Oxidative Stress in Dairy Cows: Insights into the Mechanistic Mode of Actions and Mitigating Strategies
Abstract
:1. Introduction
2. Microbial Activities as Driver of Degenerating Oxidative Stress Diseases and Mechanisms of Action
2.1. Mastitis
2.2. Metritis
3. Molecular Mechanism of Oxidative Stress and Feeding Management Factors Associated with Body Condition Score (BCS)
3.1. High Concentrate Feed Effect on Oxidative Stress and Molecular Pathways
3.2. Body Condition Score Status Effect on Oxidative Stress
Animals and Status | Treatment | Target | Gene Expression MAPK Pathway and Antioxidant Genes, Pro and Anti-Inflammatory Cytokines, Chemokines, Glucose and Lipid Metabolism, Protein Expression | References |
---|---|---|---|---|
Mid-lactation Cows: | LC diet with F:C of 6:4 HC diet with F:C of 4:6 | Mammary epithelial tissue | SOD1, SOD2, GPx1 and GP13 genes expression decrease in HC diet group, no difference on SOD3 pJNK and pp38 expression was increased in LC ERK and pERK were significantly higher in HC diet ERK, p38 and JNK increased in HC diet group No difference in JNK and p38 pNrf2 and Nrf2 protein indicated a reduction in HC diet | [72] |
Mid-lactation Cows: | LG diet with F:C of 6:4 HG diet with F:C of 4:6 | Liver |
| [73] |
Mid-lactating Holstein cows: | LC diet with 40% grain, control HC diet with 60% grain | Mammary gland |
| [98] |
Lactating Holstein dairy cows | LC diet with F:C of 6:4 HC diet with F:C of 4:6 | Liver |
| [68] |
Mid-lactating dairy cows | HC diet NFC:NDF; 6:4 LC diet NFC:NDF of 4:6 | Uterus |
| [78] |
Mid-lactating Holstein cows: (2 treatment groups) | LC diet with F:C 6:4 HC diet with F:C 4:6 | Mammary gland |
| [99] |
Mid-lactating Holstein cows: (2 treatment groups) | LC diet with F:C 6:4 HC diet with F:C 4:6 | Mammary gland tissue |
| [98] |
Mid-lactating cows: | LC diet with F:C 6:4 HC diet with F:C 4:6 | Mammary gland |
| [100] |
Status | Treatment | Milk Yield, Milk FA and Secretion | Blood Metabolites/Hormones | Oxidative and Anti-Oxidative Biomarkers | References |
---|---|---|---|---|---|
Transition cows selected four weeks before calving | High BCS ≥ 3.50 Normal BCS ≤ 3.25 |
|
|
| [101] |
transition cows | Medium BCS 3.25–3.75 high BCS ≥ 4 (pre-calving) |
|
|
| [102] |
transition cows: (prepartum) | Low BCS ≤ 2.5 Medium: 2.75 ≤ BCS ≤ 3.5) high (BCS ≥ 3.75) |
|
| NA | [103] |
Lactating cows | Low BCS BCS ≤ 2.75 Medium BCS 3.0–3.5High BCS BCS ≥ 3.75 | NA |
|
| [104] |
transition cows | Cows with low BCS < 2.5 Cows with mid BCS 2.6 to 3.0 Cows with high BCS > 3.0 | NA |
|
| [96] |
4. The Role of Specific Feed Additives Alleviating Oxidative Stress
4.1. Rumen Protected Amino-Acids: Methionine and Lysine, L-arginine, and N-carbamylglutamate
4.2. Vitamins, Trace Elements and Plant Extracts
5. Antioxidant Mechanisms of Action to Regulate Oxidative Stress
5.1. Nrf2-ARE Signal Transduction Pathway
5.2. NF-κB Signal Transduction Pathway
5.3. MAPK Signal Transduction Pathway
6. Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Benov, L. How Superoxide Radical Damages the Cell. Protoplasma 2001, 217, 33–36. [Google Scholar] [CrossRef]
- Halliwell, B. Superoxide-dependant formation of hydroxyl radicals in the presence of iron chelates: Is it a mechanism for hydroxyl radical production in biological systems? FEBS Lett. 1978, 92, 321–326. [Google Scholar] [CrossRef] [Green Version]
- McCord, J.M.; Day, E.D. Superoxide-dependant production of hydroxyl radical catalyzed by iron-EDTA complex. FEBS Lett. 1978, 86, 139–142. [Google Scholar] [CrossRef] [Green Version]
- Rendra, E.; Riabov, V.; Mossel, D.M.; Sevastyanova, T.; Harmsen, M.C.; Kzhyshkowska, J. Reactive Oxygen Species (ROS) in Macrophage Activation and Function in Diabetes. Immunobiology 2019, 2242, 242–253. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y. Oxidant-Mediated Protein Amino Acid Conversion. Antioxidants 2019, 82, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinelli, I.; Tomassoni, D.; Roy, P.; Di Cesare Mannelli, L.; Amenta, F.; Tayebati, S.K. Antioxidant Properties of Alpha-Lipoic (Thioctic) Acid Treatment on Renal and Heart Parenchyma in a Rat Model of Hypertension. Antioxidants 2021, 107, 1006. [Google Scholar] [CrossRef] [PubMed]
- Orrenius, S. Oxidative Stress Studied in Intact Mammalian Cells. Philos. Trans. R. Soc. B Biol. Sci. 1985, 3111152, 673–677. [Google Scholar] [CrossRef]
- Riley, P.A. Free Radicals in Biology: Oxidative Stress and the Effects of Ionizing Radiation. Int. J. Radiat. Biol. 1994, 651, 27–33. [Google Scholar] [CrossRef]
- Behairy, A.; El-Sharkawy, N.I.; Saber, T.M.; Soliman, M.M.; Metwally, M.M.M.; Abd El-Rahman, G.I.; Abd-Elhakim, Y.M.; El Deib, M.M. The Modulatory Role of Vitamin C in Boldenone Undecylenate Induced Testicular Oxidative Damage and Androgen Receptor Dysregulation in Adult Male Rats. Antioxidants 2020, 911, 1053. [Google Scholar] [CrossRef]
- Nemec Svete, A.; Vovk, T.; Bohar Topolovec, M.; Kruljc, P. Effects of Vitamin E and Coenzyme Q10 Supplementation on Oxidative Stress Parameters in Untrained Leisure Horses Subjected to Acute Moderate Exercise. Antioxidants 2021, 106, 908. [Google Scholar] [CrossRef]
- Hansen, J.M.; Go, Y.-M.; Jones, D.P. Nuclear and Mitochondrial Compartmentation of Oxidative Stress and Redox Signaling. Annu. Rev. Pharm. Toxicol. 2006, 461, 215–234. [Google Scholar] [CrossRef] [PubMed]
- Jové, M.; Mota-Martorell, N.; Pradas, I.; Martin-Gari, M.; Ayala, V.; Pamplona, R. The Advanced Lipoxidation End-Product Malondialdehyde-Lysine in Aging and Longevity. Antioxidants 2020, 9, 1132. [Google Scholar] [CrossRef]
- Awawdeh, M.S. Rumen-Protected Methionine and Lysine: Effects on Milk Production and Plasma Amino Acids of Dairy Cows with Reference to Metabolisable Protein Status. J. Dairy Res. 2016, 832, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Martinov, M.V.; Vitvitsky, V.M.; Banerjee, R.; Ataullakhanov., F.I. The logic of the hepatic methionine metabolic cycle. Biochim. Biophys. Acta - Proteins Proteom. 2010, 1804, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Seegers, H.; Fourichon, C.; Beaudeau, F. Production Effects Related to Mastitis and Mastitis Economics in Dairy Cattle Herds. Vet. Res. 2003, 345, 475–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halasa, T.; Huijps, K.; Østerås, O.; Hogeveen, H. Economic Effects of Bovine Mastitis and Mastitis Management: A Review. Vet. Q. 2007, 291, 18–31. [Google Scholar] [CrossRef] [PubMed]
- Xue, M.; Sun, H.; Wu, X.; Guan, L.L.; Liu, J. Assessment of Rumen Microbiota from a Large Dairy Cattle Cohort Reveals the Pan and Core Bacteriomes Contributing to Varied Phenotypes. Appl. Environ. Microbiol. 2018, 8419, e00970-18. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, L.P.; Mark, T.; Madsen, P.; Lund, M.S. Genetic Correlations between Pathogen-Specific Mastitis and Somatic Cell Count in Danish Holsteins. J. Dairy Sci. 2009, 927, 3457–3471. [Google Scholar] [CrossRef] [Green Version]
- Forbes, D.; Gehm, W. Bacterial Migration through Teat Canal Related to Liner Action. In Udder Health and Communication; Wageningen Academic Publishers: Wageningen, The Netherlands, 2011; p. 415. [Google Scholar] [CrossRef]
- Latia. Mastitis in Dairy Cattle. Press Release 2017. Available online: https://www.latiaagribusinesssolutions.com/2017/10/04/mastitis-dairy-cattle/ (accessed on 21 October 2021).
- Bradley, A.J.; Green, M.J. Adaptation of Escherichia Coli to the Bovine Mammary Gland. J. Clin. Microbiol. 2001, 395, 1845–1849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatt, V.D.; Ahir, V.B.; Koringa, P.G.; Jakhesara, S.J.; Rank, D.N.; Nauriyal, D.S.; Kunjadia, A.P.; Joshi, C.G. Milk Microbiome Signatures of Subclinical Mastitis-Affected Cattle Analysed by Shotgun Sequencing. J. Appl. Microbiol. 2012, 1124, 639–650. [Google Scholar] [CrossRef]
- Falentin, H.; Rault, L.; Nicolas, A.; Bouchard, D.S.; Lassalas, J.; Lamberton, P.; Aubry, J.-M.; Marnet, P.-G.; Le Loir, Y.; Even, S. Bovine Teat Microbiome Analysis Revealed Reduced Alpha Diversity and Significant Changes in Taxonomic Profiles in Quarters with a History of Mastitis. Front. Microbiol. 2016, 7, 480. [Google Scholar] [CrossRef] [Green Version]
- Tong, J.; Zhang, H.; Zhang, Y.; Xiong, B.; Jiang, L. Microbiome and Metabolome Analyses of Milk From Dairy Cows With Subclinical Streptococcus Agalactiae Mastitis—Potential Biomarkers. Front. Microbiol. 2019, 10, 547. [Google Scholar] [CrossRef]
- Sharma, N.; Singh, N.K.; Bhadwal, M.S. Relationship of Somatic Cell Count and Mastitis: An Overview. Asian-Australas. J. Anim. Sci. 2011, 243, 429–438. [Google Scholar] [CrossRef]
- de Haas, Y.; Barkema, H.W.; Veerkamp, R.F. The Effect of Pathogen-Specific Clinical Mastitis on the Lactation Curve for Somatic Cell Count. J. Dairy Sci. 2002, 855, 1314–1323. [Google Scholar] [CrossRef]
- Smith, K.L.; Hogan, J.S. Environmental mastitis. Vet. Clin. North Am. Food Anim. Pract. 1993, 9, 489–498. [Google Scholar] [CrossRef]
- Fox, L.K.; Gay, J.M. Contagious mastitis. Vet. Clin. North Am. Food Anim. Pract. 1993, 9, 475–487. [Google Scholar] [CrossRef]
- Wilson, C.D.; Richards, M.S. A survey of mastitis in the British dairy herd. Vet. Rec. 1998, 106, 431–433. [Google Scholar] [CrossRef] [PubMed]
- Almeida, R.A.; Matthews, K.R.; Cifrian, E.; Guidry, A.J.; Oliver, S.P. Staphylococcus aureus Invasion of Bovine Mammary Epithelial Cells. J. Dairy Sci. 1996, 796, 1021–1026. [Google Scholar] [CrossRef]
- Baselga, R.; Albizu, I.; Amorena, B. Staphylococcus aureus Capsule and Slime as Virulence Factors in Ruminant Mastitis. A Review. Vet. Microbiol. 1994, 39, 195–204. [Google Scholar] [CrossRef]
- Jeon, S.J.; Cunha, F.; Ma, X.; Martinez, N.; Vieira-Neto, A.; Daetz, R.; Bicalho, R.C.; Lima, S.; Santos, J.E.P.; Jeong, K.C.; et al. Uterine Microbiota and Immune Parameters Associated with Fever in Dairy Cows with Metritis. PLoS ONE 2016, 11, e0165740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bicalho, M.L.S.; Machado, V.S.; Higgins, C.H.; Lima, F.S.; Bicalho, R.C. Genetic and Functional Analysis of the Bovine Uterine Microbiota. Part I: Metritis versus Healthy Cows. J. Dairy Sci. 2017. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.J.; Lima, F.S.; Vieira-Neto, A.; Machado, V.S.; Lima, S.F.; Bicalho, R.C.; Santos, J.E.P.; Galvão, K.N. Shift of Uterine Microbiota Associated with Antibiotic Treatment and Cure of Metritis in Dairy Cows. Vet. Microbiol. 2018, 214, 132–139. [Google Scholar] [CrossRef]
- Hajishengallis, G.; Darveau, R.P.; Curtis, M.A. The Keystone-Pathogen Hypothesis. Nat. Rev. Microbiol. 2012, 1010, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.J.; Cunha, F.; Daetz, R.; Bicalho, R.C.; Lima, S.; Galvão, K.N. Ceftiofur Reduced Fusobacterium Leading to Uterine Microbiota Alteration in Dairy Cows with Metritis. Anim. Microbiome 2021, 3, 15. [Google Scholar] [CrossRef] [PubMed]
- Antiabong, J.F.; Ball, A.S.; Brown, M.H. The Effects of Iron Limitation and Cell Density on Prokaryotic Metabolism and Gene Expression: Excerpts from Fusobacterium Necrophorum Strain 774 (Sheep Isolate). Gene 2015, 5631, 94–102. [Google Scholar] [CrossRef]
- Pérez-Báez, J.; Risco, C.A.; Chebel, R.C.; Gomes, G.C.; Greco, L.F.; Tao, S.; Thompson, I.M.; do Amaral, B.C.; Zenobi, M.G.; Martinez, N.; et al. Association of Dry Matter Intake and Energy Balance Prepartum and Postpartum with Health Disorders Postpartum: Part I. Calving Disorders and Metritis. J. Dairy Sci. 2019, 102, 9138–9150. [Google Scholar] [CrossRef]
- Galvão, K.N.; Flaminio, M.J.B.F.; Brittin, S.B.; Sper, R.; Fraga, M.; Caixeta, L.; Ricci, A.; Guard, C.L.; Butler, W.R.; Gilbert, R.O. Association between Uterine Disease and Indicators of Neutrophil and Systemic Energy Status in Lactating Holstein Cows. J. Dairy Sci. 2010, 93, 2926–2937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, C.K.; Aikman, P.C.; Lupoli, B.; Humphries, D.J.; Beever, D.E. Splanchnic Metabolism of Dairy Cows during the Transition from Late Gestation through Early Lactation. J. Dairy Sci. 2003, 86, 1201–1217. [Google Scholar] [CrossRef]
- Tsuchiya, Y.; Zhyvoloup, A.; Baković, J.; Thomas, N.; Yu, B.Y.K.; Das, S.; Orengo, C.; Newell, C.; Ward, J.; Saladino, G.; et al. Protein CoAlation and Antioxidant Function of Coenzyme A in Prokaryotic Cells. Biochem. J. 2018, 47511, 1909–1937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castillo, C.; Pereira, V.; Abuelo, Á.; Hernández, J. Effect of Supplementation with Antioxidants on the Quality of Bovine Milk and Meat Production. Sci. World J. 2013, 2013, 1–8. [Google Scholar] [CrossRef]
- Konvičná, J.; Vargová, M.; Paulíková, I.; Kovcáč, G.; Kostecká, Z. Oxidative Stress and Antioxidant Status in Dairy Cows during Prepartal and Postpartal Periods. Acta Vet. Brno 2015, 842, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Mòdol, T.; Brice, N.; Ruiz de Galarreta, M.; García Garzón, A.; Iraburu, M.J.; Martínez-Irujo, J.J.; López-Zabalza, M.J. Fibronectin Peptides as Potential Regulators of Hepatic Fibrosis through Apoptosis of Hepatic Stellate Cells. J. Cell. Physiol. 2015, 2303, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Berlier, J.L.; Rigutto, S.; Dalla Valle, A.; Lechanteur, J.; Soyfoo, M.S.; Gangji, V.; Rasschaert, J. Adenosine Triphosphate Prevents Serum Deprivation-Induced Apoptosis in Human Mesenchymal Stem Cells via Activation of the MAPK Signaling Pathways. Stem Cells 2015, 331, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Dröge, W. Free Radicals in the Physiological Control of Cell Function. Physiol. Rev. 2002, 821, 47–95. [Google Scholar] [CrossRef]
- Lykkesfeldt, J.; Svendsen, O. Oxidants and Antioxidants in Disease: Oxidative Stress in Farm Animals. Vet. J. 2007, 1733, 502–511. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, S.S.; Celi, P.; Ponnampalam, E.N.; Leury, B.J.; Liu, F.; Dunshea, F.R. Antioxidant Dynamics in the Live Animal and Implications for Ruminant Health and Product (Meat/Milk) Quality: Role of Vitamin E and Selenium. Anim. Prod. Sci. 2014, 5410, 1525. [Google Scholar] [CrossRef]
- Saquib, Q.; Al-Khedhairy, A.A.; Siddiqui, M.A.; Abou-Tarboush, F.M.; Azam, A.; Musarrat, J. Titanium Dioxide Nanoparticles Induced Cytotoxicity, Oxidative Stress and DNA Damage in Human Amnion Epithelial (WISH) Cells. Toxicol. Vitr. 2012, 262, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Guo, W.; Han, L.; Chen, E.; Kong, L.; Wang, L.; Ai, W.; Song, N.; Li, H.; Chen, H. Cerium Oxide Nanoparticles Induce Cytotoxicity in Human Hepatoma SMMC-7721 Cells via Oxidative Stress and the Activation of MAPK Signaling Pathways. Toxicol. Vitr. 2013, 273, 1082–1088. [Google Scholar] [CrossRef] [PubMed]
- Abuelo, A.; Hernandez, J.; Benedito, J.L.; Castillo, C. The importance of the oxidative status of dairy cattle in the periparturient period: Revisiting antioxidant supplementation. J. Anim. Physiol. Anim. Nutr. 2015, 99, 1003–1018. [Google Scholar] [CrossRef]
- Piao, D.C.; Wang, T.; Lee, J.S.; Vega, R.S.; Kang, S.K.; Choi, Y.J.; Lee, H.G. Determination of reference intervals for metabolic profile of Hanwoo cows at early, middle and late gestation periods. J. Anim. Sci. Biotechnol. 2015, 6, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Chun, O.K.; Song, W.O. Plasma and dietary antioxidant status as cardiovascular disease risk factors: A review of human studies. Nutrients 2013, 5, 2969–3004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mertens, D.R. Creating a system for meeting the fiber requirements of dairy cows. J. Dairy Sci. 1997, 80, 1463–1481. [Google Scholar] [CrossRef]
- Kononoff, P.J.; Heinrichs, A.J. Evaluating Particle Size of Forages and TMRs Using the New Penn State Forage Particle Separator; Penn State University: State College, PA, USA, 2002. [Google Scholar]
- Humer, E.; Petri, R.M.; Aschenbach, J.R.; Bradford, B.J.; Penner, G.B.; Tafaj, M.; Südekum, K.H.; Zebeli, Q. Invited review: Practical feeding management recommendations to mitigate the risk of subacute ruminal acidosis in dairy cattle. J. Dairy Sci. 2018, 101, 872–888. [Google Scholar] [CrossRef] [Green Version]
- Chang, G.; Zhuang, S.; Seyfert, H.M.; Zhang, K.; Xu, T.; Jin, D.; Guo, J.; Shen, X. Hepatic TLR4 signaling is activated by LPS from digestive tract during SARA, and epigenetic mechanisms contribute to enforced TLR4 expression. Oncotarget 2015, 6, 38578–38590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plaizier, J.C.; Krause, D.O.; Gozho, G.N.; McBride, B.W. Subacute ruminal acidosis in dairy cows: The physiological causes, incidence and consequences. Vet. J. 2008, 176, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Stone, W.C. Nutritional approaches to minimize subacute ruminal acidosis and laminitis in dairy cattle. J. Dairy Sci. 2004, 87, E13–E26. [Google Scholar] [CrossRef]
- Gozho, G.N.; Plaizier, J.C.; Krause, D.O.; Kennedy, A.D.; Wittenberg, K.M. Subacute ruminal acidosis induces ruminal lipopolysaccharide endotoxin release and triggers an inflammatory response. J. Dairy Sci. 2005, 88, 1399–1403. [Google Scholar] [CrossRef] [Green Version]
- Garrett, E.F.; Pereira, M.N.; Nordlund, K.V.; Armentano, L.E.; Goodger, W.J.; Oetzel, G.R. Diagnostic methods for the detection of subacute ruminal acidosis in dairy cows. J. Dairy Sci. 1999, 82, 1170–1178. [Google Scholar] [CrossRef]
- Kleen, J.L.; Upgang, L.; Rehage, J. Prevalence and consequences of subacute ruminal acidosis in German dairy herds. Acta Vet. Scand. 2013, 55, 48. [Google Scholar] [CrossRef] [Green Version]
- Emmanuel, D.G.; Madsen, K.L.; Churchill, T.A.; Dunn, S.M.; Ametaj, B.N. Acidosis and lipopolysaccharide from Escherichia coli B:055 cause hyperpermeability of rumen and colon tissues. J. Dairy Sci. 2007, 90, 5552–5557. [Google Scholar] [CrossRef] [Green Version]
- Gozho, G.N.; Krause, D.O.; Plaizier, J.C. Ruminal lipopolysaccharide concentration and inflammatory response during grain-induced subacute ruminal acidosis in dairy cows. J. Dairy Sci. 2007, 90, 856–866. [Google Scholar] [CrossRef] [Green Version]
- Khafipour, E.; Krause, D.O.; Plaizier, J.C. A grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation. J. Dairy Sci. 2009, 92, 1060–1070. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Chang, G.; Xu, T.; Xu, L.; Guo, J.; Jin, D.; Shen, X. Lipopolysaccharide derived from the digestive tract activates inflammatory gene expression and inhibits casein synthesis in the mammary glands of lactating dairy cows. Oncotarget 2016, 7, 9652–9665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aviram, M.; Kaplan, M.; Rosenblat, M.; Fuhrman, B. Dietary antioxidants and paraoxonases against LDL oxidation and atherosclerosis development. Handb. Exp. Pharm. 2005, 67, 263–300. [Google Scholar]
- Xu, T.; Tao, H.; Chang, G.; Zhang, K.; Xu, L.; Shen, X. Lipopolysaccharide derived from the rumen down-regulates stearoyl-CoA desaturase 1 expression and alters fatty acid composition in the liver of dairy cows fed a high-concentrate diet. BMC Vet. Res. 2015, 11, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, C.; Liu, G.; Li, X.; Guan, Y.; Wang, Y.; Yuan, X.; Sun, G.; Wang, Z.; Li, X. Inflammatory mechanism of Rumenitis in dairy cows with subacute ruminal acidosis. BMC Vet. Res. 2018, 14, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sordillo, L.M.; Aitken, S.L. Impact of oxidative stress on the health and immune function of dairy cattle. Vet. Immunol. Immunopathol. 2009, 128, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Sordillo, L.M. Mammary Gland Immunobiology and Resistance to Mastitis. Vet. Clin. North Am. Food Anim. Pract. 2018, 34, 507–523. [Google Scholar] [CrossRef] [PubMed]
- Memon, M.A.; Wang, Y.; Xu, T.; Ma, N.; Zhang, H.; Roy, A.C.; Aabdin, Z.U.; Shen, X. Lipopolysaccharide induces oxidative stress by triggering MAPK and Nrf2 signalling pathways in mammary glands of dairy cows fed a high-concentrate diet. Microb. Pathog. 2019, 128, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Abaker, J.A.; Xu, T.L.; Jin, D.; Chang, G.J.; Zhang, K.; Shen, X.Z. Lipopolysaccharide derived from the digestive tract provokes oxidative stress in the liver of dairy cows fed a high-grain diet. J. Dairy Sci. 2017, 100, 666–678. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Chang, G.; Zhang, K.; Xu, L.; Jin, D.; Bilal, M.S.; Shen, X. Rumen-derived lipopolysaccharide provoked inflammatory injury in the liver of dairy cows fed a high-concentrate diet. Oncotarget 2017, 8, 46769–46780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aditya, S.; Humer, E.; Pourazad, P.; Khiaosa-Ard, R.; Zebeli, Q. Metabolic and stress responses in dairy cows fed a concentrate-rich diet and submitted to intramammary lipopolysaccharide challenge. Animal 2018, 12, 741–749. [Google Scholar] [CrossRef]
- Khorasani, G.R.; Kennelly, J.J. Influence of carbohydrate source and buffer on rumen fermentation characteristics, milk yield, and milk composition in late-lactation Holstein cows. J. Dairy Sci. 2001, 84, 1707–1716. [Google Scholar] [CrossRef]
- Musco, N.; Tudisco, R.; Grossi, M.; Mastellone, V.; Morittu, V.M.; Pero, M.E.; Wanapat, M.; Trinchese, G.; Cavaliere, G.; Mollica, M.P.; et al. Effect of a high forage: Concentrate ratio on milk yield, blood parameters and oxidative status in lactating cows. Anim. Prod. Sci. 2020, 60, 1531–1538. [Google Scholar] [CrossRef]
- Bilal, M.S.; Abaker, J.A.; Ul Aabdin, Z.; Xu, T.; Dai, H.; Zhang, K.; Liu, X.; Shen, X. Lipopolysaccharide derived from the digestive tract triggers an inflammatory response in the uterus of mid-lactating dairy cows during SARA. BMC Vet. Res. 2016, 12, 284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, G.; Zhang, K.; Xu, T.; Jin, D.; Guo, J.; Zhuang, S.; Shen, X. Epigenetic mechanisms contribute to the expression of immune related genes in the livers of dairy cows fed a high concentrate diet. PLoS ONE 2015, 10, e0123942. [Google Scholar] [CrossRef] [Green Version]
- Gabai, G.; Testoni, S.; Piccinini, R.; Marinelli, L.; Howard, C.M.; Stradaioli, G. Oxidative stress in primiparous cows in relation to dietary starch and the progress of lactation. Anim. Sci. 2004, 79, 99–108. [Google Scholar] [CrossRef]
- Roche, J.R.; Lee, J.M.; Macdonald, K.A.; Berry, D.P. Relationships among body condition score, body weight, and milk production variables in pasture-based dairy cows. J. Dairy Sci. 2007, 90, 3802–3815. [Google Scholar] [CrossRef] [PubMed]
- Barletta, R.V.; Maturana Filho, M.; Carvalho, P.D.; Del Valle, T.A.; Netto, A.S.; Rennó, F.P.; Mingoti, R.D.; Gandra, J.R.; Mourão, G.B.; Mourão, G.B.; et al. Association of changes among body condition score during the transition period with NEFA and BHBA concentrations, milk production, fertility, and health of Holstein cows. Theriogenology 2017, 104, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.H.; Suh, G.H. Effect of the amount of body condition loss from the dry to near calving periods on the subsequent body condition change, occurrence of postpartum diseases, metabolic parameters and reproductive performance in Holstein dairy cows. Theriogenology 2003, 60, 1445–1456. [Google Scholar] [CrossRef]
- Gärtner, T.; Gernand, E.; Gottschalk, J.; Donat, K. Relationships between body condition, body condition loss, and serum metabolites during the transition period in primiparous and multiparous cows. J. Dairy Sci. 2019, 102, 9187–9199. [Google Scholar] [CrossRef] [PubMed]
- Bewley, J.M.; Schutz, M.M. An Interdisciplinary Review of Body Condition Scoring for Dairy Cattle. Prof. Anim. Sci. 2008, 24, 507–529. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, E.I.; LeBlanc, S.J.; McBride, B.W.; Duffield, T.F.; DeVries, T.J. Short communication: Association of lying behavior and subclinical ketosis in transition dairy cows. J. Dairy Sci. 2016, 99, 7473–7480. [Google Scholar] [CrossRef] [Green Version]
- Chebel, R.C.; Mendonça, L.G.D.; Baruselli, P.S. Association between body condition score change during the dry period and postpartum health and performance. J. Dairy Sci. 2018, 101, 4595–4614. [Google Scholar] [CrossRef]
- Daros, R.R.; Eriksson, H.K.; Weary, D.M.; von Keyserlingk, M.A.G. The relationship between transition period diseases and lameness, feeding time, and body condition during the dry period. J. Dairy Sci. 2020, 103, 649–665. [Google Scholar] [CrossRef]
- Stefańska, B.; Poźniak, A.; Nowak, W. Relationship between the pre- and postpartum body condition scores and periparturient indices and fertility in high-yielding dairy cows. J. Vet. Res. 2016, 60, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Akbar, H.; Grala, T.M.; Vailati Riboni, M.; Cardoso, F.C.; Verkerk, G.; McGowan, J.; Macdonald, K.; Webster, J.; Schutz, K.; Meier, S.; et al. Body condition score at calving affects systemic and hepatic transcriptome indicators of inflammation and nutrient metabolism in grazing dairy cows. J. Dairy Sci. 2015, 98, 1019–1032. [Google Scholar] [CrossRef]
- De Koster, J.; Hostens, M.; Van Eetvelde, M.; Hermans, K.; Moerman, S.; Bogaert, H.; Depreester, E.; Van den Broeck, W.; Opsomer, G. Insulin response of the glucose and fatty acid metabolism in dry dairy cows across a range of body condition scores. J. Dairy Sci. 2015, 98, 4580–4592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ingvartsen, K.L.; Dewhurst, R.J.; Friggens, N.C. On the relationship between lactational performance and health: Is it yield or metabolic imbalance that cause production diseases in dairy cattle? A position paper. Livest. Prod. Sci. 2003, 83, 277–308. [Google Scholar] [CrossRef]
- Puppel, K.; Kuczyńska, B. Metabolic profiles of cow’s blood; a review. J. Sci. Food Agric. 2016, 96, 4321–4328. [Google Scholar] [CrossRef]
- Cui, B.W.; Bai, T.; Yang, Y.; Zhang, Y.; Jiang, M.; Yang, H.X.; Wu, M.; Liu, J.; Qiao, C.Y.; Zhan, Z.Y.; et al. Thymoquinone Attenuates Acetaminophen Overdose-Induced Acute Liver Injury and Inflammation Via Regulation of JNK and AMPK Signaling Pathway. Am. J. Chin. Med. 2019, 47, 577–594. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ding, H.; Liu, L.; Song, Y.; Du, X.; Feng, S.; Wang, X.; Li, X.; Wang, Z.; Li, X.; et al. Non-esterified Fatty Acid Induce Dairy Cow Hepatocytes Apoptosis via the Mitochondria-Mediated ROS-JNK/ERK Signaling Pathway. Front. Cell. Dev. Biol. 2020, 8, 245. [Google Scholar] [CrossRef]
- Bernabucci, U.; Ronchi, B.; Lacetera, N.; Nardone, A. Influence of body condition score on relationships between metabolic status and oxidative stress in periparturient dairy cows. J. Dairy Sci. 2005, 88, 2017–2026. [Google Scholar] [CrossRef] [Green Version]
- Laubenthal, L.; Ruda, L.; Sultana, N.; Winkler, J.; Rehage, J.; Meyer, U.; Dänicke, S.; Sauerwein, H.; Häussler, S. Effect of increasing body condition on oxidative stress and mitochondrial biogenesis in subcutaneous adipose tissue depot of nonlactating dairy cows. J. Dairy Sci. 2017, 100, 4976–4986. [Google Scholar] [CrossRef]
- Ul Aabdin, Z.; Cheng, X.; Dai, H.; Wang, Y.; Sahito, B.; Roy, A.C.; Memon, M.A.; Shen, X. High-Concentrate Feeding to Dairy Cows Induces Apoptosis via the NOD1/Caspase-8 Pathway in Mammary Epithelial Cells. Genes 2020, 11, 107. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, W.; Ma, N.; Wang, L.; Dai, H.; Bilal, M.S.; Roy, A.C.; Shen, X. Overfeeding with a high-concentrate diet activates the NOD1-NF-κB signalling pathway in the mammary gland of mid-lactating dairy cows. Microb. Pathog. 2019, 128, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Jin, D.; Chang, G.; Zhang, K.; Guo, J.; Xu, T.; Shen, X. Rumen-derived lipopolysaccharide enhances the expression of lingual antimicrobial peptide in mammary glands of dairy cows fed a high-concentrate diet. BMC Vet. Res. 2016, 12, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bucktrout, R.E.; Ma, N.; Aboragah, A.; Alharthi, A.S.; Liang, Y.; Lopreiato, V.; Lopes, M.G.; Trevisi, E.; Alhidary, I.A.; Fernandez, C.; et al. One-carbon, carnitine, and glutathione metabolism-related biomarkers in peripartal Holstein cows are altered by prepartal body condition. J. Dairy Sci. 2021, 104, 3403–3417. [Google Scholar] [CrossRef] [PubMed]
- Jamali Emam Gheise, N.; Riasi, A.; Zare Shahneh, A.; Celi, P.; Ghoreishi, S.M. Effect of pre-calving body condition score and previous lactation on BCS change, blood metabolites, oxidative stress and milk production in Holstein dairy cows. Ital. J. Anim. Sci. 2017, 16, 474–483. [Google Scholar] [CrossRef]
- Pires, J.A.; Delavaud, C.; Faulconnier, Y.; Pomiès, D.; Chilliard, Y. Effects of body condition score at calving on indicators of fat and protein mobilization of periparturient Holstein-Friesian cows. J. Dairy Sci. 2013, 96, 6423–6439. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Liu, J.; Wang, D. Effects of body condition on the insulin resistance, lipid metabolism and oxidative stress of lactating dairy cows. Lipids. Health Dis. 2020, 19, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.K.; Yeo, J.M.; Bae, G.S.; Kim, E.J.; Kim, C.H. Effects of supplementing limiting amino acids on milk production in dairy cows consuming a corn grain and soybean meal-based diet. J. Anim. Sci. Technol. 2020, 62, 485–494. [Google Scholar] [CrossRef]
- Coleman, D.N.; Lopreiato, V.; Alharthi, A.; Loor, J.J. Amino acids and the regulation of oxidative stress and immune function in dairy cattle. J. Anim. Sci. 2020, 98 (Suppl. 1), S175–S193. [Google Scholar] [CrossRef]
- Lopes, M.G.; Dominguez, J.H.E.; Corrêa, M.N.; Schmitt, E.; Fischer, G. Rumen-protected methionine in cattle: Influences on reproduction, immune response, and productive performance. Arq. Inst. Biol. 2019, 86, e1292018. [Google Scholar] [CrossRef]
- Tsiplakou, E.; Mavrommatis, A.; Skliros, D.; Righi, F.; Flemetakis, E. The impact of rumen-protected amino acids on the expression of key-genes involved in the innate immunity of dairy sheep. PLoS ONE 2020, 15, e0233192. [Google Scholar] [CrossRef] [PubMed]
- Mavrommatis, A.; Giamouri, E.; Tavrizelou, S.; Zacharioudaki, M.; Danezis, G.; Simitzis, P.E.; Zoidis, E.; Tsiplakou, E.; Pappas, A.C.; Georgiou, C.A.; et al. Impact of Mycotoxins on Animals’ Oxidative Status. Antioxidants 2021, 10, 214. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Li, T.; Yin, Y. Methionine and Antioxidant Potential. J. Antioxid. Act. 2016, 1, 12–17. [Google Scholar] [CrossRef]
- Li, P.; Yin, Y.L.; Li, D.; Kim, S.W.; Wu, G. Amino acids and immune function. Br. J. Nutr. 2007, 98, 237–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsiplakou, E.; Mavrommatis, A.; Kalogeropoulos, T.; Chatzikonstantinou, M.; Koutsouli, P.; Sotirakoglou, K.; Labrou, N.; Zervas, G. The effect of dietary supplementation with rumen-protected methionine alone or in combination with rumen-protected choline and betaine on sheep milk and antioxidant capacity. J. Anim. Physiol. Anim. Nutr. 2017, 101, 1004–1013. [Google Scholar] [CrossRef]
- Osorio, J.S.; Ji, P.; Drackley, J.K.; Luchini, D.; Loor, J.J. Supplemental Smartamine M or MetaSmart during the transition period benefits postpartal cow performance and blood neutrophil function. J. Dairy Sci. 2013, 96, 6248–6263. [Google Scholar] [CrossRef] [Green Version]
- Sun, F.; Cao, Y.; Cai, C.; Li, S.; Yu, C.; Yao, J. Regulation of Nutritional Metabolism in Transition Dairy Cows: Energy Homeostasis and Health in Response to Post-Ruminal Choline and Methionine. PLoS ONE 2016, 11, e0160659. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhao, F.; Peng, A.; Dong, L.; Wang, M.; Yu, L.; Loor, J.J.; Wang, H. Effects of Dietary l-Arginine and N-Carbamylglutamate Supplementation on Intestinal Integrity, Immune Function, and Oxidative Status in Intrauterine-Growth-Retarded Suckling Lambs. J. Agric. Food Chem. 2018, 66, 4145–4154. [Google Scholar] [CrossRef]
- Zhou, Z.; Loor, J.J.; Piccioli-Cappelli, F.; Librandi, F.; Lobley, G.E.; Trevisi, E. Circulating amino acids in blood plasma during the peripartal period in dairy cows with different liver functionality index. J. Dairy Sci. 2016, 99, 2257–2267. [Google Scholar] [CrossRef]
- Lopreiato, V.; Vailati-Riboni, M.; Bellingeri, A.; Khan, I.; Farina, G.; Parys, C.; Loor, J.J. Inflammation and oxidative stress transcription profiles due to in vitro supply of methionine with or without choline in unstimulated blood polymorphonuclear leukocytes from lactating Holstein cows. J. Dairy Sci. 2019, 102, 10395–10410. [Google Scholar] [CrossRef] [Green Version]
- Dong, Z.W.; Wang, J.K.; Liu, J.X. Effects of Vitamin E on Performance of Dairy Cow as Antioxidant. Chin. J. Anim. Sci. 2014, 147, 703–708. [Google Scholar]
- Zanetti, M.H. Effect of selenium and vitamin E supplementation in dairy cows. Rev. Bras. Zootecn. 1998, 27, 405–408. [Google Scholar]
- Rotruck, J.T.; Pope, A.L.; Ganther, H.E.; Swanson, A.B.; Hafeman, D.G.; Hoekstra, W.G. Selenium: Biochemical role as a component of glutathione peroxidase. Science 1973, 179, 588–590. [Google Scholar] [CrossRef]
- Sun, L.L.; Gao, S.T.; Wang, K.; Xu, J.C.; Sanz-Fernandez, M.V.; Baumgard, L.H.; Bu, D.P. Effects of source on bioavailability of selenium, antioxidant status, and performance in lactating dairy cows during oxidative stress-inducing conditions. J. Dairy Sci. 2019, 102, 311–319. [Google Scholar] [CrossRef] [Green Version]
- Sun, P.; Wang, J.; Liu, W.; Bu, D.P.; Liu, S.J.; Zhang, K.Z. Hydroxy-selenomethionine: A novel organic selenium source that improves antioxidant status and selenium concentrations in milk and plasma of mid-lactation dairy cows. J. Dairy Sci. 2017, 100, 9602–9610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alhussien, M.N.; Tiwari, S.; Panda, B.S.K.; Pandey, Y.; Lathwal, S.S.; Dang, A.K. Supplementation of antioxidant micronutrients reduces stress and improves immune function/response in periparturient dairy cows and their calves. J. Trace. Elem. Med. Biol. 2021, 65, 126718. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Jin, Y.; Yu, H.; Shan, A.; Shen, J.; Zhou, C.; Zhao, Y.; Fang, H.; Wang, X.; Wang, J.; et al. Resveratrol inhibits aflatoxin B1-induced oxidative stress and apoptosis in bovine mammary epithelial cells and is involved the Nrf2 signaling pathway. Toxicon 2019, 164, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Yan, S.; Shi, B.; Bao, H.; Gong, J.; Guo, X.; Li, J. Effects of vitamin A on the milk performance, antioxidant functions and immune functions of dairy cows. Anim. Feed. Sci. Technol. 2014, 192, 15–23. [Google Scholar] [CrossRef]
- Cos, P.; De Bruyne, T.; Apers, S.; Vanden Berghe, D.; Pieters, L.; Vlietinck, A.J. Phytoestrogens: Recent developments. Planta Med. 2003, 69, 589–599. [Google Scholar] [PubMed] [Green Version]
- Liu, D.Y.; He, S.J.; Liu, S.Q.; Tang, Y.G.; Jin, E.H.; Chen, H.L.; Li, S.H.; Zhong, L.T. Daidzein enhances immune function in late lactation cows under heat stress. Anim. Sci. J. 2014, 85, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Kansanen, E.; Jyrkkänen, H.K.; Levonen, A.L. Activation of stress signaling pathways by electrophilic oxidized and nitrated lipids. Free Radic. Biol Med. 2012, 52, 973–982. [Google Scholar] [CrossRef]
- Li, L.; Yang, N.; Nin, L.; Zhao, Z.; Chen, L.; Yu, J.; Jiang, Z.; Zhong, Z.; Zeng, D.; Qi, H.; et al. Chinese herbal medicine formula tao hong si wu decoction protects against cerebral ischemia-reperfusion injury via PI3K/Akt and the Nrf2 signaling pathway. J Nat. Med. 2015, 69, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Feng, Y.; Song, L.; Li, M.; Dai, H.; Bao, H.; Zhang, G.; Zhao, L.; Zhang, C.; Yi, J.; et al. Green tea polyphenols supplementation alters immunometabolism and oxidative stress in dairy cows with hyperketonemia. Anim. Nutr. 2021, 7, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Qureshi, M.S.; Akhtar, S.; Ali, I.; Ghufranullah. Fertility Improvement in Cross-Bred Dairy Cows Through Supplementation of Vitamin E as Antioxidant. Pak. J. Zool. 2016, 48, 923–930. [Google Scholar]
- Wei, J.Y.; Ma, F.T.; Hao, L.Y.; Shan, Q.; Sun, P. Effect of differing amounts of zinc oxide supplementation on the antioxidant status and zinc metabolism in newborn dairy calves. Livest. Sci. 2019, 230, 103819. [Google Scholar] [CrossRef]
- Ma, M.; Ma, X.; Cui, J.; Guo, Y.; Tang, X.; Chen, C.; Zhu, Y.; Cui, C.; Wang, G. Cyclosporin A Protected Cardiomyocytes Against Oxidative Stress Injury by Inhibition of NF-κB Signaling Pathway. Cardiovasc. Eng Technol. 2019, 10, 329–343. [Google Scholar] [CrossRef]
- Kang, Y.; Sun, Y.; Li, T.; Ren, Z. Garcinol protects against cerebral ischemia-reperfusion injury in vivo and in vitro by inhibiting inflammation and oxidative stress. Mol. Cell. Probes. 2020, 54, 101672. [Google Scholar] [CrossRef] [PubMed]
- Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010, 49, 1603–1616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henley, D.V.; Bellone, C.J.; Williams, D.A.; Ruh, M.F. MAPK signaling pathways modulate IL-1beta expression in human keratinocytes. Arch. Biochem. Biophys. 2004, 424, 112–118. [Google Scholar] [CrossRef]
- Gangwani, M.R.; Kumar, A. Multiple Protein Kinases via Activation of Transcription Factors NF-κB, AP-1 and C/EBP-δ Regulate the IL-6/IL-8 Production by HIV-1 Vpr in Astrocytes. PLoS ONE 2015, 10, e0135633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Gayyar, M.M.; Abdelsaid, M.A.; Matragoon, S.; Pillai, B.A.; El-Remessy, A.B. Thioredoxin interacting protein is a novel mediator of retinal inflammation and neurotoxicity. Br. J. Pharm. 2011, 164, 170–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Status | Treatment | Milk Yield and Composition | Milk and Blood Metabolites, Enzymes and Hormones | Oxidative and Anti-Oxidative Biomarkers | References |
---|---|---|---|---|---|
Mid-lactation cows: | LC diet with F:C of 6:4, DM HC diet with F:C of 4:6, DM | NA | NA | LPS level in the rumen fluid, plasma, mammary glands increased in HC ROS and MDA increased in HC T-AOC enzyme decreased in HC | [72] |
Mid-lactation cows: | LG diet with F:C of 6:4 HG diet with F:C of 4:6, DM | Milk yield, percentage of milk fat, and the milk fat yield decreased in cows fed HG The percentage of milk protein increased in HG group | NA | LPS in the rumen fluid, hepatic, portal and jugular vein plasma were higher in the cows fed HG MDA and SOD activity increased in HG cows T-AOC, GPx, and catalase activity was reduced in HG cows Total NOS and iNOS activity in the liver and plasma increase in HG | [73] |
Lactating Holstein dairy cows: | HC diet with F:C of 4:6 LC diet with F:C of 6:4 | NA | Aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) activity increased in HC group While, albumin (ALB) and total protein (TP) concentrations in the peripheral blood of the HC group were reduced | The LPS levels in portal vein and hepatic vein increased in HC group | [74] |
Early-lactating Simmental cows: | 40% concentrate: control diet 60% concentrate to induce SARA | NA | SARA cows showed higher plasma glucose and AST concentrations The concentration of lactate in blood was higher in cows that received the SARA-feeding No difference in NEFA, cholesterol, GLDH concentrations The concentration of BHBA and gamma-glutamyltransferase (GGT) were higher in control cows | NA | [75] |
late-lactation Holstein cows: | F:C diet of 50:50 without buffer (MCNB) F:C diet of 50:50 with buffer (MCWB) F:C diet of 25:75 without buffer (HCNB) F:C diet of 25:75 with buffer (HCWB) | Milk yield and Milk lactose did not change Milk fat percentage decreased as the amount of concentrate increased Milk crude protein percentage increased as the amount of concentrate included in the diet increased | Total short, medium, and long-chain FA and total monounsaturated, polyunsaturated, and saturated FA remain unchanged Concentrations of C14:1, cis-∆-9-C16:1, and total-C16:1 increased, whereas C17:0, C18:0, C18:3, C20:0, and C24:0 decreased with an increased level of concentrate in the diet The milk trans-∆-10,11 C18:1 FA concentrations of animals fed the HCNB was increased | NA | [76] |
Lactating cows: | LFC: with F:C of 55:45 HFC: with F:C of 70:30 | NA | AST and creatine kinase were higher in the HFC No difference in ALT, GGT, ALP, and LDH | Reactive oxygen metabolites (d-ROMs) were lower in the HFC group No differences for antioxidant barrier (Oxy-adsorbent tests) and anti ROMs | [77] |
Mid-lactating dairy cows: | HC diet with NFC:NDF; 6:4 LC diet with NDF: NFC; 4:6 | NA | NA | The LPS concentrations in the rumen fluid and the jugular vein plasma were significantly higher in the cows fed an HC diet | [78] |
Mid-lactating cows: | HC diet with F:C of 4:6 LC diet with F:C of 6:4 | Milk yields increased after 4 wks and decreased after 6 wks in HC | NA | LPS in the rumen, portal, and hepatic veins were higher in the high concentrate group | [79] |
Dietary Intervention | Effects | Mode of Action | References |
---|---|---|---|
Control and RPAA RPAA: L, LML, HML, M | Methionine improves the organism’s OS status, without adversely affecting milk’s oxidative stability. Lysine affects negatively the milk’s oxidative stability. Milk’s fat increase with RPAA | M, LML, HML reduce plasma MDA, M, LML increase plasma GST activity; LML and HML reduce FRAP; LML reduces plasma ABTS; Lysine increased milk’s FRAP, MDA; L, HML diets increased milk’s protein carbonyls | [109] |
0.2 g/kg DM green tea polyphenol | Improves the milk yield and health status in cows with hyperketonemia | Improve immune and antioxidant functions of dairy cows, decrease oxidative stress level | [130] |
105 IU Vitamin A, 60ppm zinc and 2500IU vitamin E | Higher immune response | Decrease the somatic cell count of the milk | [124] |
220 IU/kg Vitamin A | Improve immune and antioxidant functions of dairy cows | Decrease the somatic cell count of the milk | [125] |
1000 IU Vitamin E | Improve reproductive performance of Holstein Frisian and crossbred cows | Decrease plasma MDA, HSP-70 and cortisol; increase SOD and GPx activities | [131] |
0.1, 0.3, or 0.5 mg of HMSeBA /kg | Decrease oxidative stress of dairy cows | Increased the activities of serum GPx and SOD | [122] |
200, 300, 400 mg/day daidzein | Strengthen cow resistance to heat stress | Increase IgG, interferon alpha (IFN-), and interleukin-2 (IL-2) | [127] |
25.79, 51.58, 103.16, and 154.74 mg/day zinc oxide | Improve antioxidant status of newborn calves | Improve zinc metabolism | [132] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayemele, A.G.; Tilahun, M.; Lingling, S.; Elsaadawy, S.A.; Guo, Z.; Zhao, G.; Xu, J.; Bu, D. Oxidative Stress in Dairy Cows: Insights into the Mechanistic Mode of Actions and Mitigating Strategies. Antioxidants 2021, 10, 1918. https://doi.org/10.3390/antiox10121918
Ayemele AG, Tilahun M, Lingling S, Elsaadawy SA, Guo Z, Zhao G, Xu J, Bu D. Oxidative Stress in Dairy Cows: Insights into the Mechanistic Mode of Actions and Mitigating Strategies. Antioxidants. 2021; 10(12):1918. https://doi.org/10.3390/antiox10121918
Chicago/Turabian StyleAyemele, Aurele Gnetegha, Mekonnen Tilahun, Sun Lingling, Samy Abdelaziz Elsaadawy, Zitai Guo, Gaojuan Zhao, Jianchu Xu, and Dengpan Bu. 2021. "Oxidative Stress in Dairy Cows: Insights into the Mechanistic Mode of Actions and Mitigating Strategies" Antioxidants 10, no. 12: 1918. https://doi.org/10.3390/antiox10121918
APA StyleAyemele, A. G., Tilahun, M., Lingling, S., Elsaadawy, S. A., Guo, Z., Zhao, G., Xu, J., & Bu, D. (2021). Oxidative Stress in Dairy Cows: Insights into the Mechanistic Mode of Actions and Mitigating Strategies. Antioxidants, 10(12), 1918. https://doi.org/10.3390/antiox10121918