223–233. [Google Scholar] [CrossRef]
- Carrera, C.; Ruiz-Rodríguez, A.; Palma, M.; Barroso, C.G. Ultrasound assisted extraction of phenolic compounds from grapes. Anal. Chim. Acta 2012, 732, 100–104. [Google Scholar] [CrossRef]
- Pereira, D.T.V.; Tarone, A.G.; Cazarin, C.B.B.; Barbero, G.F.; Martínez, J. Pressurized liquid extraction of bioactive compounds from grape marc. J. Food Eng. 2018, 240, 105–113. [Google Scholar] [CrossRef]
- Nooraziah, A.; Tiagrajah, V.J. A study on regression model using response surface methodology. Appl. Mech. Mater. 2014, 666, 235–239. [Google Scholar] [CrossRef]
- Jadhav, S.B.; Chougule, A.S.; Shah, D.P.; Pereira, C.S.; Jadhav, J.P. Application of response surface methodology for the optimization of textile effluent biodecolorization and its toxicity perspectives using plant toxicity, plasmid nicking assays. Clean Technol. Environ. Policy 2015, 17, 709–720. [Google Scholar] [CrossRef]
- Espada-Bellido, E.; Ferreiro-González, M.; Barbero, G.F.; Carrra, C.; Palma, M.; Barroso, C.G. Alternative Extraction Method of Bioactive Compounds from Mulberry (Morus nigra L.) Pulp Using Pressurized-Liquid Extraction. Food Anal. Methods 2018, 11, 2384–2395. [Google Scholar] [CrossRef]
- Mustafa, A.; Turner, C. Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review. Anal. Chim. Acta 2011, 703, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Ivanovic, J.; Tadic, V.; Dimitrijevic, S.; Stamenic, M.; Petrovic, S.; Zizovic, I. Antioxidant properties of the anthocyanin-containing ultrasonic extract from blackberry cultivar “Čačanska Bestrna”. Ind. Crops Prod. 2014, 53, 274–281. [Google Scholar] [CrossRef]
- Ju, Z.Y.; Howard, L.R. Effects of Solvent and Temperature on Pressurized Liquid Extraction of Anthocyanins and Total Phenolics from Dried Red Grape Skin. J. Agric. Food Chem. 2003, 51, 5207–5213. [Google Scholar] [CrossRef] [PubMed]
- Association of Official Agricultural Chemists. Peer Verified Methods Advisory Committee. In AOAC Peer Verified Methods Program; AOAC International: Gaithersburg, MD, USA, 1998; pp. 1–35. [Google Scholar]
- Ko, E.Y.; Nile, S.H.; Jung, Y.S.; Keum, Y.S. Antioxidant and antiplatelet potential of different methanol fractions and flavonols extracted from onion (Allium cepa L.). 3 Biotech 2018, 8, 155. [Google Scholar] [CrossRef]
Run | Factors | Responses | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | X5 | X6 | YTPC (mg g−1) | YTA (mg g−1) | |||
Experimental | Predicted | Experimental | Predicted | |||||||
1 | 0 | 0 | −1 | 0 | −1 | −1 | 4.1767 | 3.5242 | 2.0668 | 2.0057 |
2 | 0 | 0 | 1 | 0 | −1 | −1 | 2.9561 | 3.2168 | 1.9910 | 2.0681 |
3 | 0 | 0 | −1 | 0 | 1 | −1 | 3.2035 | 3.0330 | 1.7513 | 1.5964 |
4 | 0 | 0 | 1 | 0 | 1 | −1 | 2.9146 | 2.7132 | 1.3774 | 1.3945 |
5 | 0 | 0 | −1 | 0 | −1 | 1 | 2.2442 | 2.7397 | 1.8422 | 1.8561 |
6 | 0 | 0 | 1 | 0 | −1 | 1 | 2.6180 | 2.4945 | 1.9246 | 2.0485 |
7 | 0 | 0 | −1 | 0 | 1 | 1 | 3.0296 | 3.0630 | 1.6633 | 1.6171 |
8 | 0 | 0 | 1 | 0 | 1 | 1 | 2.4469 | 2.8053 | 1.5150 | 1.5452 |
9 | 0 | −1 | 0 | −1 | −1 | 0 | 2.7012 | 2.9196 | 1.9020 | 2.0085 |
10 | 0 | 1 | 0 | −1 | −1 | 0 | 2.5148 | 2.6226 | 2.1472 | 1.9832 |
11 | 0 | −1 | 0 | 1 | −1 | 0 | 2.4628 | 2.7319 | 1.7641 | 1.9643 |
12 | 0 | 1 | 0 | 1 | −1 | 0 | 2.7902 | 2.3765 | 2.1085 | 1.9085 |
13 | 0 | −1 | 0 | −1 | 1 | 0 | 2.3645 | 2.5574 | 1.3898 | 1.4864 |
14 | 0 | 1 | 0 | −1 | 1 | 0 | 2.5099 | 2.4617 | 1.5738 | 1.4770 |
15 | 0 | −1 | 0 | 1 | 1 | 0 | 3.0411 | 2.7125 | 1.4975 | 1.5580 |
16 | 0 | 1 | 0 | 1 | 1 | 0 | 2.5560 | 2.5584 | 1.5213 | 1.5182 |
17 | −1 | 0 | −1 | −1 | 0 | 0 | 4.7011 | 4.7646 | 1.3071 | 1.4164 |
18 | 1 | 0 | −1 | −1 | 0 | 0 | 2.8642 | 3.0163 | 0.3299 | 0.4692 |
19 | −1 | 0 | 1 | −1 | 0 | 0 | 2.6618 | 2.4707 | 1.6671 | 1.4487 |
20 | 1 | 0 | 1 | −1 | 0 | 0 | 3.3118 | 3.3064 | 0.2508 | 0.4251 |
21 | −1 | 0 | −1 | 1 | 0 | 0 | 2.7490 | 3.3144 | 1.5527 | 1.3750 |
22 | 1 | 0 | −1 | 1 | 0 | 0 | 3.3056 | 2.9367 | 0.2837 | 0.5053 |
23 | −1 | 0 | 1 | 1 | 0 | 0 | 2.0515 | 2.4593 | 1.5521 | 1.4096 |
24 | 1 | 0 | 1 | 1 | 0 | 0 | 5.2890 | 4.6655 | 0.5696 | 0.4635 |
25 | 0 | −1 | −1 | 0 | 0 | −1 | 3.6635 | 3.7722 | 1.5621 | 1.5809 |
26 | 0 | 1 | −1 | 0 | 0 | −1 | 3.9095 | 4.0100 | 1.6094 | 1.6217 |
27 | 0 | −1 | 1 | 0 | 0 | −1 | 3.2906 | 3.1606 | 1.4842 | 1.5197 |
28 | 0 | 1 | 1 | 0 | 0 | −1 | 4.1254 | 3.9944 | 1.5655 | 1.5434 |
29 | 0 | −1 | −1 | 0 | 0 | 1 | 4.3195 | 4.1564 | 1.5901 | 1.5813 |
30 | 0 | 1 | −1 | 0 | 0 | 1 | 3.0355 | 2.8714 | 1.5588 | 1.4924 |
31 | 0 | −1 | 1 | 0 | 0 | 1 | 3.4133 | 3.6069 | 1.6314 | 1.6501 |
32 | 0 | 1 | 1 | 0 | 0 | 1 | 2.7325 | 2.9179 | 1.5319 | 1.5441 |
33 | −1 | −1 | 0 | 0 | −1 | 0 | 2.7751 | 2.5609 | 1.9114 | 1.9364 |
34 | 1 | −1 | 0 | 0 | −1 | 0 | 3.3414 | 3.0735 | 1.4900 | 1.0493 |
35 | −1 | 1 | 0 | 0 | −1 | 0 | 2.7997 | 3.0478 | 2.1634 | 2.3055 |
36 | 1 | 1 | 0 | 0 | −1 | 0 | 1.8618 | 1.9341 | 0.4220 | 0.5990 |
37 | −1 | −1 | 0 | 0 | 1 | 0 | 1.6920 | 1.8405 | 1.1957 | 1.1220 |
38 | 1 | −1 | 0 | 0 | 1 | 0 | 3.4394 | 3.4122 | 0.9739 | 0.9352 |
39 | −1 | 1 | 0 | 0 | 1 | 0 | 2.4817 | 2.5288 | 1.1699 | 1.5071 |
40 | 1 | 1 | 0 | 0 | 1 | 0 | 2.4807 | 2.4741 | 0.6292 | 0.5008 |
41 | −1 | 0 | 0 | −1 | 0 | −1 | 2.8317 | 2.8012 | 1.3718 | 1.3445 |
42 | 1 | 0 | 0 | −1 | 0 | −1 | 1.9561 | 2.1494 | 0.3941 | 0.3867 |
43 | −1 | 0 | 0 | 1 | 0 | −1 | 2.1085 | 2.0093 | 1.2244 | 1.2897 |
44 | 1 | 0 | 0 | 1 | 0 | −1 | 1.9760 | 2.7280 | 0.3625 | 0.4094 |
45 | −1 | 0 | 0 | −1 | 0 | 1 | 2.3904 | 2.1984 | 1.4082 | 1.3581 |
46 | 1 | 0 | 0 | −1 | 0 | 1 | 2.3983 | 1.9376 | 0.4072 | 0.3451 |
47 | −1 | 0 | 0 | 1 | 0 | 1 | 2.2821 | 1.5288 | 1.3218 | 1.3324 |
48 | 1 | 0 | 0 | 1 | 0 | 1 | 2.0481 | 2.6386 | 0.3728 | 0.3969 |
49 | 0 | 0 | 0 | 0 | 0 | 0 | 2.3484 | 2.5702 | 1.7592 | 1.7190 |
50 | 0 | 0 | 0 | 0 | 0 | 0 | 2.7464 | 2.5702 | 1.7587 | 1.7190 |
51 | 0 | 0 | 0 | 0 | 0 | 0 | 2.4622 | 2.5702 | 1.7139 | 1.7190 |
52 | 0 | 0 | 0 | 0 | 0 | 0 | 2.6377 | 2.5702 | 1.7742 | 1.7190 |
53 | 0 | 0 | 0 | 0 | 0 | 0 | 2.6370 | 2.5702 | 1.6840 | 1.7190 |
54 | 0 | 0 | 0 | 0 | 0 | 0 | 2.5892 | 2.5702 | 1.6238 | 1.7190 |
Source | Source | Coefficient | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|---|---|
Model | 2.57 | 22.39 | 27 | 0.83 | 4.54 | 0 | |
A—MeOH | X1 | 0.11 | 0.31 | 1 | 0.31 | 1.72 | 0.2 |
B—Temperature | X2 | −0.11 | 0.31 | 1 | 0.31 | 1.67 | 0.21 |
C—Amplitude | X3 | −0.14 | 0.48 | 1 | 0.48 | 2.62 | 0.12 |
D—Cycle | X4 | −0.02 | 0.01 | 1 | 0.01 | 0.07 | 0.8 |
E—pH | X5 | −0.05 | 0.05 | 1 | 0.05 | 0.27 | 0.61 |
F—Ratio | X6 | −0.17 | 0.72 | 1 | 0.72 | 3.94 | 0.06 |
AB | X1X2 | −0.41 | 1.32 | 1 | 1.32 | 7.24 | 0.01 |
AC | X1X3 | 0.65 | 3.34 | 1 | 3.34 | 18.27 | 0 |
AD | X1X4 | 0.34 | 1.88 | 1 | 1.88 | 10.28 | 0 |
AE | X1X5 | 0.26 | 0.56 | 1 | 0.56 | 3.07 | 0.09 |
AF | X1X6 | 0.1 | 0.08 | 1 | 0.08 | 0.42 | 0.52 |
BC | X2X3 | 0.15 | 0.18 | 1 | 0.18 | 0.97 | 0.33 |
BD | X2X4 | −0.01 | 0 | 1 | 0 | 0.01 | 0.92 |
BE | X2X5 | 0.05 | 0.04 | 1 | 0.04 | 0.22 | 0.64 |
BF | X2X6 | −0.38 | 1.16 | 1 | 1.16 | 6.35 | 0.02 |
CD | X3X4 | 0.36 | 1.04 | 1 | 1.04 | 5.67 | 0.02 |
CE | X3X5 | −0.00 | 0 | 1 | 0 | 0 | 0.98 |
CF | X3X6 | 0.02 | 0 | 1 | 0 | 0.02 | 0.89 |
DE | X4X5 | 0.09 | 0.06 | 1 | 0.06 | 0.32 | 0.58 |
DF | X4X6 | 0.03 | 0.01 | 1 | 0.01 | 0.04 | 0.84 |
EF | X5X6 | 0.2 | 0.33 | 1 | 0.33 | 1.82 | 0.19 |
A2 | X12 | −0.04 | 0.02 | 1 | 0.02 | 0.12 | 0.73 |
B2 | X22 | 0.35 | 1.25 | 1 | 1.25 | 6.85 | 0.01 |
C2 | X32 | 0.88 | 7.97 | 1 | 7.97 | 43.61 | <0.0001 |
D2 | X42 | −0.04 | 0.01 | 1 | 0.01 | 0.08 | 0.78 |
E2 | X52 | −0.26 | 0.72 | 1 | 0.72 | 3.92 | 0.06 |
F2 | X62 | −0.24 | 0.58 | 1 | 0.58 | 3.18 | 0.09 |
Residual | 4.75 | 26 | 0.18 | ||||
Lack of Fit | 4.65 | 21 | 0.22 | 10.93 | 0.01 | ||
Pure Error | 0.1 | 5 | 0.02 | ||||
Cor Total | 27.14 | 53 |
Source | Source | Coefficient | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|---|---|
Model | 1.72 | 14.37 | 27 | 0.53 | 16.54 | <0.0001 | |
A—MeOH | X1 | −0.47 | 5.38 | 1 | 5.38 | 167.14 | <0.0001 |
B—Temperature | X2 | −0.02 | 0.01 | 1 | 0.01 | 0.2 | 0.66 |
C—Amplitude | X3 | 0 | 0 | 1 | 0 | 0 | 0.95 |
D—Cycle | X4 | 0 | 0 | 1 | 0 | 0 | 0.98 |
E—pH | X5 | −0.23 | 1.25 | 1 | 1.25 | 38.83 | <0.0001 |
F—Ratio | X6 | 0 | 0 | 1 | 0 | 0 | 0.99 |
AB | X1X2 | −0.20 | 0.34 | 1 | 0.34 | 10.44 | 0 |
AC | X1X3 | −0.02 | 0 | 1 | 0 | 0.09 | 0.77 |
AD | X1X4 | 0.02 | 0.01 | 1 | 0.01 | 0.19 | 0.67 |
AE | X1X5 | 0.18 | 0.25 | 1 | 0.25 | 7.62 | 0.01 |
AF | X1X6 | −0.01 | 0 | 1 | 0 | 0.05 | 0.83 |
BC | X2X3 | 0 | 0 | 1 | 0 | 0 | 0.95 |
BD | X2X4 | −0.01 | 0 | 1 | 0 | 0.01 | 0.91 |
BE | X2X5 | 0 | 0 | 1 | 0 | 0.01 | 0.93 |
BF | X2X6 | −0.03 | 0.01 | 1 | 0.01 | 0.26 | 0.61 |
CD | X3X4 | 0 | 0 | 1 | 0 | 0 | 0.99 |
CE | X3X5 | −0.07 | 0.03 | 1 | 0.03 | 1.09 | 0.31 |
CF | X3X6 | 0.03 | 0.02 | 1 | 0.02 | 0.53 | 0.48 |
DE | X4X5 | 0.03 | 0.01 | 1 | 0.01 | 0.21 | 0.65 |
DF | X4X6 | 0.01 | 0 | 1 | 0 | 0.01 | 0.91 |
EF | X5X6 | 0.04 | 0.01 | 1 | 0.01 | 0.45 | 0.51 |
A2 | X12 | −0.63 | 4.02 | 1 | 4.02 | 124.94 | <0.0001 |
B2 | X22 | −0.02 | 0.01 | 1 | 0.01 | 0.19 | 0.66 |
C2 | X32 | −0.02 | 0.01 | 1 | 0.01 | 0.17 | 0.68 |
D2 | X42 | −0.13 | 0.18 | 1 | 0.18 | 5.53 | 0.03 |
E2 | X52 | 0.18 | 0.32 | 1 | 0.32 | 9.81 | 0 |
F2 | X62 | −0.10 | 0.11 | 1 | 0.11 | 3.49 | 0.07 |
Residual | 0.84 | 26 | 0.03 | ||||
Lack of Fit | 0.82 | 21 | 0.04 | 11.79 | 0.01 | ||
Pure Error | 0.02 | 5 | 0 | ||||
Cor Total | 15.21 | 53 |
Factor | Total Phenolic Compounds | Total Anthocyanins | Multi-Response |
---|---|---|---|
%MeOH | 53 | 57 | 50 |
Temperature (°C) | 60 | 60 | 53 |
Amplitude (%) | 30.1 | 89.9 | 30 |
Cycle (s) | 0.43 | 0.64 | 0.4 |
pH | 2.6 | 2 | 2 |
Ratio (g mL−1) | 0.2:11 | 0.2:14.9 | 0.2:14 |
Result (mg g−1) ± SD (n = 3) | 7.30 ± 0.015 | 2.49 ± 0.053 | 7.23 ± 0.034 (TPC); 2.280 ± 0.081 (TA) |
Onion Type | Peak 1 (mg g−1) | Peak 2 (mg g−1) | Peak 3 (mg g−1) | Peak 4 (mg g−1) | Peak 5 (mg g−1) | Peak 6 (mg g−1) | Peak 7 (mg g−1) | Peak 8 (mg g−1) | Peak 9 (mg g−1) | TA (mg g−1) | CFT (mg g−1) | Antioxidant Activity (mg g−1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Spring white onion I | - | - | - | - | - | - | - | - | - | - | 6.01 ± 0.09 | 4.64 ± 0.13 |
French white onion | - | - | - | - | - | - | - | - | - | - | 6.71 ± 0.18 | 4.46 ± 0.15 |
Sweet white onion I | - | - | - | - | - | - | - | - | - | - | 2.98 ± 0.04 | 3.49 ± 0.06 |
Spring white onion II | - | - | - | - | - | - | - | - | - | - | 4.34 ± 0.02 | 3.26 ± 0.76 |
Sweet white onion II | - | - | - | - | - | - | - | - | - | - | 2.74 ± 0.00 | 3.72 ± 0.16 |
CYO white onion | - | - | - | - | - | - | - | - | - | - | 4.84 ± 0.04 | 6.92 ± 0.12 |
Sweet white onion III | - | - | - | - | - | - | - | - | - | - | 5.40 ± 0.12 | 4.88 ± 0.98 |
White onion | - | - | - | - | - | - | - | - | - | - | 3.31 ± 0.07 | 5.63 ± 0.31 |
Babosa white onion | - | - | - | - | - | - | - | - | - | - | 5.78 ± 0.17 | 5.91 ± 0.10 |
Sweet white onion IV | - | - | - | - | - | - | - | - | - | - | 3.30 ± 0.02 | 2.93 ± 0.03 |
Fuentes white onion | - | - | - | - | - | - | - | - | - | - | 3.64 ± 0.01 | 4.07 ± 0.32 |
Yellow onion I | - | - | - | - | - | - | - | - | - | - | 5.41 ± 0.17 | 5.41 ± 0.34 |
Yellow onion II | - | - | - | - | - | - | - | - | - | - | 3.56 ± 0.03 | 6.14 ± 0.63 |
Yellow onion III | - | - | - | - | - | - | - | - | - | - | 3.53 ± 0.02 | 6.15 ± 0.07 |
Yellow onion IV | - | - | - | - | - | - | - | - | - | - | 5.00 ± 0.00 | 3.93 ± 0.10 |
Yellow onion V | - | - | - | - | - | - | - | - | - | - | 5.61 ± 0.11 | 3.41 ± 0.16 |
Purple onion | 0.43 ± 0.00 | 0.19 ± 0.00 | 0.04 ± 0.00 | 0.02 ± 0.00 | 0.04 ± 0.00 | 0.98 ± 0.02 | 0.27 ± 0.06 | 0.09 ± 0.00 | 0.02 ± 0.00 | 2.28 ± 0.05 | 7.97 ± 0.03 | 5.96 ± 0.01 |
Red onion I | 0.20 ± 0.00 | 0.19 ± 0.00 | 0.03 ± 0.00 | 0.02 ± 0.00 | 0.03 ± 0.00 | 0.33 ± 0.01 | 0.23 ± 0.01 | 0.09 ± 0.00 | 0.04 ± 0.00 | 1.36 ± 0.03 | 6.70 ± 0.08 | 5.14 ± 0.16 |
Red label onion | 0.24 ± 0.00 | 0.20 ± 0.01 | 0.04 ± 0.00 | 0.02 ± 0.00 | 0.03 ± 0.01 | 0.34 ± 0.00 | 0.24 ± 0.02 | 0.12 ± 0.01 | 0.05 ± 0.00 | 1.46 ± 0.04 | 8.01 ± 0.12 | 6.03 ± 0.01 |
Red onion II | 0.53 ± 0.02 | 0.27 ± 0.01 | 0.02 ± 0.00 | 0.05 ± 0.0 | 0.06 ± 0.01 | 0.66 ± 0.07 | 0.34 ± 0.03 | 0.17 ± 0.01 | 0.06 ± 0.00 | 2.39 ± 0.05 | 7.23 ± 0.08 | 5.35 ± 0.00 |
Red onion III | 0.31 ± 0.02 | 0.16 ± 0.01 | 0.05 ± 0.00 | 0.03 ± 0.0 | 0.04 ± 0.00 | 0.54 ± 0.03 | 0.23 ± 0.01 | 0.22 ± 0.00 | 0.07 ± 0.00 | 1.64 ± 0.05 | 6.52 ± 0.08 | 7.03 ± 0.67 |
Red onion IV | 0.10 ± 0.01 | 0.09 ± 0.01 | 0.04 ± 0.00 | 0.03 ± 0.00 | 0.23 ± 0.00 | 0.07 ± 0.00 | 0.12 ± 0.00 | 0.03 ± 0.00 | 0.02 ± 0.00 | 0.93 ± 0.01 | 4.54 ± 0.05 | 7.25 ± 0.12 |
Purple onion II | 0.10 ± 0.00 | 0.17 ± 0.00 | 0.04 ± 0.00 | 0.03 ± 0.00 | 0.04 ± 0.00 | 0.46 ± 0.01 | 0.38 ± 0.00 | 0.07 ± 0.00 | 0.03 ± 0.00 | 1.54 ± 0.02 | 4.30 ± 0.00 | 6.43 ± 0.01 |
Figueres Onion | 0.02 ± 00 | 0.03 ± 0.0 | 0.02 ± 0.00 | 0.01 ± 0.0 | 0.05 ± 0.02 | 0.02 ± 0.01 | 0.06 ± 0.02 | 0.03 ± 0.01 | 0.02 ± 0.00 | 0.59 ± 0.00 | 7.50 ± 0.29 | 7.10 ± 0.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-de-Peredo, A.V.; Vázquez-Espinosa, M.; Espada-Bellido, E.; Ferreiro-González, M.; Carrera, C.; Barbero, G.F.; Palma, M. Development of Optimized Ultrasound-Assisted Extraction Methods for the Recovery of Total Phenolic Compounds and Anthocyanins from Onion Bulbs. Antioxidants 2021, 10, 1755. https://doi.org/10.3390/antiox10111755
González-de-Peredo AV, Vázquez-Espinosa M, Espada-Bellido E, Ferreiro-González M, Carrera C, Barbero GF, Palma M. Development of Optimized Ultrasound-Assisted Extraction Methods for the Recovery of Total Phenolic Compounds and Anthocyanins from Onion Bulbs. Antioxidants. 2021; 10(11):1755. https://doi.org/10.3390/antiox10111755
Chicago/Turabian StyleGonzález-de-Peredo, Ana V., Mercedes Vázquez-Espinosa, Estrella Espada-Bellido, Marta Ferreiro-González, Ceferino Carrera, Gerardo F. Barbero, and Miguel Palma. 2021. "Development of Optimized Ultrasound-Assisted Extraction Methods for the Recovery of Total Phenolic Compounds and Anthocyanins from Onion Bulbs" Antioxidants 10, no. 11: 1755. https://doi.org/10.3390/antiox10111755
APA StyleGonzález-de-Peredo, A. V., Vázquez-Espinosa, M., Espada-Bellido, E., Ferreiro-González, M., Carrera, C., Barbero, G. F., & Palma, M. (2021). Development of Optimized Ultrasound-Assisted Extraction Methods for the Recovery of Total Phenolic Compounds and Anthocyanins from Onion Bulbs. Antioxidants, 10(11), 1755. https://doi.org/10.3390/antiox10111755