Photoprotection and Photostability of a New Lignin-Gelatin-Baccharis antioquensis-Based Hybrid Biomaterial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instrumentation
2.2. Extraction Procedure
2.3. Antiradical Screening Assays
2.3.1. Total Phenolic Content
2.3.2. Antiradical Activity-DPPH Assay
2.4. Hybrid Material: Synthesis and Characterization
2.4.1. Preparation of Gelatin and Lignin Nanoparticles
2.4.2. Characterization of Gelatin and Lignin Nanoparticles
2.4.3. Loading Capacity (%LC) and Entrapment Efficiency (%EE) of Hybrid NPs
2.5. Preparation of Topical Emulsion to Be Used in the Evaluation of the NPs’ Photostability and Photoprotection
2.5.1. Preparation of Topical Emulsion
2.5.2. In Vitro Determination of Photoprotective Capacity
2.5.3. Photostability of Sunscreen Formulations
2.6. Statistical Analysis
3. Results and Discussion
3.1. Extraction Yield, TPC, and Antiradical Activity
3.2. Characterization of Lignin-Gelatin-Extract Nanoparticles
3.3. Photoprotective Capacity and Photostability of Hybrid NPs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gaspar, L.R.; Maia Campos PMBG. Photostability and efficacy studies of topical formulations containing UV-filters combination and vitamins A, C and E. Int. J. Pharm. 2007, 343, 181–189. [Google Scholar] [CrossRef]
- Wong, T.; Orton, D. Sunscreen allergy and its investigation. Clin. Dermatol. 2011, 29, 306–310. [Google Scholar] [CrossRef] [PubMed]
- Morabito, K.; Shapley, N.C.; Steeley, K.G.; Tripathi, A. Review of sunscreen and the emergence of non-conventional absorbers and their applications in ultraviolet protection. Int. J. Cosmet. Sci. 2011, 33, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.J.; Bennett, S.; Keller, A.A.; Pease, S.; Lenihan, H.S. TiO2 Nanoparticles Are Phototoxic to Marine Phytoplankton. PLoS ONE 2012, 7, e30321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, L.; Hamzeh, M.; Dodard, S.; Zhao, Y.H.; Sunahara, G.I. Effects of TiO2 nanoparticles on ROS production and growth inhibition using freshwater green algae pre-exposed to UV irradiation. Environ. Toxicol. Pharmacol. 2015, 39, 1074–1080. [Google Scholar] [CrossRef]
- Yamada, M.; Mohammed, Y.; Prow, T.W. Advances and controversies in studying sunscreen delivery and toxicity. Adv. Drug Deliv. Rev. 2020, 153, 72–86. [Google Scholar] [CrossRef]
- He, H.; Li, A.; Li, S.; Tang, J.; Li, L.; Xiong, L. Natural components in sunscreens: Topical formulations with sun protection factor (SPF). Biomed. Pharmacother. 2021, 134, 111161. [Google Scholar] [CrossRef]
- Xu, C.; Zeng, X.; Yang, Z.; Ji, H. Sunscreen enhancement of octyl methoxycinnamate microcapsules by using two biopolymers as wall materials. Polymers 2021, 13, 866. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Sherje, A.P. Development of resveratrol and green tea sunscreen formulation for combined photoprotective and antioxidant properties. J. Drug Deliv. Sci. Technol. 2020, 60, 102000. [Google Scholar] [CrossRef]
- Detsi, A.; Kavetsou, E.; Kostopoulou, I.; Pitterou, I.; Pontillo, A.R.N.; Tzani, A.; Christodoulou, P.; Siliachli, A.; Zoumpoulakis, P. Nanosystems for the encapsulation of natural products: The case of chitosan biopolymer as a matrix. Pharmaceutics 2020, 12, 669. [Google Scholar] [CrossRef]
- Díaz-Piedraita, S.; Cuatrecasas, J. Nueva especie de Baccharis (Asteraceae) de Colombia. Rev. Acad. Colomb. Ciencias Exactas Fiísica Nat. 1991, 18, 127–129. [Google Scholar]
- Mejía-Giraldo, J.C.; Winkler, R.; Gallardo, C.; Sánchez-Zapata, A.M.A.M.; Puertas-Mejía, M.Á. Photoprotective Potential of Baccharis antioquensis (Asteraceae) as Natural Sunscreen. Photochem. Photobiol. 2016, 92, 742–752. [Google Scholar] [CrossRef] [PubMed]
- Young, S.; Wong, M.; Tabata, Y.; Mikos, A.G. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. Proc. J. Control. Release 2005, 109, 256–274. [Google Scholar] [CrossRef]
- Naomi, R.; Bahari, H.; Ridzuan, P.M.; Othman, F. Natural-based biomaterial for skin wound healing (Gelatin vs. collagen): Expert review. Polymers 2021, 13, 2319. [Google Scholar] [CrossRef]
- Bello, A.B.; Kim, D.; Kim, D.; Park, H.; Lee, S.H. Engineering and functionalization of gelatin biomaterials: From cell culture to medical applications. Tissue Eng. Part B Rev. 2020, 26, 164–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Mascaraque, L.G.; Soler, C.; Lopez-Rubio, A. Stability and bioaccessibility of EGCG within edible micro-hydrogels. Chitosan vs. gelatin, a comparative study. Food Hydrocoll. 2016, 61, 128–138. [Google Scholar] [CrossRef] [Green Version]
- Cesari, L.; Mutelet, F.; Canabady-Rochelle, L. Antioxidant properties of phenolic surrogates of lignin depolymerisation. Ind. Crops Prod. 2019, 129, 480–487. [Google Scholar] [CrossRef]
- Qian, Y.; Qiu, X.; Zhu, S. Lignin: A nature-inspired sun blocker for broadspectrum Sunscreens. Green Chem. 2015, 17, 320–324. [Google Scholar] [CrossRef]
- The United States Pharmacopeia Convention USP (467) Residual Solvents 2019, 1–18. Available online: https://www.uspnf.com/sites/default/files/usp_pdf/EN/USPNF/revisions/gc-467-residual-solvents-ira-20190927.pdf (accessed on 15 October 2021).
- Hudz, N.; Yezerska, O.; Shanaida, M.; Sedláčková, V.H.; Wieczorek, P.P. Application of the Folin-Ciocalteu method to the evaluation of Salvia sclarea extracts. Pharmacia 2019, 66, 209–215. [Google Scholar] [CrossRef]
- Lim, S.T.; Martin, G.P.; Berry, D.J.; Brown, M.B. Preparation and evaluation of the in vitro drug release properties and mucoadhesion of novel microspheres of hyaluronic acid and chitosan. J. Control. Release 2000, 66, 281–292. [Google Scholar] [CrossRef]
- Patel, M.; Jain, S.; Yadav, A.; Gogna, D.; Agrawal, G. Preparation and characterization of oxybenzone-loaded gelatin microspheres for enhancement of sunscreening efficacy. Drug Deliv. 2006, 13, 323–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Oliveira, C.A.; Peres, D.D.; Graziola, F.; Chacra, N.A.B.; de Araújo, G.L.B.; Flórido, A.C.; Mota, J.; Rosado, C.; Velasco, M.V.R.; Rodrigues, L.M.; et al. Cutaneous biocompatible rutin-loaded gelatin-based nanoparticles increase the SPF of the association of UVA and UVB filters. Eur. J. Pharm. Sci. 2016, 81, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Jarzycka, A.; Lewińska, A.; Gancarz, R.; Wilk, K.A. Assessment of extracts of Helichrysum arenarium, Crataegus monogyna, Sambucus nigra in photoprotective UVA and UVB; photostability in cosmetic emulsions. J. Photochem. Photobiol. B 2013, 128, 50–57. [Google Scholar] [CrossRef]
- Moyal, D.; Alard, V.; Bertin, C.; Boyer, F.; Brown, M.W.; Kolbe, L.; Matts, P.; Pissavini, M. The revised COLIPA in vitro UVA method. Int. J. Cosmet. Sci. 2013, 35, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Padera, F. Sunscreen Testing According to COLIPA 2011/FDA Final Rule 2011 Using UV/Vis LAMBDA Spectrophotometers; PerkinElmer, Inc.: Waltham, MA, USA, 2011; pp. 1–9. [Google Scholar]
- Choquenet, B.; Couteau, C.; Paparis, E.; Coiffard, L.J.M. Quercetin and rutin as potential sunscreen agents: Determination of efficacy by an in vitro method. J. Nat. Prod. 2008, 71, 1117–1118. [Google Scholar] [CrossRef]
- Hojerová, J.; Medovcíková, A.; Mikula, M. Photoprotective efficacy and photostability of fifteen sunscreen products having the same label SPF subjected to natural sunlight. Int. J. Pharm. 2011, 408, 27–38. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2011; Volume 1. [Google Scholar] [CrossRef] [Green Version]
- Schuch, A.P.; Moreno, N.C.; Schuch, N.J.; Menck, C.F.M.; Garcia, C.C.M. Sunlight damage to cellular DNA: Focus on oxidatively generated lesions. Free Radic. Biol. Med. 2017, 107, 110–124. [Google Scholar] [CrossRef]
- de Jager, T.L.; Cockrell, A.E.; Du Plessis, S.S. Ultraviolet Light Induced Generation of Reactive Oxygen Species. Adv. Exp. Med. Biol. 2017, 996, 15–23. [Google Scholar] [CrossRef]
- Cefali, L.C.; Ataide, J.A.; Fernandes, A.R.; de Oliveira Sousa, I.M.; da Silva Gonçalves, F.C.; Eberlin, S.; Dávila, J.L.; Jozala, A.F.; Chaud, M.V.; Sanchez-Lopez, E.; et al. Flavonoid-Enriched Plant-Extract-Loaded Emulsion: A Novel Phytocosmetic Sunscreen Formulation with Antioxidant Properties. Antioxidants 2019, 8, 443. [Google Scholar] [CrossRef] [Green Version]
- Cefali, L.C.; Ataide, J.A.; de Oliveria Sousa, I.M.; Figueiredo, M.C.; Ruiz, A.L.T.G.; Foglio, M.A.; Mazzola, P.G. In vitro solar protection factor, antioxidant activity, and stability of a topical formulation containing Benitaka grape (Vitis vinifera L.) peel extract. Nat. Prod. Res. 2020, 34, 2677–2682. [Google Scholar] [CrossRef]
- Cefali, L.C.; Ataide, J.A.; Fernandes, A.R.; Sanchez-Lopez, E.; de Oliveira Sousa, I.M.; Figueiredo, M.C.; Ruiz, A.L.T.G.; Foglio, M.A.; Mazzola, P.G.; Souto, E.B. Evaluation of in vitro solar protection factor (Spf), antioxidant activity, and cell viability of mixed vegetable extracts from dirmophandra mollis benth, Ginkgo biloba L., Ruta graveolens L., and Vitis vinífera L. Plants 2019, 8, 453. [Google Scholar] [CrossRef] [Green Version]
- Jabar, A.; Madni, A.; Bashir, S.; Tahir, N.; Usman, F.; Rahim, M.A.; Jan, N.; Shah, H.; Khan, A.; Khan, S. Statistically optimized pentazocine loaded microsphere for the sustained delivery application: Formulation and characterization. PLoS ONE 2021, 16, e0250876. [Google Scholar] [CrossRef] [PubMed]
- Gaur, P.K.; Mishra, S.; Bajpai, M. Formulation and evaluation of controlled-release of telmisartan microspheres: In vitro/in vivo study. J. Food Drug Anal. 2014, 22, 542–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, L.; Shan, J.; Ju, Y.; Aikens, P.; Prud’homme, R.K. Nanoparticles as delivery vehicles for sunscreen agents. Colloids Surf. A Physicochem. Eng. Asp. 2012, 396, 122–129. [Google Scholar] [CrossRef]
- Mehnert, W.; Mäder, K. Solid lipid nanoparticles: Production, characterization and applications. Adv. Drug Deliv. Rev. 2012, 64, 83–101. [Google Scholar] [CrossRef]
- Song, R.; Murphy, M.; Li, C.; Ting, K.; Soo, C.; Zheng, Z. Current development of biodegradable polymeric materials for biomedical applications. Drug Des. Dev. Ther. 2018, 12, 3117–3145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Widsten, P.; Tamminen, T.; Liitiä, T. Natural Sunscreens Based on Nanoparticles of Modified Kraft Lignin (CatLignin). ACS Omega 2020, 5, 13438–13446. [Google Scholar] [CrossRef]
- Europe Cosmetics. In Vitro Method for the Determination of the UVA Protection Factor and “Critical Wavelength” Values of Sunscreen Products; COLIPA: Auderghem, Belgium, 2011. [Google Scholar]
Composition | Gelatin | Lignin | Extract |
---|---|---|---|
Gelatin-Extract (G-E) | 1 | - | 1 |
Lignin-Extract (L-E) | - | 1 | 1 |
Gelatin-Lignin-Extract (G-L-E) | 0.5 | 0.5 | 1 |
Gelatin-Extract (G-E) | 1 | - | 0.5 |
Lignin-Extract (L-E) | - | 1 | 0.5 |
Gelatin-Lignin-Extract (G-L-E) | 0.5 | 0.5 | 0.5 |
Components | % Formulation (w/w) |
---|---|
Phase A (oil phase): | |
Lanolin | 4.5 |
Cetyl alcohol | 2.0 |
Glyceryl monostearate | 3.0 |
Stearic acid | 2.0 |
Nanoparticles | X = amount of NPs equivalent to 10% (w/w) of dry extract (See Table 3) |
Phase B (aqueous phase): | |
Sorbitol | 5.0 |
Triethanolamine | 1.0 |
Water | Sufficient quantity to 100%. |
Formulation | Composition (Ratio) | % (w/w) * |
---|---|---|
F1 | B. antioquensis extract | 10.0 † |
F2 | G-E (1:1) | 23.1 |
F3 | L-E (1:1) | 23.1 |
F4 | G-L-E (0.5:0.5:1) | 22.5 |
F5 | G-E (1:0.5) | 37.0 |
F6 | L-E (1:0.5) | 29.5 |
F7 | G-L-E (0.5:0.5:0.5) | 33.1 |
Negative control | Active free emulsion | - |
Negative control | Emulsion + Lignin (5% w/w) | - |
Positive control | Commercial sunscreen (CSS) SPF 25 | - |
NPs | Mean Size, nm | PdI | ς Potential, mV | Yield * % | Loading Capacity% † | Entrapment Efficiency% ‡ |
---|---|---|---|---|---|---|
G-E (1:1) | 107 ± 38 | 0.653 | −39.3 ± 2.7 | 60.9 ± 2.0 | 43.2 ± 2.3 | 52.6 ± 0.2 |
L-E (1:1) | 99 ± 32 | 0.416 | −45.5 ± 3.2 | 46.9 ± 2.1 | 43.2 ± 1.5 | 40.5 ± 0.3 |
G-L-E (0.5:0.5:1) | 109 ± 39 | 0.788 | −50.3 ± 1.2 | 21.8 ± 3.7 | 44.5 ± 1.4 | 19.4 ± 0.6 |
G-E (1:0.5) | 253 ± 39 | 0.503 | −38.6 ± 0.5 | 78.4 ± 3.2 | 27.0 ± 0.9 | 60.3 ± 7.6 |
L-E (1:0.5) | 134 ± 22 | 0.548 | −62.4 ± 0.9 | 72.0 ± 1.1 | 33.9 ± 1.0 | 65.2 ± 5.4 |
G-L-E (0.5:0.5:0.5) | 167 ± 47 | 0.592 | −54.2 ± 0.7 | 69.9 ± 1.4 | 30.2 ± 1.3 | 63.1 ± 3.6 |
SPF † | UVAPF ‡ | λc | UVA/UVB | |||
---|---|---|---|---|---|---|
Active free emulsion | 0.93 ± 0.01 | 0 | - | - | ||
Emulsion + lignin 5% | 3.33 ± 0.31 | 2 | 376 | 0.53 | ||
CSS * SPF 25 | 26.18 ± 1.11 | 3.0 ± 0.0 | 356 | 0.43 | ||
Time (min) | 0 | 30 | 60 | 90 | 120 | |
Emulsion + B. antioquensis extract 10%; F1 | SPF | 14.8 ± 2.5 a | 8.0 ± 0.7 | 7.0 ± 0.8 | 6.0 ± 0.8 | 6.0 ± 0.7 |
UVAPF | 7.0 ± 0.5 a | - | - | - | 4.0 ± 0.5 | |
λc | 378 | 379 | 379 | 380 | 380 | |
UVA/UVB | 0.78 | 0.80 | 0.80 | 0.81 | 0.81 | |
% SPFeff | 100.0% | 54.1% | 47.3% | 40.5% | 40.5% | |
%UVAPFeff | 100.0% | - | - | - | 57.1% | |
Emulsion + G-E NP (1:1); F2 | SPF | 17.7 ± 2.2 | 16.1 ± 2.8 | 15.6 ± 2.4 | 15.0 ± 2.3 | 14.2 ± 2.4 |
UVAPF | 8.0 ± 0.6 b | - | - | - | 7.3 ± 0.4 | |
λc | 379 | 381 | 381 | 382 | 381 | |
UVA/UVB | 0.79 | 0.81 | 0.80 | 0.80 | 0.79 | |
% SPFeff | 100.0% | 91.0% | 88.1% | 84.7% | 80.2% | |
%UVAPFeff | 100.0% | - | - | - | 91.3% | |
Emulsion + L-E NP (1:1); F3 | SPF | 22.6 ± 2.5 | 21.8 ± 0.5 | 21.1 ± 0.3 | 20.8 ± 0.3 | 19.9 ± 4.7 |
UVAPF | 8.7 ± 0.6 b | - | - | - | 8.3 ± 0.4 | |
λc | 382 | 383 | 383 | 383 | 383 | |
UVA/UVB | 0.72 | 0.73 | 0.72 | 0.72 | 0.72 | |
% SPFeff | 100.0% | 96.5% | 93.4% | 92.0% | 88.1% | |
%UVAPFeff | 100.0% | - | - | - | 95.4% | |
Emulsion + G-L-E NP (0.5:0.5:1); F4 | SPF | 13.9 ± 3.7 a | 13.7 ± 1.1 | 13.5 ± 1.0 | 13.4 ± 1.1 | 13.2 ± 2.7 |
UVAPF | 6.0 ± 0.3 c | - | - | - | 6.0 ± 0.4 | |
λc | 382 | 383 | 383 | 383 | 383 | |
UVA/UVB | 0.78 | 0.79 | 0.79 | 0.78 | 0.77 | |
% SPFeff | 100.0% | 98.6% | 97.1% | 96.4% | 95.0% | |
%UVAPFeff | 100.0% | - | - | - | 100.0% | |
Emulsion + G-E NP (1:0.5); F5 | SPF | 9.4 ± 1.4 b | 8.8 ± 1.1 | 8.7 ± 1.0 | 8.6 ± 1.1 | 8.5 ± 1.4 |
UVAPF | 6.0 ± 0.3 c | - | - | - | 5.7 ± 0.3 | |
λc | 377 | 379 | 379 | 379 | 380 | |
UVA/UVB | 0.76 | 0.76 | 0.76 | 0.76 | 0.76 | |
% SPFeff | 100.0% | 93.6% | 92.6% | 91.5% | 90.4% | |
%UVAPFeff | 100.0% | - | - | - | 95.0% | |
Emulsion + L-E NP (1:0.5); F6 | SPF | 14.2 ± 1.7 a | 13.0 ± 1.8 | 12.4 ± 1.9 | 12.3 ± 1.8 | 12.3 ± 2.0 |
UVAPF | 7.3 ± 0.6 a | - | - | - | 6.7 ± 0.5 | |
λc | 383 | 383 | 383 | 383 | 384 | |
UVA/UVB | 0.71 | 0.72 | 0.72 | 0.72 | 0.72 | |
% SPFeff | 100.0% | 91.5% | 87.3% | 86.6% | 86.6% | |
%UVAPFeff | 100.0% | - | - | - | 91.8% | |
Emulsion + G-L-E NP (0.5:0.5:0.5); F7 | SPF | 10.1 ± 0.5 b | 10.0 ± 0.4 | 10.0 ± 0.4 | 10.0 ± 0.5 | 10.0 ± 0.1 |
UVAPF | 5.0 ± 0.6 | - | - | - | 5.0 ± 0.6 | |
λc | 379 | 380 | 380 | 380 | 381 | |
UVA/UVB | 0.66 | 0.66 | 0.66 | 0.66 | 0.66 | |
% SPFeff | 100.0% | 99.0% | 99.0% | 99.0% | 99.0% | |
%UVAPFeff | 100.0% | - | - | - | 100.0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mejía-Giraldo, J.C.; Scaiano, J.C.; Gallardo-Cabrera, C.; Puertas-Mejía, M.A. Photoprotection and Photostability of a New Lignin-Gelatin-Baccharis antioquensis-Based Hybrid Biomaterial. Antioxidants 2021, 10, 1904. https://doi.org/10.3390/antiox10121904
Mejía-Giraldo JC, Scaiano JC, Gallardo-Cabrera C, Puertas-Mejía MA. Photoprotection and Photostability of a New Lignin-Gelatin-Baccharis antioquensis-Based Hybrid Biomaterial. Antioxidants. 2021; 10(12):1904. https://doi.org/10.3390/antiox10121904
Chicago/Turabian StyleMejía-Giraldo, Juan C., Juan C. Scaiano, Cecilia Gallardo-Cabrera, and Miguel A. Puertas-Mejía. 2021. "Photoprotection and Photostability of a New Lignin-Gelatin-Baccharis antioquensis-Based Hybrid Biomaterial" Antioxidants 10, no. 12: 1904. https://doi.org/10.3390/antiox10121904
APA StyleMejía-Giraldo, J. C., Scaiano, J. C., Gallardo-Cabrera, C., & Puertas-Mejía, M. A. (2021). Photoprotection and Photostability of a New Lignin-Gelatin-Baccharis antioquensis-Based Hybrid Biomaterial. Antioxidants, 10(12), 1904. https://doi.org/10.3390/antiox10121904