Sequential Extraction of Hydroxytyrosol, Mannitol and Triterpenic Acids Using a Green Optimized Procedure Based on Ultrasound
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Reagents and Standards
2.2. Raw Material
2.3. Methodology
2.4. UAWE of EOP
2.5. Box-Behnken Experimental Design for UAWE of EOP
2.6. Extraction Yield
2.7. Analytical Determinations of the UAWE Extracts
2.7.1. Total Phenolic Content and Antioxidant Capacity
2.7.2. Characterization of Phenolic Compounds and Mannitol by HPLC Analyses
2.8. Characterization of the Extracted EOP Solids after UAWE
2.8.1. Chemical Characterization
2.8.2. Scanning Electron Microscopy
2.9. Extraction of Triterpenic Acids from the Extracted EOP Solids after UAWE
2.10. Statistical Analysis
3. Results
3.1. Optimization of UAWE
3.1.1. Effect of Milling on the Recovery of Antioxidants
3.1.2. Fitting the Models
3.1.3. Response Surface Analysis
Influence of the Extraction Conditions on the Solubilization of Bioactive Compounds
Influence of the Extraction Conditions on the Antioxidant Activity
Process Optimization and Validation of the Model
3.2. Phenolic Profiles and Standardization
3.3. Characterization of the Extracted EOP Solids
3.3.1. Chemical Characterization and Elemental Analysis
3.3.2. SEM Analysis of Raw EOP and Extracted EOP Solids
3.4. Triterpenic Acids Content in Ethanolic Extracts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martínez, L.; Ros, G.; Nieto, G. Hydroxytyrosol: Health benefits and use as functional ingredient in meat. Medicines 2018, 5, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wani, T.A.; Masoodi, F.A.; Gani, A.; Baba, W.N.; Rahmanian, N.; Akhter, R.; Ahmed, I.; Ahmad, M. Olive oil and its principal bioactive compound: Hydroxytyrosol—A review of the recent literature. Trends Food Sci. Technol. 2018, 77, 77–90. [Google Scholar] [CrossRef]
- Merra, E.; Calzaretti, G.; Bobba, A.; Storelli, M.M.; Casalino, E. Antioxidant role of hydroxytyrosol on oxidative stress in cadmium-intoxicated rats: Different effect in spleen and testes. Drug Chem. Toxicol. 2014, 37, 420–426. [Google Scholar] [CrossRef]
- Lemonakis, N.; Poudyal, H.; Halabalaki, M.; Brown, L.; Tsarbopoulos, A.; Skaltsounis, A.L.; Gikas, E. The LC–MS-based metabolomics of hydroxytyrosol administration in rats reveals amelioration of the metabolic syndrome. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1041–1042, 45–59. [Google Scholar] [CrossRef] [PubMed]
- Robles-Almazan, M.; Pulido-Moran, M.; Moreno-Fernandez, J.; Ramirez-Tortosa, C.; Rodriguez-Garcia, C.; Quiles, J.L.; Ramirez-Tortosa, M. Hydroxytyrosol: Bioavailability, toxicity, and clinical applications. Food Res. Int. 2018, 105, 654–667. [Google Scholar] [CrossRef] [PubMed]
- Boronat, A.; Mateus, J.; Soldevila-Domenech, N.; Guerra, M.; Rodríguez-Morató, J.; Varon, C.; Muñoz, D.; Barbosa, F.; Morales, J.C.; Gaedigk, A.; et al. Cardiovascular benefits of tyrosol and its endogenous conversion into hydroxytyrosol in humans. A randomized, controlled trial. Free Radic. Biol. Med. 2019, 143, 471–481. [Google Scholar] [CrossRef]
- Mosca, A.; Crudele, A.; Smeriglio, A.; Braghini, M.R.; Panera, N.; Comparcola, D.; Alterio, A.; Sartorelli, M.R.; Tozzi, G.; Raponi, M.; et al. Antioxidant activity of hydroxytyrosol and vitamin E reduces systemic inflammation in children with paediatric NAFLD. Dig. Liver Dis. 2020, 53, 1154–1158. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Dietetic Products, Nutrition and Allergies. Scientific opinion on the substantiation of health claims related to polyphenols in olive and protection of LDL particles from oxidative damage (ID 1333, 1638, 1639, 1696, 2865), maintenance of normal bloodn HDL-cholesterol concentrations (ID 1639), maintenance of normal blood pressure (ID 3781), “anti-inflammatory properties” (ID 1882), “contributes to the upper respiratory tract health” (ID 3468), “can help to maintain a normal function of gastrointestinal tract” (3779), and “contributes to body defences against external agents” (ID 3467) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 2011, 9, 2033. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies. Safety of hydroxytyrosol as a novel food pursuant to Regulation (EC) No 258/97. EFSA J. 2017, 15, e04728. [Google Scholar]
- Contreras, M.d.M.; Romero, I.; Moya, M.; Castro, E. Olive-derived biomass as a renewable source of value-added products. Process Biochem. 2020, 97, 43–56. [Google Scholar] [CrossRef]
- Contreras, M.d.M.; Gómez-Cruz, I.; Romero, I.; Castro, E. Olive pomace-derived biomasses fractionation through a two-step extraction based on the use of ultrasounds: Chemical characteristics. Foods 2021, 10, 111. [Google Scholar] [CrossRef]
- Taamalli, A.; Lozano Sánchez, J.; Jebabli, H.; Trabelsi, N.; Abaza, L.; Segura Carretero, A.; Youl Cho, J.; Arráez Román, D. Monitoring the bioactive compounds status in olea europaea according to collecting period and drying conditions. Energies 2019, 12, 947. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, T.B.; Oliveira, A.L.; Costa, C.; Nunes, J.; Vicente, A.A.; Pintado, M. Total and sustainable valorisation of olive pomace using a fractionation approach. Appl. Sci. 2020, 10, 6785. [Google Scholar] [CrossRef]
- Chiang, S.S.; Liang, Z.C.; Wang, Y.C.; Liang, C.H. Effect of light-emitting diodes on the production of cordycepin, mannitol and adenosine in solid-state fermented rice by Cordyceps militaris. J. Food Compos. Anal. 2017, 60, 51–56. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Menichini, F.; Tundis, R. Recent insights into the emerging role of triterpenoids in cancer therapy: Part I. In Studies in Natural Products Chemistry; Rahman, A., Ed.; Elvesier: Helsinki, Finland, 2013; Volume 40, pp. 1–31. [Google Scholar]
- Peng, M.; Zhao, X.; Biswas, D. Polyphenols and tri-terpenoids from Olea europaea L. in alleviation of enteric pathogen infections through limiting bacterial virulence and attenuating inflammation. J. Funct. Foods 2017, 36, 132–143. [Google Scholar] [CrossRef]
- Medina, E.; Romero, C.; Brenes, M. Residual olive paste as a source of phenolic compounds and triterpenic Acids. Eur. J. Lipid Sci. Technol. 2018, 120, 1700368. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Cabra, N.; Vega-Granados, K.; Moya-Andérico, L.; Vukomanovic, M.; Parra, A.; Álvarez De Cienfuegos, L.; Torrents, E. Novel oleanolic and maslinic acid derivatives as a promising treatment against bacterial biofilm in nosocomial infections: An in vitro and in vivo study. ACS Infect. Dis. 2019, 5, 1581–1589. [Google Scholar] [CrossRef]
- Peragón, J.; Rufino-Palomares, E.E.; Muñoz-Espada, I.; Reyes-Zurita, F.J.; Lupiáñez, J.A. A new HPLC-MS method for measuring maslinic acid and oleanolic acid in HT29 and HepG2 human cancer cells. Int. J. Mol. Sci. 2015, 16, 21681–21694. [Google Scholar] [CrossRef] [Green Version]
- Martín-García, B.; Verardo, V.; León, L.; De la Rosa, R.; Arráez-Román, D.; Segura-Carretero, A.; Gómez-Caravaca, A.M. GC-QTOF-MS as valuable tool to evaluate the in fluence of cultivar and sample time on olive leaves triterpenic components. Food Res. Int. 2019, 115, 219–226. [Google Scholar] [CrossRef]
- Ozkan, G.; Karacabey, E.; Arslan, N.; Odabasi, N. Optimisation of microwave-assisted extraction of triterpenoic acids from olive mill waste using response surface methodology. Qual. Assur. Saf. Crop. Foods 2017, 9, 179–185. [Google Scholar] [CrossRef]
- Banožić, M.; Banjari, I.; Jakovljević, M.; Šubarić, D.; Tomas, S.; Babić, J.; Jokić, S. Optimization of ultrasound-assisted extraction of some bioactive compounds from tobacco waste. Molecules 2019, 24, 1611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharayei, P.; Azarpazhooh, E.; Zomorodi, S.; Ramaswamy, H.S. Ultrasound assisted extraction of bioactive compounds from pomegranate (Punica granatum L.) peel. LWT 2019, 101, 342–350. [Google Scholar] [CrossRef]
- Lama-Muñoz, A.; Contreras, M.d.M.; Espínola, F.; Moya, M.; Torres, A.D.; Romero, I.; Castro, E. Extraction of oleuropein and luteolin-7-O-glucoside from olive leaves: Optimization of technique and operating conditions. Food Chem. 2019, 293, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Rutkowska, M.; Namieśnik, J.; Konieczka, P. Ultrasound-assisted extraction. In The Application of Green Solvents in Separation Processes; Pena-Pereira, F., Tobiszewski, M., Eds.; Elvesier: Helsinki, Finland, 2017; pp. 301–324. [Google Scholar]
- Wen, C.; Zhang, J.; Zhang, H.; Dzah, C.S.; Zandile, M.; Duan, Y.; Ma, H.; Luo, X. Advances in ultrasound assisted extraction of bioactive compounds from cash crops—A review. Ultrason. Sonochem. 2018, 48, 538–549. [Google Scholar] [CrossRef]
- Lavilla, I.; Bendicho, C. Fundamentals of ultrasound-assisted extraction. In Water Extraction of Bioactive Compounds; Domínguez, H., González, M.J., Eds.; Elvesier: Helsinki, Finland, 2017; pp. 291–316. [Google Scholar]
- Gómez-Cruz, I.; Cara, C.; Romero, I.; Castro, E.; Gullón, B. Valorisation of exhausted olive pomace by an eco-friendly solvent extraction process of natural antioxidants. Antioxidants 2020, 9, 1010. [Google Scholar] [CrossRef] [PubMed]
- Medfai, W.; Contreras, M.d.M.; Lama-Muñoz, A.; Mhamdi, R.; Oueslati, I.; Castro, E. How cultivar and extraction conditions affect antioxidants type and extractability for olive leaves valorization. ACS Sustain. Chem. Eng. 2020, 8, 5107–5118. [Google Scholar] [CrossRef]
- Sluiter, A.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Extractives in Biomass Laboratory Analytical Procedure; NREL/TP-510-42619; National Renewable Energy Laboratory: Golden, CO, USA, 2008. [Google Scholar]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Structural Carbohydrates and Lignin in Biomass; NREL/TP-510-42618; National Renewable Energy Laboratory: Golden, CO, USA, 2012. [Google Scholar]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Ash in Biomass; NREL/TP-510-42622; National Renewable Energy Laboratory: Golden, CO, USA, 2008. [Google Scholar]
- Romero, C.; Medina, E.; Mateo, M.A.; Brenes, M. New by-products rich in bioactive substances from the olive oil mill processing. J. Sci. Food Agric. 2017, 98, 225–230. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Patiño, J.C.; Gómez-Cruz, I.; Romero, I.; Gullón, B.; Ruiz, E.; Brnčićc, M.; Castro, E. Ultrasound-assisted extraction as a first step in a biorefinery strategy for valorisation of extracted olive pomace. Energies 2019, 12, 2679. [Google Scholar] [CrossRef] [Green Version]
- Tapia-Quirós, P.; Montenegro-Landívar, M.F.; Reig, M.; Vecino, X.; Alvarino, T.; Cortina, J.L.; Saurina, J.; Granados, M. Olive mill and winery wastes as viable sources of bioactive compounds: A study on polyphenols recovery. Antioxidants 2020, 9, 1074. [Google Scholar] [CrossRef]
- Medina-Torres, N.; Ayora-Talavera, T.; Espinosa-Andrews, H.; Sánchez-Contreras, A.; Pacheco, N. Ultrasound assisted extraction for the recovery of phenolic compounds from vegetable sources. Agronomy 2017, 7, 47. [Google Scholar] [CrossRef]
- Zardo, I.; de Espíndola Sobczyk, A.; Marczak, L.D.F.; Sarkis, J. Optimization of ultrasound assisted extraction of phenolic compounds from sunflower seed cake using response surface methodology. Waste Biomass Valoriz. 2019, 10, 33–44. [Google Scholar] [CrossRef]
- Gómez-González, S.; Ruiz-Jiménez, J.; Priego-Capote, F.; Luque De Castro, M.D. Qualitative and quantitative sugar profiling in olive fruits, leaves, and stems by gas chromatography-tandem mass spectrometry (GC-MS/MS) after ultrasound-assisted leaching. J. Agric. Food Chem. 2010, 58, 12292–12299. [Google Scholar] [CrossRef]
- Dujmić, F.; Ganić, K.K.; Ćurić, D.; Karlović, S.; Bosiljkov, T.; Ježek, D.; Vidrih, R.; Hribar, J.; Zlatić, E.; Prusina, T.; et al. Non-thermal ultrasonic extraction of polyphenolic compounds from red wine lees. Foods 2020, 9, 472. [Google Scholar] [CrossRef] [Green Version]
- Kumari, B.; Tiwari, B.K.; Hossain, M.B.; Brunton, N.P.; Rai, D.K. Recent advances on application of ultrasound and pulsed electric field technologies in the extraction of bioactives from agro-industrial by-products. Food Bioprocess Technol. 2018, 11, 223–241. [Google Scholar] [CrossRef]
- Gómez-Cruz, I.; Contreras, M.d.M.; Carvalheiro, F.; Duarte, L.C.; Roseiro, L.B.; Romero, I.; Castro, E. Recovery of bioactive compounds from industrial exhausted olive pomace through ultrasound-assisted extraction. Biology 2021, 10, 514. [Google Scholar] [CrossRef]
- Cavuldak, Ö.A.; Vural, N.; Akay, M.A.; Anlı, R.E. Optimization of ultrasound-assisted water extraction conditions for the extraction of phenolic compounds from black mulberry leaves (Morus nigra L.). J. Food Process Eng. 2019, 42, 1–15. [Google Scholar] [CrossRef]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrason. Sonochem. 2021, 70, 105325. [Google Scholar] [CrossRef] [PubMed]
- Rohilla, S.; Mahanta, C.L. Optimization of extraction conditions for ultrasound-assisted extraction of phenolic compounds from tamarillo fruit (Solanum betaceum) using response surface methodology. J. Food Meas. Charact. 2021, 15, 1763–1773. [Google Scholar] [CrossRef]
- Salleh-Mack, S.Z.; Roberts, J.S. Ultrasound pasteurization: The effects of temperature, soluble solids, organic acids and pH on the inactivation of Escherichia coli ATCC 25922. Ultrason. Sonochem. 2007, 14, 323–329. [Google Scholar] [CrossRef]
- Oroian, M.; Ursachi, F.; Dranca, F. Influence of ultrasonic amplitude, temperature, time and solvent concentration on bioactive compounds extraction from propolis. Ultrason. Sonochem. 2020, 64, 105021. [Google Scholar] [CrossRef]
- Lazar, L.; Talmaciu, A.I.; Volf, I.; Popa, V.I. Kinetic modeling of the ultrasound-assisted extraction of polyphenols from Picea abies bark. Ultrason. Sonochem. 2016, 32, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Pavez, I.; Lozano-Sánchez, J.; Borrás-Linares, I.; Nuñez, H.; Robert, P.; Segura-Carretero, A. Obtaining an extract rich in phenolic compounds from olive pomace by pressurized liquid extraction. Molecules 2019, 24, 3107. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, T.B.; Oliveira, A.; Coelho, M.; Veiga, M.; Costa, E.M.; Silva, S.; Nunes, J.; Vicente, A.A.; Pintado, M. Are olive pomace powders a safe source of bioactives and nutrients? J. Sci. Food Agric. 2021, 101, 1963–1978. [Google Scholar] [CrossRef]
- Manzanares, P.; Ballesteros, I.; Negro, M.J.; González, A.; Oliva, J.M.; Ballesteros, M. Processing of extracted olive oil pomace residue by hydrothermal or dilute acid pretreatment and enzymatic hydrolysis in a biorefinery context. Renew. Energy 2020, 145, 1235–1245. [Google Scholar] [CrossRef]
- Lama-Muñoz, A.; Contreras, M.d.M.; Espínola, F.; Moya, M.; Romero, I.; Castro, E. Content of phenolic compounds and mannitol in olive leaves extracts from six Spanish cultivars: Extraction with the Soxhlet method and pressurized liquids. Food Chem. 2020, 320, 126626. [Google Scholar] [CrossRef] [PubMed]
- Chanioti, S.; Tzia, C. Extraction of phenolic compounds from olive pomace by using natural deep eutectic solvents and innovative extraction techniques. Innov. Food Sci. Energing Technol. 2018, 48, 228–239. [Google Scholar] [CrossRef]
- Ammar, S.; Contreras, M.d.M.; Gargouri, B.; Segura-Carretero, A.; Bouaziz, M. RP-HPLC-DAD-ESI-QTOF-MS based metabolic profiling of the potential Olea europaea by-product “wood” and its comparison with leaf counterpart. Phytochem. Anal. 2017, 28, 217–229. [Google Scholar] [CrossRef]
- Vidal, A.M.; Alcalá, S.; Ocaña, M.T.; De Torres, A.; Espínola, F.; Moya, M. Elaboration of extra-virgin olive oils rich in oleocanthal and oleacein: Pilot plant’s proposal. Eur. Food Res. Technol. 2020, 246, 1459–1468. [Google Scholar] [CrossRef]
- Nenadis, N.; Papoti, V.T.; Tsimidou, M.Z. Bioactive ingredients in olive leaves. In Olives and Olive Oil in Health and Disease Prevention; Preedy, V.R., Watson, R., Eds.; Elvesier: Helsinki, Finland, 2010; pp. 349–356. [Google Scholar]
- Žugčića, T.; Abdelkebirb, R.; Alcantarad, C.; Collado, M.C.; García-Pérez, J.V.; Meléndez-Martínez, A.J.; Jambrak, A.R.; Lorenzo, J.M.; Barba, F.J. From extraction of valuable compounds to health promoting benefits of olive leaves through bioaccessibility, bioavailability and impact on gut microbiota. Trends Food Sci. Technol. 2019, 83, 63–77. [Google Scholar] [CrossRef]
- Gómez-Cruz, I.; Contreras, M.d.M.; Romero, I.; Castro, E. A biorefinery approach to obtain antioxidants, lignin and sugars from exhausted olive pomace. J. Ind. Eng. Chem. 2021, 96, 356–363. [Google Scholar] [CrossRef]
- Raya-Pérez, J.C.; Aguirre-Mancilla, C.L.; Tapia-Aparicio, R.; Ramírez-Pimentel, J.G.; Covarrubias-Prieto, J. Caracterización de las proteínas de reserva y composición mineral de la semilla de capulín (Prunus serotina). Polibotánica 2012, 34, 223–235. [Google Scholar]
- Zhao, S.; Kwok, K.C.; Liang, H. Investigation on ultrasound assisted extraction of saikosaponins from Radix Bupleuri. Sep. Purif. Technol. 2007, 55, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Ying, Z.; Han, X.; Li, J. Ultrasound-assisted extraction of polysaccharides from mulberry leaves. Food Chem. 2011, 127, 1273–1279. [Google Scholar] [CrossRef]
- Machado, A.P.D.F.; Pasquel-Reátegui, J.L.; Barbero, G.F.; Martínez, J. Pressurized liquid extraction of bioactive compounds from blackberry (Rubus fruticosus L.) residues: A comparison with conventional methods. Food Res. Int. 2015, 77, 675–683. [Google Scholar] [CrossRef]
- Altemimi, A.; Watson, D.G.; Choudhary, R.; Dasari, M.R.; Lightfoot, D.A. Ultrasound assisted extraction of phenolic compounds from peaches and pumpkins. PLoS ONE 2016, 11, e0148758. [Google Scholar] [CrossRef] [Green Version]
- Karki, B.; Lamsal, B.P.; Jung, S.; van Leeuwen, J.; Pometto, A.L.; Grewell, D.; Khanal, S.K. Enhancing protein and sugar release from defatted soy flakes using ultrasound technology. J. Food Eng. 2010, 96, 270–278. [Google Scholar] [CrossRef]
- Goulas, V.; Manganaris, G.A. Towards an efficient protocol for the determination of triterpenic acids in olive fruit: A comparative study of drying and extraction methods. Phytochem. Anal. 2012, 23, 444–449. [Google Scholar] [CrossRef] [PubMed]
- Guinda, Á.; Castellano, J.M.; Santos-Lozano, J.M.; Delgado-Hervás, T.; Gutiérrez-Adánez, P.; Rada, M. Determination of major bioactive compounds from olive leaf. LWT-Food Sci. Technol. 2015, 64, 431–438. [Google Scholar] [CrossRef] [Green Version]
- Xie, P.; Huang, L.; Zhang, C.; Deng, Y.; Wang, X.; Cheng, J. Enhanced extraction of hydroxytyrosol, maslinic acid and oleanolic acid from olive pomace: Process parameters, kinetics and thermodynamics, and greenness assessment. Food Chem. 2019, 276, 662–674. [Google Scholar] [CrossRef]
Sample | Yield | PC | TPC | HT | HTC | MAN | MANC | FRAP | ABTS |
---|---|---|---|---|---|---|---|---|---|
Pelletized EOP | |||||||||
P1 1 | 12.82 ± 1.40 c | 0.64 ± 0.04 c | 7.62 ± 0.51 c | 0.17 ± 0.03 c | 2.00 ± 0.31 c | 1.35 ± 0.17 b | 15.88 ± 1.99 c | 9.27 ± 0.01 c | 51.38 ± 1.34 d |
P2 2 | 47.56 ± 0.22 a | 2.83 ± 0.01 b | 33.28 ± 0.15 b | 0.63 ± 0.04 ab | 7.33 ± 0.45 ab | 4.48 ± 0.26 a | 52.65 ± 3.08 a | 38.08 ± 1.91 b | 169.94 ± 2.23 b |
Milled EOP | |||||||||
M1 1 | 39.99 ± 1.81 b | 2.84 ± 0.02 b | 33.44 ± 0.22 b | 0.56 ± 0.01 b | 6.64 ± 0.13 b | 3.85 ± 0.16 ab | 45.23 ± 1.91 ab | 38.89 ± 0.47 b | 101.36 ± 0.08 c |
M2 1 | 46.21 ± 0.77 a | 3.28 ± 0.01 a | 38.60 ± 0.15 a | 0.70 ± 0.02 a | 8.15 ± 0.03 a | 4.38 ± 0.47 a | 51.47 ± 5.57 a | 44.57 ± 0.96 a | 188.15 ± 0.56 a |
Run | A | t | B | ∆T | Yield | PC | TPC | HT | HTC | MAN | MANC | FRAP | ABTS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 50 | 10 | 8.5 | 30 | 36.85 | 2.73 | 32.14 | 0.46 | 5.46 | 3.27 | 38.47 | 39.57 | 103.31 |
2 | 50 | 10 | 8.5 | 33 | 37.09 | 2.97 | 34.95 | 0.51 | 5.99 | 3.48 | 40.94 | 43.61 | 105.69 |
3 | 50 | 18 | 2 | 41 | 38.34 | 0.63 | 31.27 | 0.13 | 6.28 | 0.67 | 33.50 | 38.27 | 119.25 |
4 | 50 | 18 | 15 | 43 | 37.45 | 4.94 | 32.91 | 0.78 | 5.21 | 5.82 | 38.80 | 46.11 | 89.46 |
5 | 50 | 10 | 8.5 | 30 | 38.45 | 2.92 | 34.30 | 0.49 | 5.73 | 3.29 | 38.71 | 42.25 | 106.28 |
6 | 80 | 10 | 15 | 48 | 37.98 | 5.19 | 34.59 | 0.78 | 5.21 | 6.08 | 40.53 | 42.57 | 112.43 |
7 | 80 | 2 | 8.5 | 12 | 22.85 | 1.59 | 18.70 | 0.26 | 3.10 | 1.96 | 23.06 | 20.62 | 101.53 |
8 | 50 | 2 | 2 | 6 | 24.54 | 0.31 | 15.74 | 0.08 | 3.86 | 0.46 | 23.00 | 16.69 | 76.57 |
9 | 80 | 18 | 8.5 | 56 | 52.73 | 3.94 | 46.32 | 0.62 | 7.29 | 4.52 | 53.18 | 57.03 | 152.76 |
10 | 50 | 2 | 15 | 7 | 16.15 | 1.96 | 13.03 | 0.32 | 2.12 | 2.65 | 17.67 | 18.06 | 65.21 |
11 | 20 | 18 | 8.5 | 19 | 25.25 | 1.75 | 20.56 | 0.28 | 3.34 | 2.20 | 25.88 | 28.12 | 115.67 |
12 | 50 | 10 | 8.5 | 32 | 36.75 | 2.73 | 32.09 | 0.45 | 5.30 | 2.95 | 34.71 | 43.80 | 103.78 |
13 | 20 | 2 | 8.5 | 3 | 11.55 | 0.69 | 8.10 | 0.12 | 1.46 | 1.04 | 12.24 | 8.48 | 20.10 |
14 | 50 | 10 | 8.5 | 28 | 28.77 | 2.22 | 26.16 | 0.36 | 4.21 | 2.46 | 28.94 | 34.78 | 135.64 |
15 | 20 | 10 | 15 | 11 | 17.80 | 1.96 | 13.08 | 0.34 | 2.28 | 2.77 | 18.47 | 18.47 | 60.97 |
16 | 80 | 10 | 2 | 45 | 54.58 | 0.98 | 49.06 | 0.17 | 8.32 | 0.95 | 47.50 | 55.98 | 124.56 |
17 | 20 | 10 | 2 | 12 | 23.46 | 0.30 | 15.24 | 0.07 | 3.36 | 0.42 | 21.00 | 19.98 | 86.92 |
Dependent Variable | Equation no | Model | CV (%) | R2 | R2 adj. | F-Value 1 | Lack of Fit (p-Value) |
---|---|---|---|---|---|---|---|
Yield (%) | (2) | 37.29 + 9.78∙A + 9.84∙t − 2.46∙B + 4.04∙A∙t + 1.87∙t∙B − 3.91∙A2 − 5.28∙t2 − 2.88∙B2 | 4.50 | 0.9935 | 0.9849 | 115.08 | 0.1087 |
PC (g GAE/L) | (3) | 2.84 + 0.87∙A + 0.84∙t + 1.48∙B + 0.32∙A∙t + 0.64∙A∙B + 0.67∙t∙B − 0.35∙A2 − 0.50∙t2 − 0.38∙B2 | 6.67 | 0.9962 | 0.9906 | 177.11 | 0.3189 |
TPC (mg GAE/g EOP) | (4) | 32.95 + 9.39∙A + 9.24∙t + 0.058∙B + 3.39∙A∙t − 7.61∙A∙B − 9.42∙t2 | 5.19 | 0.9922 | 0.9854 | 147.65 | 0.5122 |
HT (g/L) | (5) | 0.48 + 0.13∙A + 0.13∙t + 0.22∙B + 0.049∙A∙t + 0.085∙A∙B + 0.10∙t∙B − 0.071∙A2 − 0.084∙t2 − 0.068∙B2 | 5.57 | 0.9969 | 0.9923 | 215.76 | 0.8571 |
HTC (mg/g EOP) | (6) | 5.62 + 1.44∙A + 1.45∙t − 0.63∙B + 0.57∙A∙t − 0.94∙A2 − 0.88∙t2 − 0.37∙B2 | 5.98 | 0.9884 | 0.9769 | 85.44 | 0.7071 |
MAN (g/L) | (7) | 3.09 + 0.84∙A + 0.89∙t + 1.81∙B + 0.35∙A∙t + 1.23∙A∙B + 0.74∙t∙B − 0.67∙t2 | 12.06 | 0.9776 | 0.9552 | 43.66 | 0.9776 |
MANC (mg/g EOP) | (8) | 37.43 + 12.63∙A + 7.63∙t − 1.19∙B + 7.71∙A∙t + 2.66∙t∙B − 4.79∙A2 − 8.42∙t2 | 8.17 | 0.9764 | 0.9528 | 41.40 | 0.5030 |
FRAP (mg TE/g EOP) | (9) | 42.34 + 15.06∙A + 8.50∙t − 3.01∙B − 2.97∙A∙B − 2.97∙t∙B − 8.99∙t2 − 8.12∙B2 | 5.53 | 0.9932 | 0.9852 | 124.69 | 0.5559 |
ABTS (mg TE/g EOP) | (10) | 114.40 + 19.75∙A + 20.52∙t − 9.91∙B − 23.49∙A∙t − 18.03∙t2 | 11.17 | 0.8736 | 0.8104 | 13.83 | 0.6755 |
Response Variable | Pelletized EOP 1 | Milled EOP 1 | ||
---|---|---|---|---|
Predicted Values | Experimental Values | Error (%) | Experimental Values | |
Extraction Yield (%) | 49.96 | 47.12 ± 0.45 a | 6.03 | 43.64 ± 0.04 b |
Phenolic concentration (g GAE/L) | 5.07 | 4.60 ± 0.04 a | 10.21 | 4.42 ± 0.06 b |
Total phenolic compounds (mg GAE/g dry EOP) | 43.04 | 40.04 ± 0.33 a | 7.50 | 38.44 ± 0.53 b |
Hydroxytyrosol concentration (g/L) | 0.78 | 0.74 ± 0.03 a | 5.40 | 0.71 ± 0.01 a |
Hydroxytyrosol content (mg/g dry EOP) | 6.77 | 6.42 ± 0.26 a | 5.45 | 6.19 ± 0.10 a |
Mannitol concentration (g/L) | 6.13 | 5.86 ± 0.2 a | 4.60 | 5.44 ± 0.16 b |
Mannitol content (mg/g dry EOP) | 52.39 | 50.92 ± 1.73 a | 2.88 | 47.34 ± 1.37 b |
FRAP (mg TE/g dry EOP) | 53.25 | 50.95 ± 2.56 a | 4.50 | 49.92 ± 1.30 a |
ABTS (mg TE/g dry EOP) | 105.80 | 100.64 ± 1.35 a | 5.13 | 95.59 ± 1.31 b |
Component | Raw (Pelletized) EOP 1 | Extracted EOP Solid | |
---|---|---|---|
Pelletized | Milled | ||
Chemical characterization | % | % | % |
Extractives | 41.78 ± 1.85 | 20.98 ± 1.07 | 21.45 ± 0.26 |
Aqueous extractives | 37.94 ± 1.89 | 14.89 ± 0.74 | 14.65 ± 0.40 |
Ethanol extractives | 3.83 ± 0.16 | 6.09 ± 0.19 | 6.79 ± 0.66 |
Cellulose | 9.67 ± 0.84 | 14.33 ± 0.64 | 15.71 ± 1.63 |
Hemicellulose | 10.94 ± 0.53 | 15.16 ± 0.18 | 17.31 ± 1.51 |
Xylan | 9.79 ± 0.53 | 14.70 ± 0.15 | 16.75 ± 1.48 |
Galactan | 0.31 ± 0.31 | 1.24 ± 0.09 | 1.50 ± 0.31 |
Arabinan | 1.82 ± 0.03 | 1.16 ± 0.03 | 1.27 ± 0.06 |
Mannan | 0.42 ± 0.02 | - | - |
Acetyl groups | 1.51 ± 0.17 | 1.30 ± 0.09 | 1.64 ± 0.19 |
Lignin | 21.82 ± 0.89 | 32.32 ± 0.49 | 32.34 ± 0.73 |
Acid insoluble lignin | 20.29 ± 0.68 | 31.54 ± 0.48 | 31.08 ± 0.72 |
Acid soluble lignin | 1.54 ± 0.47 | 0.78 ± 0.07 | 1.26 ± 0.01 |
Ash | 6.41 ± 0.21 | 1.62 ± 0.04 | 1.68 ± 0.12 |
Elemental analysis | % | % | % |
Carbon | 42.42 ± 0.24 | 49.52 ± 0.39 | 49.38 ± 0.37 |
Hydrogen | 5.55 ± 0.08 | 6.21 ± 0.04 | 6.16 ± 0.04 |
Nitrogen | 1.31 ± 0.06 | 1.57 ± 0.07 | 1.43 ± 0.07 |
Sulfur | ND | 2.03 ± 0.23 | 2.27 ± 0.51 |
Run | A | t | B | Extraction Yield (%) | Maslinic Acid (g/L) | Oleanolic Acid (g/L) |
---|---|---|---|---|---|---|
1 | 50 | 10 | 8.5 | 6.15 ± 0.06 | 0.77 ± 0.01 | 0.29 ± 0.00 |
2 | 50 | 10 | 8.5 | 5.65 ± 0.34 | 0.72 ± 0.03 | 0.26 ± 0.01 |
3 | 50 | 18 | 2 | 5.81 ± 0.63 | 0.70 ± 0.07 | 0.26 ± 0.03 |
4 | 50 | 18 | 15 | 5.49 ± 0.03 | 0.69 ± 0.01 | 0.26 ± 0.01 |
5 | 50 | 10 | 8.5 | 6.46 ± 0.15 | 0.81 ± 0.02 | 0.30 ± 0.01 |
6 | 80 | 10 | 15 | 5.80 ± 0.04 | 0.66 ± 0.01 | 0.24 ± 0.00 |
7 | 80 | 2 | 8.5 | 7.06 ± 0.23 | 0.64 ± 0.01 | 0.23 ± 0.01 |
8 | 50 | 2 | 2 | 6.13 ± 0.42 | 0.68 ± 0.05 | 0.25 ± 0.02 |
9 | 80 | 18 | 8.5 | 6.20 ± 0.34 | 0.81 ± 0.07 | 0.30 ± 0.02 |
10 | 50 | 2 | 15 | 8.18 ± 0.71 | 0.63 ± 0.03 | 0.23 ± 0.01 |
11 | 20 | 18 | 8.5 | 7.85 ± 0.73 | 0.79 ± 0.04 | 0.30 ± 0.01 |
12 | 50 | 10 | 8.5 | 8.62 ± 0.18 | 0.87 ± 0.01 | 0.33 ± 0.00 |
13 | 20 | 2 | 8.5 | 9.18 ± 0.66 | 0.62 ± 0.02 | 0.23 ± 0.01 |
14 | 50 | 10 | 8.5 | 8.67 ± 0.70 | 0.80 ± 0.07 | 0.30 ± 0.03 |
15 | 20 | 10 | 15 | 8.30 ± 0.04 | 0.67 ± 0.00 | 0.27 ± 0.00 |
16 | 80 | 10 | 2 | 5.64 ± 0.20 | 0.90 ± 0.02 | 0.33 ± 0.01 |
17 | 20 | 10 | 2 | 7.28 ± 0.18 | 0.72 ± 0.02 | 0.27 ± 0.00 |
Components | Raw EOP | Extracted Solid EOP | |
---|---|---|---|
Pelletized | Milled | ||
Extraction Yield (%) | 7.56 ± 0.78 a | 7.02 ± 0.18 a | 7.56 ± 0.12 a |
Maslinic acid concentration (g/L) | 0.57 ± 0.00 b | 0.84 ± 0.04 a | 0.89 ± 0.01 a |
Oleanolic acid concentration (g/L) | 0.21 ± 0.00 b | 0.32 ± 0.02 a | 0.34 ± 0.00 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Cruz, I.; Contreras, M.d.M.; Romero, I.; Castro, E. Sequential Extraction of Hydroxytyrosol, Mannitol and Triterpenic Acids Using a Green Optimized Procedure Based on Ultrasound. Antioxidants 2021, 10, 1781. https://doi.org/10.3390/antiox10111781
Gómez-Cruz I, Contreras MdM, Romero I, Castro E. Sequential Extraction of Hydroxytyrosol, Mannitol and Triterpenic Acids Using a Green Optimized Procedure Based on Ultrasound. Antioxidants. 2021; 10(11):1781. https://doi.org/10.3390/antiox10111781
Chicago/Turabian StyleGómez-Cruz, Irene, María del Mar Contreras, Inmaculada Romero, and Eulogio Castro. 2021. "Sequential Extraction of Hydroxytyrosol, Mannitol and Triterpenic Acids Using a Green Optimized Procedure Based on Ultrasound" Antioxidants 10, no. 11: 1781. https://doi.org/10.3390/antiox10111781
APA StyleGómez-Cruz, I., Contreras, M. d. M., Romero, I., & Castro, E. (2021). Sequential Extraction of Hydroxytyrosol, Mannitol and Triterpenic Acids Using a Green Optimized Procedure Based on Ultrasound. Antioxidants, 10(11), 1781. https://doi.org/10.3390/antiox10111781