Oxidative Stress Status in COVID-19 Patients Hospitalized in Intensive Care Unit for Severe Pneumonia. A Pilot Study
Abstract
:1. Introduction
2. Material and Methods
3. Statistical Analysis
4. Results
5. Discussion
5.1. Antioxidant Analysis
5.2. Trace Elements Analysis
5.3. Analysis of Lipid Oxidation Biomarkers
5.4. Analysis of Inflammation Biomarkers
5.5. Study Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef]
- Munster, V.J.; Koopmans, M.; van Doremalen, N.; van Riel, D.; de Wit, E. A novel coronavirus emerging in China-key questions for impact assessment. N. Engl. J. Med. 2020, 382, 692–694. [Google Scholar] [CrossRef] [PubMed]
- Coperchinia, F.; Chiovatoa, L.; Crocea, L.; Magria, F.; Rotondia, M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev. 2020, 53, 25–32. [Google Scholar] [CrossRef]
- Castelli, V.; Cimini, A.; Ferri, C. Cytokine Storm in COVID-19: When You Come Out of the Storm, You Won’t Be the Same Person Who Walked in. Front. Immunol. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Catanzaro, M.; Fagiani, F.; Racchi, M.; Corsini, E.; Govoni, S.; Lanni, C. Immune response in COVID-19: Addressing a pharmacological challenge by targeting pathways triggered by SARS-CoV-2. Signal Transduct. Target. Ther. 2020, 5, 1–10. [Google Scholar] [CrossRef]
- Carsana, L.; Sonzogni, A.; Nasr, A.; Rossi, R.S.; Pellegrinelli, A.; Zerbi, P.; Rech, R.; Colombo, R.; Antinori, S.; Corbellino, M.; et al. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: A two-centre descriptive study. Lancet Infect. Dis. 2020, 20, 1135–1140. [Google Scholar] [CrossRef]
- Steven, S.; Frenis, K.; Oelze, M.; Kalinovic, S.; Kuntic, M.; Jimenez, M.T.B.; Vujacic-Mirski, K.; Helmstädter, J.; Kröller-Schön, S.; Münzel, T.; et al. Vascular Inflammation and Oxidative Stress: Major Triggers for Cardiovascular Disease. Oxidative Med. Cell. Longev. 2019, 2019, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Zuo, L.; Prather, E.R.; Stetskiv, M.; Garrison, D.E.; Meade, J.R.; Peace, T.I.; Zhou, T. Inflammaging and oxidative stress in human diseases: From molecular mechanisms to novel treatments. Int. J. Mol. Sci. 2019, 20, 4472. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, C.A.; Acosta, O. Inflammatory and oxidative stress in rotavirus infection. World J. Virol. 2016, 5, 38–62. [Google Scholar] [CrossRef]
- Jones. D.P. Redefining oxidative stress. Antioxid. Redox Signal 2006, 8, 1865–1879.
- Ito, F.; Sono, Y.; Ito, T. Measurement and Clinical Significance of Lipid Peroxidation as a Biomarker of Oxidative Stress: Oxidative Stress in Diabetes, Atherosclerosis, and Chronic Inflammation. Antioxidants 2019, 8, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cecchini, R.; Cecchini, A.L. SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression. Med Hypotheses 2020, 143, 110102. [Google Scholar] [CrossRef]
- Zhang, H.; Penninger, J.M.; Li, Y.; Zhong, N.; Slutsky, A.S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020, 46, 586–590. [Google Scholar] [CrossRef] [Green Version]
- Brojakowska, A.; Jagat Narula, B.A.; Shimony, R.; Bander, J. Clinical implications of SARS-CoV-2 interaction with renin angiotensin system JACC review topic of the week. J. Am. Coll. Cardiol. 2020, 75, 3085–3095. [Google Scholar] [CrossRef] [PubMed]
- Rabelo, L.A.; Alenina, N.; Bader, M. ACE2–angiotensin-(1–7)–Mas axis and oxidative stress in cardiovascular disease. Hypertens. Res. 2011, 34, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.; Gwathmey, J.K.; Xie, L.-H. Oxidative stress-mediated effects of angiotensin II in the cardiovascular system. World J. Hypertens. 2012, 2, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Mattiuzzi, C. Hemoglobin value may be decreased in patients with severe coronavirus disease 2019. Hematol. Transfus. Cell Ther. 2020, 42, 116–117. [Google Scholar] [CrossRef]
- Vasoncellos, I.R.C.; Dutra, F.F.; Siqueira, M.S.; Paula-Neto, H.A.; Dahan, J.; Kiarely, E.; Carneiro, L.A.M.; Bozza, M.T.; Travassos, L.H. Protein aggregation as a cellular response to oxidative stress induced by heme and iron. Proc. Natl. Acad. Sci. USA 2016, 113, 7474–7482. [Google Scholar]
- Cavezzi, A.; Troiani, E.; Corrao, S. COVID-19: Hemoglobin, iron, and hypoxia beyond inflammation. A narrative review. Clin. Pr. 2020, 10, 1271. [Google Scholar] [CrossRef]
- Vallelian, F.; Schaer, C.A.; Deuel, J.W.; Ingoglia, G.; Humar, R.; Buehler, P.W.; Schaer, D.J. Revisiting the putative role of heme as a trigger of inflammation. Pharmacol. Res. Perspect. 2018, 6, e00392. [Google Scholar] [CrossRef]
- Sultan, S.; Sultan, M. COVID-19 cytokine storm and novel truth. Med. Hypotheses 2020, 144, 109875. [Google Scholar] [CrossRef]
- Huertas, A.; Montani, D.; Savale, L.; Pichon, J.; Tu, L.; Parent, F.; Guignabert, C.; Humbert, M. Endothelial cell dysfunction: A major player in SARS-CoV-2 infection (COVID-19)? Eur. Respir. J. 2020, 56, 2001634. [Google Scholar] [CrossRef]
- Froldi, G.; Dorigo, P. Endothelial dysfunction in Coronavirus disease 2019 (COVID-19): Gender and age influences. Med Hypotheses 2020, 144, 110015. [Google Scholar] [CrossRef]
- Heiss, C.; Rodriguez-Mateos, A.; Kelm, M. Central Role of eNOS in the Maintenance of Endothelial Homeostasis. Antioxidants Redox Signal 2015, 22, 1230–1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulz, E.; Gori, T.; Münzel, T. Oxidative stress and endothelial dysfunction in hypertension. Hypertens. Res. 2011, 34, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Scioli, M.G.; Storti, G.; D’Amico, F.; Guzmán, R.R.; Centofanti, F.; Doldo, E.; Miranda, E.M.C.; Orlandi, A. Oxidative Stress and New Pathogenetic Mechanisms in Endothelial Dysfunction: Potential Diagnostic Biomarkers and Therapeutic Targets. J. Clin. Med. 2020, 9, 1995. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Roche, L.; Mesta, F. Oxidative stress as key player in severe acute respiratory syndrome coronaivirus (SARS-COV) infection. Arch. Med. Res. 2020, 51, 384–387. [Google Scholar] [CrossRef] [PubMed]
- Derouiche, S. Oxidative stress associated SARS-CoV-2 (COVID-19) increases the severity of lung disease—A systematic review. Infect. Dis. Epidemiol. 2020. [Google Scholar] [CrossRef]
- Pincemail, J.; Defraigne, J.; Cheramy–Bien, J.; Dardenne, N.; Donneau, A.; Albert, A.; Labropoulos, N.; Sakalihasan, N. On the potential increase of the oxidative stress status in patients with abdominal aortic aneurysm. Redox Rep. 2012, 17, 139–144. [Google Scholar] [CrossRef]
- Pincemail, J.; Vanbelle, S.; Gaspard, U.; Collette, G.; Haleng, J.; Cheramy-Bien, J.; Charlier, C.; Chapelle, J.; Giet, D.; Albert, A.; et al. Effect of different contraceptive methods on the oxidative stress status in women aged 40–48 years from the ELAN study in the province of Liège, Belgium. Hum. Reprod. 2007, 22, 2335–2343. [Google Scholar] [CrossRef] [Green Version]
- Joël, P.; Mouna-Messaouda, K.; Jean-Paul, C.-B.; Jean-Olivier, D.; Smail, M. Electrochemical Methodology for Evaluating Skin Oxidative Stress Status (SOSS). Diseases 2019, 7, 40. [Google Scholar] [CrossRef] [Green Version]
- Lindblad, M.; Tveden-Nyborg, P.; Lykkesfeldt, J. Regulation of Vitamin C Homeostasis during Deficiency. Nutrients 2013, 5, 2860–2879. [Google Scholar] [CrossRef] [Green Version]
- Chiscano-Carnon, L.; Ruiz-Rodriguez, J.C.; Rulz-Sanmartin, A.; Roca, O.; Ferrer, R. Vitamin C levels in patients with SARS-CoV-2-associated acute respiratory distress syndrome. Crit. Care 2020, 24, 1–3. [Google Scholar] [CrossRef]
- Singer, P.; Blaser, A.R.; Berger, M.M.; Alhazzani, W.; Calder, P.C.; Casaer, M.P.; Hiesmayr, M.; Mayer, K.; Montejo, J.C.; Pichard, C.; et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin. Nutr. 2019, 38, 48–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carr, A.C.; Rosengrave, P.C.; Bayer, S.; Chambers, S.; Mehrtens, J.; Shaw, G.M. Hypovitaminosis C and vitamin C deficiency in critically ill patients despite recommended enteral and parenteral intakes. Crit. Care 2017. [Google Scholar] [CrossRef] [Green Version]
- Padayatty, S.J.; Sun, H.; Wang, Y.; Riordan, H.D.; Hewitt, S.M.; Katz, A.; Wesley, R.A.; Levine, M. Vitamin C Pharmacokinetics: Implications for Oral and Intravenous Use. Ann. Intern. Med. 2004, 140, 533–537. [Google Scholar] [CrossRef]
- Nabzdyk, C.S.; Bittner, E.A. Vitamin C in the critically ill—Indications and controversies. World J. Crit. Care Med. 2018, 7, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Hemilä, H.; Chalker, E. Vitamin C Can Shorten the Length of Stay in the ICU: A Meta-Analysis. Nutrients 2019, 11, 708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boretti, A.; Banik, B.K. Intravenous vitamin C for reduction of cytokines storm in acute respiratory distress syndrome. PharmaNutrition 2020, 12, 100190. [Google Scholar] [CrossRef]
- Erol, A. High-dose Intravenous Vitamin C Treatment for COVID-19. OSF Preprints 2020. [Google Scholar] [CrossRef]
- Zhang, J.; Rao, X.; Li, Y.; Zhu, Y.; Liu, F.; Guo, G.; Luo, G.; Meng, Z.; De Backer, D.; Xiang, H.; et al. High-dose vitamin C infusion for the treatment of critically ill COVID-19. Ann. Intens. Care 2020. on press. [Google Scholar]
- Dröge, W.; Breitkreutz, R. Glutathione and immune function. Proc. Nutr. Soc. 2000, 59, 595–600. [Google Scholar] [CrossRef]
- Morris, D.; Khurasany, M.; Nguyen, T.; Kim, J.; Guilford, F.; Mehta, R.; Gray, D.; Saviola, B.; Venketaraman, V. Glutathione and infection. Biochim. et Biophys. Acta (BBA) Gen. Subj. 2013, 1830, 3329–3349. [Google Scholar] [CrossRef]
- Townsend, D.; Tewa, K.D.; Tapierob, H. The importance of glutathione in human disease. Biomed Pharm. 2003, 57, 145–155. [Google Scholar] [CrossRef]
- Morris, P.E.; Bernard, G.R.; Bernard, C.R. Significance of Glutathione in Lung Disease and Implications for Therapy. Am. J. Med Sci. 1994, 307, 119–127. [Google Scholar] [CrossRef]
- Polonikov, A. Endogenous Deficiency of Glutathione as the Most Likely Cause of Serious Manifestations and Death in COVID-19 Patients. ACS Infect. Dis. 2020, 6, 1558–1562. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, R.I.; Freeman, P.R.; Bruzzese, J. Efficacy of glutathione therapy in relieving dyspnea associated with COVID-19 pneumonia: A report of 2 cases. Respir. Med. Case Rep. 2020, 30, 101063. [Google Scholar] [CrossRef]
- Poe, F.L.; Corn, J. N-Acetylcysteine: A potential therapeutic agent for SARS-CoV-2. Med. Hypotheses 2020, 143, 109862. [Google Scholar] [CrossRef]
- Jorge-Aarón, R.-M.; Moo-Puc, R.E. N-acetylcysteine as a potential treatment for COVID-19. Futur. Microbiol. 2020, 15, 959–962. [Google Scholar] [CrossRef]
- De Flora, S.; Balansky, R.; La Maestra, S. Rationale for the use of N -acetylcysteine in both prevention and adjuvant therapy of COVID-19. FASEB J. 2020, 34, 13185–13193. [Google Scholar] [CrossRef] [PubMed]
- Turell, L.; Radi, R.; Alvarez, B. The thiol pool in human plasma: The central contribution of albumin to redox processes. Free. Radic. Biol. Med. 2013, 65, 244–253. [Google Scholar] [CrossRef] [Green Version]
- Bharadwaj, S.; Ginoya, S.; Tandon, P.; Gohel, T.D.; Guirguis, J.; Vallabh, H.; Jevenn, A.; Hanouneh, I. Malnutrition vs nutritional assessment. Gastroenterol Rep. 2016, 4, 272–280. [Google Scholar]
- Serafini, M.; Del Rio, D. Understanding the association between dietary antioxidants, redox status and disease: Is the Total Antioxidant Capacity the right tool? Redox Rep. 2004, 9, 145–152. [Google Scholar] [CrossRef]
- Bartosz, G. Non-enzymatic antioxidant capacity assays: Limitations of use in biomedicine. Free. Radic. Res. 2010, 44, 711–720. [Google Scholar] [CrossRef] [PubMed]
- Carrión-García, C.J.; Guerra-Hernández, E.J.; García-Villanova, B.; Serafini, M.; Sánchez, M.-J.; Amiano, P.; Molina-Montes, E. Plasma Non-Enzymatic Antioxidant Capacity (NEAC) in Relation to Dietary NEAC, Nutrient Antioxidants and Inflammation-Related Biomarkers. Antioxidants 2020, 9, 301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Z.; Rose, A.H.; Hoffmann, P.R. The Role of Selenium in Inflammation and Immunity: From Molecular Mechanisms to Therapeutic Opportunities. Antioxid. Redox Signal 2012, 16, 705–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moghaddam, A.; Heller, R.A.; Sun, Q.; Seelig, J.; Cherkezov, A.; Seibert, L.; Hackler, J.; Seemann, P.; Diegmann, J.; Pilz, M.; et al. Selenium Deficiency Is Associated with Mortality Risk from COVID-19. Nutrients 2020, 12, 2098. [Google Scholar] [CrossRef] [PubMed]
- Gaetke, L.M.; Chow, C.K. Copper toxicity, oxidative stress and antioxidant nutrients. Toxicology 2003, 189, 147–163. [Google Scholar] [CrossRef]
- Prasad, A.S. Zinc in Human Health: Effect of Zinc on Immune Cells. Mol. Med. 2008, 14, 353–357. [Google Scholar] [CrossRef]
- Jarosz, M.; Olbert, M.; Wyszogrodzka, G.; Młyniec, K.; Librowski, T. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology 2017, 25, 11–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, C.-H.; Chen, P.-C.; Yeh, M.-S.; Hsiung, D.-Y.; Wang, C.-L. Cu/Zn ratios are associated with nutritional status, oxidative stress, inflammation, and immune abnormalities in patients on peritoneal dialysis. Clin. Biochem. 2011, 44, 275–280. [Google Scholar] [CrossRef]
- Ozturk, P.; Kurutas, E.B.; Ataseven, A. Copper/zinc and copper/selenium ratios, and oxidative stress as biochemical markers in recurrent aphthous stomatitis. J. Trace Elements Med. Biol. 2013, 27, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Malavolta, M.; Piacenza, F.; Basso, A.; Giacconi, R.; Costarelli, L.; Mocchegiani, E. Serum copper to zinc ratio: Relationship with aging and health status. Mech. Ageing Dev. 2015, 151, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Milanino, R.; Marrella, M.; Gasperini, R.; Pasqualicchio, M.; Velo, G. Copper and zinc body levels in inflammation: An overview of the data obtained from animal and human studies. Inflamm. Res. 1993, 39, 195–209. [Google Scholar] [CrossRef]
- Mezzetti, A.; Pierdomenico, S.D.; Costantini, F.; Romano, F.; De Cesare, D.; Cuccurullo, F.; Imbastaro, T.; Riario-Sforza, G.; Di Giacomo, F.; Zuliani, G.; et al. Copper/zinc ratio and systemic oxidant load: Effect of aging and aging-related degenerative diseases. Free. Radic. Biol. Med. 1998, 25, 676–681. [Google Scholar] [CrossRef]
- Guo, C.-H.; Wang, C.-L. Effects of Zinc Supplementation on Plasma Copper/Zinc Ratios, Oxidative Stress, and Immunological Status in Hemodialysis Patients. Int. J. Med. Sci. 2013, 10, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Yang, T.; Guo, S.; Li, X.; Chen, L.; Wang, T.; Wen, F.-Q. Increased Serum ox-LDL Levels Correlated with Lung Function, Inflammation, and Oxidative Stress in COPD. Mediat. Inflamm. 2013, 2013, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Hulthe, J. Antibodies to oxidized LDL in atherosclerosis development—clinical and animal studies. Clin. Chim. Acta 2004, 348, 1–8. [Google Scholar] [CrossRef]
- Gozalbo-Rovira, R.; Gimenez, E.; Latorre, V.; Francés-Gómez, C.; Albert, E.; Buesa, J.; Marina, A.; Blasco, M.L.; Signes-Costa, J.; Rodríguez-Díaz, J.; et al. SARS-CoV-2 antibodies, serum inflammatory biomarkers and clinical severity of hospitalized COVID-19 patients. J. Clin. Virol. 2020, 131, 104611. [Google Scholar] [CrossRef] [PubMed]
- Loria, V.; Dato, I.; Graziani, F.; Biasucci, L.M. Myeloperoxidase: A New Biomarker of Inflammation in Ischemic Heart Disease and Acute Coronary Syndromes. Mediat. Inflamm. 2008, 2008, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Vlasova, I.I.; Sokolov, A.V.; Kostevich, V.A.; Mikhalchik, E.V.; Vasilyev, V.B. Myeloperoxidase-Induced Oxidation of Albumin and Ceruloplasmin: Role of Tyrosines. Biochemestry (Moscow) 2019, 84, 652–662. [Google Scholar] [CrossRef] [PubMed]
- Rahmani-Kukia, N.; Abbasi, A.; Pakravan, N.; Hassan, Z.M. Measurement of oxidized albumin: An opportunity for diagnoses or treatment of COVID-19. Bioorganic Chem. 2020, 105, 104429. [Google Scholar] [CrossRef]
- Schorah, C.J.; Downing, C.; Piripitsi, A.; Gallivan, L.; Al-Hazaa, A.H.; Sanderson, M.J.; Bodenham, A. Total vitamin C, ascorbic acid, and dehydroascorbic acid concentrations in plasma of critically ill patients. Am. J. Clin. Nutr. 1996, 63, 760–765. [Google Scholar] [CrossRef]
- Metnitz, P.G.H.; Bartens, C.; Fischer, M.; Fridrich, P.; Steltzer, H.; Druml, W. Antioxidant status in patients with acute respiratory distress syndrome. Intensiv. Care Med. 1999, 25, 180–185. [Google Scholar] [CrossRef]
- Ruocco, M.A.C.; Cechinatti, E.D.P.; Barbosa, F.; Navarro, A.M. Zinc and selenium status in critically ill patients according to severity stratification. Nutrients 2018, 45, 85–89. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Xie, B.; Hashimoto, K. Current status of potential therapeutic candidates for the COVID-19 crisis. Brain Behav. Immun. 2020, 87, 59–73. [Google Scholar] [CrossRef]
- Carr, A.C. Micronutrient status of COVID-19 patients: A critical consideration. Crit. Care 2020, 24, 349. [Google Scholar] [CrossRef]
- Jing-Zhang, W.; Rui-Ying, Z.; Bai, J. An anti-oxidative therapy for ameliorating cardiac injuries of critically ill COVID-19-infected patients. Int. J. Cardiol. 2020, 312, 137–138. [Google Scholar]
- Loffredo, L.; Violi, F. COVID-19 and cardiovascular injury: A role for oxidative stress and antioxidant treatment? Int. J. Cardiol. 2020, 312, 136. [Google Scholar] [CrossRef]
- Kassi, E.N.; Papavassiliou, K.A.; Papavassiliou, A.G. Defective Anti-oxidant System: An Aggravating Factor for COVID-19 Patients Outcome? Arch. Med Res. 2020, 51, 726–727. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, Y. Potential interventions for novel coronavirus in China: A systematic review. J. Med Virol. 2020, 92, 479–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marseglia, L.; Manti, S.; D’Angelo, G.; Nicotera, A.; Parisi, E.; Di Rosa, G.; Gitto, E.; Arrigo, T. Oxidative Stress in Obesity: A Critical Component in Human Diseases. Int. J. Mol. Sci. 2014, 16, 378–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oguntibeju, O.O. Type 2 diabetes mellitus, oxidative stress and inflammation: Examining the links. Int. J. Physiol. Pathophysiol. Pharmacology 2019, 11, 45–63. [Google Scholar]
- González, J.; Valls, N.; Brito, R.; Rodrigo, R. Essential hypertension and oxidative stress: New insights. World J. Cardiol. 2014, 6, 353–366. [Google Scholar] [CrossRef]
- Canoy, D.; Wareham, N.; Welch, A.; Bingham, S.; Luben, R.; Day, N.; Khaw, K.-T. Plasma ascorbic acid concentrations and fat distribution in 19 068 British men and women in the European Prospective Investigation into Cancer and Nutrition Norfolk cohort study. Am. J. Clin. Nutr. 2005, 82, 1203–1209. [Google Scholar] [CrossRef] [Green Version]
- Sinclair, A.; Taylor, P.; Lunec, J.; Girling, A.; Barnett, A. Low Plasma Ascorbate Levels in Patients with Type 2 Diabetes Mellitus Consuming Adequate Dietary Vitamin C. Diabet. Med. 1994, 11, 893–898. [Google Scholar] [CrossRef]
- Wilson, R.; Willis, J.; Gearry, R.; Skidmore, P.; Fleming, E.; Frampton, C.; Carr, A. Inadequate Vitamin C Status in Prediabetes and Type 2 Diabetes Mellitus: Associations with Glycaemic Control, Obesity, and Smoking. Nutrients 2017, 9, 997. [Google Scholar] [CrossRef]
- Kurl, S.; Tuomainen, T.; Laukkanen, J.A.; Nyyssonen, K.; Lakka, T.; Sivenius, J.; Salonen, J. Plasma Vitamin C Modifies the Association Between Hypertension and Risk of Stroke. Stroke 2002, 33, 1568–1573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Body Weight Considered for Nutritional Calculations | |
---|---|
Eutrophic patients: * < 75y: BMI 18.5–25 kg/m2 * ≥ 75y: BMI 23–28 kg/m2 | Actual weight: measured in hospital or obtained from patient’s recent medical history |
Underweight patients | * IBW = expected weight for * BMI = 18.5 kg/m2 if age < 75y * BMI = 23 kg/m2 if age ≥ 75y |
Overweight patients | IBW = expected weight for * BMI = 25 kg/m2 if age < 75y * BMI = 28 kg/m2 if age ≥ 75y |
Obese patients: * < 75y: BMI ≥ 30 kg/m2 * ≥ 75y: BMI ≥ 30 kg/m2 | Adjusted IBW = ** IBW + 0.25 × (actual weight − IBW) |
Nutritional targets | |
Eutrophic, underweight and overweight patients | Energy: 25 kcal/kg/d Protein: 1.2 g/kg/d (1.7 g/kg/d if CVVH) |
Obese patients | Energy: 20 kcal/kg/d Protein: 2 g/kg/d |
Variable | Summary Statistics |
---|---|
Age (y) | 64 (53–71) |
Sex ratio (M/F) | 8/1 |
Weight (kg) | 90 (81–102) |
Height (cm) | 173 (169–181) |
BMI (kg/m2) | 29.4 (28.4–32.3) |
Active smoking, n (%) | 1 (11) |
Active alcoholism, n (%) | 1 (11) |
Pre-existing medical conditions: | |
- Type 2 diabetes, n (%) | 6 (66) |
- Arterial hypertension, n (%) | 6 (66) |
- Gastric sleeve surgery | 1 (11) |
SAPS II | 33 (25–45) |
ICU LOS (d) | 54 (42–65.5) |
Hospital LOS (d) | 63 (49–91) |
Mechanical ventilation duration (d) | 38 (20–49) |
CVVH during ICU stay, n (%) | 1 (11) |
Enteral nutrition during ICU stay, n (%) | 9 (100) |
Supplemental parenteral nutrition during ICU stay, n (%) | 3 (33) |
Variable | Summary Statistics |
---|---|
Cu (mg/day) | 1.4 (1–1.8) |
Zn (mg/day) | 12.7 (8.6–15.7) |
Se (µg/day) | 72.3 (46.8–79.9) |
Vitamin C (mg/day) | 124.2 (94.6–172.1) |
Vitamin E (mg/day) | 17 (12.6–21.5) |
Vitamin A (µg/day) | 1012 (712.8–1182) |
Lipids (g/day) | 42.7 (27.8–54.2) |
Energy (kcal/day) | 1263 (899.8–1389) |
Proteins (g/day) | 65.2 (47.6–77.7) |
Variable | Reference Interval | Median (Range) | k | p Value |
---|---|---|---|---|
Antioxidants | ||||
vitamin C (µg/mL) | 6.21–15.18 | 3.91 (3.06–6.14) | 9 * | 0.004 |
vitamin E as α-tocopherol (µg/mL) | 8.60–19.24 | 17.90 (13.3–21.1) | 3 * | 1 |
vitamin E/cholesterol (µg/g) | 4.4–7.0 | 10.92 (9.14–13.16) | 0 * | 1 |
α-tocopherol (µg/mL) | 0.39–2.42 | 0.84 (0.57–1.28) | 8 * | 0.040 |
β-carotene (mg/L) | 0.06–0.68 | 0.14 (0.11–0.28) | 9 * | 0.004 |
thiol proteins (µM) | 314–516 | 250 (204–258) | 9 * | 0.004 |
glutathione (µM) | 717–1110 | 629 (508–697) | 8 * | 0.040 |
oxidized glutathione (µM) | 0.96–10 | <0.96 | 0 ** | 1 |
PAOT® score (U/L) | 1.46–36.74 | 10.52 (6.63–10.77) | 9 * | 0.004 |
glutathione peroxidase (UI/g Hb) | 20–56 | 69.55 (61.90–78.27) | 9 ** | 0.004 |
albumin (g/l) | 32–46 | 28 (27.5–33.0) | 8 * | 0.040 |
Trace elements | ||||
copper (mg/mL) | 0.70–1.10 | 1.16 (0.66–1.47) | 5 ** | 1 |
zinc (mg/mL) | 0.70–1.20 | 0.84 (0.81–1.09) | 5 * | 1 |
selenium (µg/L) | 73–110 | 74 (59–103) | 5 * | 1 |
Biomarkers of lipid peroxidation | ||||
ROOH (µM) | 0–432 | 674 (181–1415) | 6 ** | 0.50 |
ox-LDL (ng/mL) | 28–70 | 50 (36–70) | 5 ** | 1 |
Ab-ox-LDL (IU/L) | 200–600 | 306 (64–1200) | 4 * | 1 |
Sources of ROS production | ||||
copper/zinc ratio | 1.00–1.17 | 1.55 (0.79–1.69) | 5 ** | 1 |
white blood cells (103/mm3) | 4.60–10.10 | 8.42 (7.07–13.03) | 6 ** | 0.50 |
neutrophils (%) | 42–71 | 75.6 (60.8–86.3) | 8 ** | 0.04 |
myeloperoxidase (ng/mL) | 27–72 | 88 (60–191) | 8 ** | 0.04 |
C-reactive protein (mg/L) | 0–5 | 32.8 (9.6–59.8) | 8 ** | 0.04 |
Association | Correlation | p-Value | |
---|---|---|---|
Cu | ROOH | 0.95 | <0.001 |
Cu/Zn | CRP | 0.82 | 0.007 |
PAOT®score | Vitamin E/cholesterol | 0.82 | 0.007 |
albumin | MPO | −0.75 | 0.020 |
Cu | γ-tocopherol | −0.75 | 0.020 |
GSH | PSH | 0.73 | 0.026 |
Cu | Cu/Zn | 0.72 | 0.030 |
γ-tocopherol | ROOH | −0.63 | 0.067 |
PAOT®score | Zn | 0.63 | 0.067 |
CRP | Vitamin E | −0.61 | 0.081 |
MPO | PSH | −0.61 | 0.081 |
Cu/Zn | ROOH | 0.58 | 0.099 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pincemail, J.; Cavalier, E.; Charlier, C.; Cheramy–Bien, J.-P.; Brevers, E.; Courtois, A.; Fadeur, M.; Meziane, S.; Goff, C.L.; Misset, B.; et al. Oxidative Stress Status in COVID-19 Patients Hospitalized in Intensive Care Unit for Severe Pneumonia. A Pilot Study. Antioxidants 2021, 10, 257. https://doi.org/10.3390/antiox10020257
Pincemail J, Cavalier E, Charlier C, Cheramy–Bien J-P, Brevers E, Courtois A, Fadeur M, Meziane S, Goff CL, Misset B, et al. Oxidative Stress Status in COVID-19 Patients Hospitalized in Intensive Care Unit for Severe Pneumonia. A Pilot Study. Antioxidants. 2021; 10(2):257. https://doi.org/10.3390/antiox10020257
Chicago/Turabian StylePincemail, Joël, Etienne Cavalier, Corinne Charlier, Jean-Paul Cheramy–Bien, Eric Brevers, Audrey Courtois, Marjorie Fadeur, Smail Meziane, Caroline Le Goff, Benoît Misset, and et al. 2021. "Oxidative Stress Status in COVID-19 Patients Hospitalized in Intensive Care Unit for Severe Pneumonia. A Pilot Study" Antioxidants 10, no. 2: 257. https://doi.org/10.3390/antiox10020257
APA StylePincemail, J., Cavalier, E., Charlier, C., Cheramy–Bien, J. -P., Brevers, E., Courtois, A., Fadeur, M., Meziane, S., Goff, C. L., Misset, B., Albert, A., Defraigne, J. -O., & Rousseau, A. -F. (2021). Oxidative Stress Status in COVID-19 Patients Hospitalized in Intensive Care Unit for Severe Pneumonia. A Pilot Study. Antioxidants, 10(2), 257. https://doi.org/10.3390/antiox10020257