Ethanol Extract of Yak-Kong Fermented by Lactic Acid Bacteria from a Korean Infant Markedly Reduces Matrix Metallopreteinase-1 Expression Induced by Solar Ultraviolet Irradiation in Human Keratinocytes and a 3D Skin Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Isolation and Identification of Probiotic Strains from Infant Feces
2.3. Fermentation of Yak-Kong
2.4. Cell Culture and sUV Irradiation
2.5. Cell Viability
2.6. Western Blottin Assay
2.7. Gelatin Zymography
2.8. RNA Preparation and Real-Time Quantitative PCR
2.9. Luciferase Reporter Gene Assay
2.10. Assay of DPPH Scavenging Activity
2.11. 3D Artificial Skin Culture and Treatments
2.12. Immunocytochemistry
2.13. Assay of Total Phenolic Phytochemical Content
2.14. Ultra Performance Liquid Chromatography and Time-of-Flight Mass Spectrometry (UPLC−TOF-MS) Analysis
2.15. Metabolomics Data Processing
2.16. Statistical Analyses
3. Results
3.1. EFY More Effectively Suppresses sUV-Induced MMP-1 Secretion Than UFY and REF
3.2. EFY Reduces sUV-Induced MMP-1 Protein Secretion and mRNA Expression
3.3. EFY Suppresses sUV-Induced AP-1 Transactivation in HaCaT Cells
3.4. EFY Downregulates sUV-Induced Phosphorylation of ERK1/2 and JNK1/2 in HaCaT Cells
3.5. EFY Prevents sUV-Induced Destruction of the Epidermis and Degradation of Collagen in a 3D Culture Skin Model
3.6. EFY Has Higher Antioxidant Activity and Total Phenolic Content Than UFY
3.7. Comparison of Yak-Kong Metabolites before and after Fermentation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Poljšak, B.; Dahmane, R.G.; Godić, A. Intrinsic skin aging: The role of oxidative stress. Acta Dermatovenerol. Alpina Pannonica Adriat. 2012, 21, 33–36. [Google Scholar]
- Uitto, J. The role of elastin and collagen in cutaneous aging: Intrinsic aging versus photoexposure. J. Drugs Dermatol. 2008, 7, s12–s16. [Google Scholar]
- Gilchrest, B.A. Skin aging and photoaging. Dermatol. Nurs. 1990, 2, 79–82. [Google Scholar]
- Gonzaga, E.R. Role of UV Light in Photodamage, Skin Aging, and Skin Cancer. Am. J. Clin. Dermatol. 2009, 10, 19–24. [Google Scholar] [CrossRef]
- Bosch, R.; Philips, N.; Pérez, J.S.; Juarranz, Á.; Devmurari, A.; Chalensouk-Khaosaat, J.; González, S. Mechanisms of Photoaging and Cutaneous Photocarcinogenesis, and Photoprotective Strategies with Phytochemicals. Antioxidants 2015, 4, 248–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, Y.; Obayashi, K.; Okano, Y.; Satoh, Y.; Masaki, H.; Funasaka, Y. Efficacy of thermal stimulation on wrinkle removal via the enhancement of collagen synthesis. J. Dermatol. Sci. Suppl. 2006, 2, S39–S49. [Google Scholar] [CrossRef]
- Lee, H.; Sung, J.; Kim, Y.; Jeong, H.S.; Lee, J. Protective Effects of Unsaponifiable Matter from Perilla Seed Meal on UVB-induced Damages and the Underlying Mechanisms in Human Skin Fibroblasts. Antioxidants 2019, 8, 644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berneburg, M.; Plettenberg, H.; Krutmann, J. Photoaging of human skin. Photodermatol. Photoimmunol. Photomed. 2000, 16, 239–244. [Google Scholar] [CrossRef]
- Rosch, R.; Klinge, U.; Si, Z.; Junge, K.; Klosterhalfen, B.; Schumpelick, V. A role for the collagen I/III and MMP-1/-13 genes in primary inguinal hernia? BMC Med. Genet. 2002, 3, 2. [Google Scholar] [CrossRef] [Green Version]
- Brennan, M.; Bhatti, H.; Nerusu, K.C.; Bhagavathula, N.; Kang, S.; Fisher, G.J.; Varani, J.; Voorhees, J.J. Matrix metallopro-teinase-1 is the major collagenolytic enzyme responsible for collagen damage in UV-irradiated human skin. Photochem. Photobiol. 2003, 78, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Liacini, A.; Sylvester, J.; Li, W.Q.; Zafarullah, M. Inhibition of interleukin-1-stimulated MAP kinases, activating protein-1 (AP-1) and nuclear factor kappa B (NF-κB) transcription factors down-regulates matrix metalloproteinase gene expression in articular chondrocytes. Matrix Biol. 2002, 21, 251–262. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Maity, N.; Nema, N.K.; Sarkar, B.K. Bioactive compounds from natural resources against skin aging. Phytomedicine 2011, 19, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Berneburg, M.; Grether-Beck, S.; Kürten, V.; Ruzicka, T.; Briviba, K.; Sies, H.; Krutmann, J. Singlet Oxygen Mediates the UVA-induced Generation of the Photoaging-associated Mitochondrial Common Deletion. J. Biol. Chem. 1999, 274, 15345–15349. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.-J.; Kim, K.-S. Functional and chemical composition of Hwanggumkong, Yakong and Huktae. Korean J. Food Cook. Sci. 2005, 21, 844–849. [Google Scholar]
- Myung, J.E.; Hwang, I.K. Functional components and antioxidative activities of soybean extracts. Korea Soybean Digest. 2008, 25, 23–29. [Google Scholar]
- Lee, C.C.; Dudonné, S.; Dubé, P.; Desjardins, Y.; Kim, J.H.; Kim, J.S.; Kim, J.-E.; Park, J.H.Y.; Lee, K.W.; Lee, C.Y.J.F.c. Com-prehensive phenolic composition analysis and evaluation of Yak-Kong soybean (Glycine max) for the prevention of athero-sclerosis. Food Chem. 2017, 234, 486–493. [Google Scholar] [CrossRef] [PubMed]
- Jeon, Y.-H.; Won, J.-H.; Kwon, J.-E.; Kim, M.-R. Antioxidant Activity and Cytotoxic Effect of an Ethanol Extract from Seoritae. Korean J. Food Cook. Sci. 2011, 27, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.-H.; Kim, K.-J. Experimental studies about the inhibitory effect on tyrosinase and elastase activities by various herb medicines. J. Korean Med. Ophthalmol. Otolaryngol. Dermatol. 2009, 22, 82–91. [Google Scholar]
- Leroy, F.; De Vuyst, L. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol. 2004, 15, 67–78. [Google Scholar] [CrossRef]
- Parvez, S.; Malik, K.; Kang, S.A.; Kim, H.-Y. Probiotics and their fermented food products are beneficial for health. J. Appl. Microbiol. 2006, 100, 1171–1185. [Google Scholar] [CrossRef] [PubMed]
- Sanjukta, S.; Rai, A.K.; Muhammed, A.; Jeyaram, K.; Talukdar, N.C. Enhancement of antioxidant properties of two soybean varieties of Sikkim Himalayan region by proteolytic Bacillus subtilis fermentation. J. Funct. Foods 2015, 14, 650–658. [Google Scholar] [CrossRef]
- Sirilun, S.; Sivamaruthi, B.S.; Kesika, P.; Peerajan, S.; Chaiyasut, C. Lactic acid bacteria mediated fermented soybean as a potent nutraceutical candidate. Asian Pac. J. Trop. Biomed. 2017, 7, 930–936. [Google Scholar] [CrossRef]
- Dowarah, R.; Verma, A.K.; Agarwal, N.; Singh, P.; Singh, B.R. Selection and characterization of probiotic lactic acid bacteria and its impact on growth, nutrient digestibility, health and antioxidant status in weaned piglets. PLoS ONE 2018, 13, e0192978. [Google Scholar] [CrossRef]
- Kim, M.-S.; Kim, Y.K.; Eun, H.C.; Cho, K.H.; Chung, J.H. All-Trans Retinoic Acid Antagonizes UV-Induced VEGF Production and Angiogenesis via the Inhibition of ERK Activation in Human Skin Keratinocytes. J. Investig. Dermatol. 2006, 126, 2697–2706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afaq, F.; Syed, D.N.; Malik, A.; Hadi, N.; Sarfaraz, S.; Kweon, M.-H.; Khan, N.; Abu Zaid, M.; Mukhtar, H. Delphinidin, an Anthocyanidin in Pigmented Fruits and Vegetables, Protects Human HaCaT Keratinocytes and Mouse Skin Against UVB-Mediated Oxidative Stress and Apoptosis. J. Investig. Dermatol. 2007, 127, 222–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shorrocks, J.; Paul, N.D.; McMillan, T.J. The Dose Rate of UVA Treatment Influences the Cellular Response of HaCaT Keratinocytes. J. Investig. Dermatol. 2008, 128, 685–693. [Google Scholar] [CrossRef]
- Marionnet, C.; Tricaud, C.; Bernerd, F. Exposure to Non-Extreme Solar UV Daylight: Spectral Characterization, Effects on Skin and Photoprotection. Int. J. Mol. Sci. 2014, 16, 68–90. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.J.; Kim, J.-E.; Lim, T.-G.; Jeong, E.H.; Park, G.; Kang, N.J.; Park, J.-S.; Yeom, M.-H.; Oh, D.K.; Bode, A.M.; et al. 20-O-β-d-Glucopyranosyl-20(S)-Protopanaxadiol Suppresses UV-Induced MMP-1 Expression Through AMPK-Mediated mTOR Inhibition as a Downstream of the PKA-LKB1 Pathway. J. Cell. Biochem. 2014, 115, 1702–1711. [Google Scholar] [CrossRef]
- Kim, S.; Kim, Y.; Lee, Y.; Chung, J.H. Ceramide accelerates ultraviolet-induced MMP-1 expression through JAK1/STAT-1 pathway in cultured human dermal fibroblasts. J. Lipid Res. 2008, 49, 2571–2581. [Google Scholar] [CrossRef] [Green Version]
- Ha, S.J.; Lee, C.J.; Jung, S.K. Preventive effect of Ephedra sinica extract on UVB-induced COX-2 and MMP-1 expression. Food Sci. Biotechnol. 2018, 27, 1157–1163. [Google Scholar] [CrossRef]
- PLoS ONE Editors. Retraction: Anti-Wrinkle Effect of Magnesium Lithospermate B from Salvia miltiorrhiza BUNGE: Inhibition of MMPs via NF-kB Signaling. PLoS ONE 2019, 14, e0216473. [Google Scholar] [CrossRef]
- Sander, C.S.; Chang, H.; Hamm, F.; Elsner, P.; Thiele, J.J. Role of oxidative stress and the antioxidant network in cu-taneous carcinogenesis. Int. J. Dermatol. 2004, 43, 326–335. [Google Scholar] [CrossRef]
- Scharffetter–Kochanek, K.; Brenneisen, P.; Wenk, J.; Herrmann, G.; Ma, W.; Kuhr, L.; Meewes, C.; Wlaschek, M. Photoaging of the skin from phenotype to mechanisms. Exp. Gerontol. 2000, 35, 307–316. [Google Scholar] [CrossRef]
- Fisher, G.J.; Wang, Z.; Datta, S.C.; Varani, J.; Kang, S.; Voorhees, J.J. Pathophysiology of Premature Skin Aging Induced by Ultraviolet Light. N. Engl. J. Med. 1997, 337, 1419–1429. [Google Scholar] [CrossRef]
- Palmer, D.M.; Kitchin, J.S. Oxidative damage, skin aging, antioxidants and a novel antioxidant rating system. J. Drugs Dermatol. 2010, 9, 11–15. [Google Scholar] [PubMed]
- Hong, K.-J.; Lee, C.-H.; Kim, S.W. Aspergillus oryzae GB-107 fermentation improves nutritional quality of food soy-beans and feed soybean meals. J. Med. Food 2004, 7, 430–435. [Google Scholar] [CrossRef] [PubMed]
- Sanjukta, S.; Rai, A.K. Production of bioactive peptides during soybean fermentation and their potential health benefits. Trends Food Sci. Technol. 2016, 50, 1–10. [Google Scholar] [CrossRef]
- Malashree, L.; Angadi, V.; Yadav, S.; Prabha, R. “Postbiotics”—One step ahead of probiotics. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 2049–2053. [Google Scholar] [CrossRef]
- Wishart, D.S.; Tzur, D.; Knox, C.; Eisner, R.; Guo, A.C.; Young, N.; Cheng, D.; Jewell, K.; Arndt, D.; Sawhney, S.; et al. HMDB: The Human Metabolome Database. Nucleic Acids Res. 2007, 35, D521–D526. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vázquez-Fresno, R.; Sajed, T.; Johnson, D.; Allison, P.; Karu, N.; et al. HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res. 2018, 46, D608–D617. [Google Scholar] [CrossRef] [PubMed]
- Działo, M.; Mierziak, J.; Korzun, U.; Preisner, M.; Szopa, J.; Kulma, A. The Potential of Plant Phenolics in Prevention and Therapy of Skin Disorders. Int. J. Mol. Sci. 2016, 17, 160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, H.; Son, K.H.; Chang, H.W.; Kang, S.S.; Kim, H.P. Inhibition of chronic skin inflammation by topical anti-inflammatory flavonoid preparation, Ato Formula. Arch. Pharmacal. Res. 2006, 29, 503–507. [Google Scholar] [CrossRef]
- Popoola, O.K.; Marnewick, J.; Rautenbach, F.; Ameer, F.; Iwuoha, E.; Hussein, A.A. Inhibition of Oxidative Stress and Skin Aging-Related Enzymes by Prenylated Chalcones and Other Flavonoids from Helichrysum teretifolium. Molecules 2015, 20, 7143–7155. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Shi, Y.; Dang, Y.; Zhai, Y.; Ye, X. Daidzein stimulates collagen synthesis by activating the TGF-β/smad signal pathway. Australas. J. Dermatol. 2014, 56, e7–e14. [Google Scholar] [CrossRef] [PubMed]
- Irrera, N.; Pizzino, G.; D’Anna, R.; Vaccaro, M.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Dietary Management of Skin Health: The Role of Genistein. Nutrients 2017, 9, 622. [Google Scholar] [CrossRef] [PubMed]
- Seo, G.; Park, S.; Huh, J.S.; Cho, M. The protective effect of glycitin on UV-induced skin photoaging in human primary dermal fibroblast. J. Korean Soc. Appl. Biol. Chem. 2014, 57, 463–468. [Google Scholar] [CrossRef]
- Park, J.-S.; Park, H.Y.; Kim, N.H.; Kim, D.H.; Kim, H.K. ortho-Dihydroxyisoflavone derivatives from aged Doenjang (Korean fermented soypaste) and its radical scavenging activity. Bioorganic Med. Chem. Lett. 2008, 18, 5006–5009. [Google Scholar] [CrossRef]
- Lee, D.E.; Lee, K.W.; Byun, S.; Jung, S.K.; Song, N.; Lim, S.H.; Heo, Y.-S.; Kim, J.E.; Kang, N.J.; Kim, B.Y.; et al. 7,3′,4′-Trihydroxyisoflavone, a Metabolite of the Soy Isoflavone Daidzein, Suppresses Ultraviolet B-induced Skin Cancer by Targeting Cot and MKK4. J. Biol. Chem. 2011, 286, 14246–14256. [Google Scholar] [CrossRef] [Green Version]
- Lim, T.-G.; Kim, J.-E.; Lee, S.-Y.; Park, J.; Yeom, M.H.; Chen, H.; Bode, A.M.; Surh, Y.-J.; Lee, K.W. The Daidzein Metabolite, 6,7,4’-Trihydroxyisoflavone, Is a Novel Inhibitor of PKCα in Suppressing Solar UV-Induced Matrix Metalloproteinase 1. Int. J. Mol. Sci. 2014, 15, 21419–21432. [Google Scholar] [CrossRef]
- Lim, T.-G.; Kim, Y.-A.; Kim, J.H.; Baek, S.; Lee, S.-Y.; Lee, C.C.; Chen, H.; Kim, J.R.; Kwon, J.Y.; Bode, A.M.; et al. PKCι is a target of 7,8,4′-trihydroxyisoflavone for the suppression of UVB-induced MMP-1 expression. Exp. Dermatol. 2017, 27, 449–452. [Google Scholar] [CrossRef] [Green Version]
- Muthusamy, V.; Piva, T.J. The UV response of the skin: A review of the MAPK, NFκB and TNFα signal transduction pathways. Arch. Dermatol. Res. 2009, 302, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Ma, W.-Y.; Bowden, G.T.; Dong, Z. Ultraviolet B-induced Activated Protein-1 Activation Does Not Require Epidermal Growth Factor Receptor but Is Blocked by a Dominant Negative PKCλ/ι. J. Biol. Chem. 1996, 271, 31262–31268. [Google Scholar] [CrossRef] [Green Version]
- Matsui, M.S.; Wang, N.; DeLeo, V.A. Ultraviolet radiation B induces differentiation and protein kinase C in normal human epidermal keratinocytes. Photodermatol. Photoimmunol. Photomed. 1996, 12, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.-S. Isolation, Bioactivity, and Production of ortho-Hydroxydaidzein and ortho-Hydroxygenistein. Int. J. Mol. Sci. 2014, 15, 5699–5716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuura, M.; Obata, A. β-Glucosidases from Soybeans Hydrolyze Daidzin and Genistin. J. Food Sci. 1993, 58, 144–147. [Google Scholar] [CrossRef]
- Kim, H.H.; Shin, C.M.; Park, C.-H.; Kim, K.H.; Cho, K.H.; Eun, H.C.; Chung, J.H. Eicosapentaenoic acid inhibits UV-induced MMP-1 expression in human dermal fibroblasts. J. Lipid Res. 2005, 46, 1712–1720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kendall, A.C.; Kiezel-Tsugunova, M.; Brownbridge, L.C.; Harwood, J.L.; Nicolaou, A. Lipid functions in skin: Differential effects of n-3 polyunsaturated fatty acids on cutaneous ceramides, in a human skin organ culture model. Biochim. Biophys. Acta (BBA) 2017, 1859, 1679–1689. [Google Scholar] [CrossRef]
- Permatasari, F.; Zhou, B.; Luo, D. Epidermal barrier: Adverse and beneficial changes induced by ultraviolet B irradiation depending on the exposure dose and time. Exp. Ther. Med. 2013, 6, 287–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duckney, P.; Wong, H.K.; Serrano, J.; Yaradou, D.; Oddos, T.; Stamatas, G.N. The role of the skin barrier in modulating the effects of common skin microbial species on the inflammation, differentiation and proliferation status of epidermal keratinocytes. BMC Res. Notes 2013, 6, 474. [Google Scholar] [CrossRef] [Green Version]
- Boukamp, P.; Petrussevska, R.T.; Breitkreutz, D.; Hornung, J.; Markham, A.; Fusenig, N.E. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J. Cell Biol. 1988, 106, 761–771. [Google Scholar] [CrossRef] [Green Version]
- Schoop, V.M.; Fusenig, N.E.; Mirancea, N. Epidermal Organization and Differentiation of HaCaT Keratinocytes in Organotypic Coculture with Human Dermal Fibroblasts. J. Investig. Dermatol. 1999, 112, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Lehman, T.A.; Modali, R.; Boukamp, P.; Stanek, J.; Bennett, W.P.; Welsh, J.A.; Metcalf, R.A.; Stampfer, M.R.; Fusenig, N.; Rogan, E.M.; et al. p53 Mutations in human immortalized epithelial cell lines. Carcinogenesis 1993, 14, 833–839. [Google Scholar] [CrossRef] [PubMed]
- Brash, D.E.; Rudolph, J.A.; Simon, J.A.; Lin, A.; McKenna, G.J.; Baden, H.P.; Halperin, A.J.; Ponten, J. A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc. Natl. Acad. Sci. USA 1991, 88, 10124–10128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breitkreutz, D.; Boukamp, P.; Hülsen, A.; Ryle, C.; Stark, H.-J.; Smola, H.; Thiekötter, G.; Fusenig, N.E. Human Keratinocyte Cell Lines. In Pharmaceutical Applications of Cell and Tissue Culture to Drug Transport; Springer Nature: Berlin/Heidelberg, Germany, 1991; pp. 283–296. [Google Scholar]
- Lorz, L.R.; Yoo, B.C.; Kim, M.-Y.; Cho, J.Y. Anti-Wrinkling and Anti-Melanogenic Effect of Pradosia mutisii Methanol Extract. Int. J. Mol. Sci. 2019, 20, 1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karapetsas, A.; Voulgaridou, G.-P.; Konialis, M.; Tsochantaridis, I.; Kynigopoulos, S.; Lambropoulou, M.; Stavropoulou, M.-I.; Stathopoulou, K.; Aligiannis, N.; Bozidis, P.; et al. Propolis Extracts Inhibit UV-Induced Photodamage in Human Experimental In Vitro Skin Models. Antioxidants 2019, 8, 125. [Google Scholar] [CrossRef] [Green Version]
- Cantòn, I.; Cole, D.; Kemp, E.; Watson, P.; Chunthapong, J.; Ryan, A.; MacNeil, S.; Haycock, J.W. Development of a 3D human in vitro skin co-culture model for detecting irritants in real-time. Biotechnol. Bioeng. 2010, 106, 794–803. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, H.; Seo, J.W.; Lee, T.K.; Kim, J.H.; Kim, J.-E.; Lim, T.-G.; Park, J.H.Y.; Huh, C.S.; Yang, H.; Lee, K.W. Ethanol Extract of Yak-Kong Fermented by Lactic Acid Bacteria from a Korean Infant Markedly Reduces Matrix Metallopreteinase-1 Expression Induced by Solar Ultraviolet Irradiation in Human Keratinocytes and a 3D Skin Model. Antioxidants 2021, 10, 291. https://doi.org/10.3390/antiox10020291
Park H, Seo JW, Lee TK, Kim JH, Kim J-E, Lim T-G, Park JHY, Huh CS, Yang H, Lee KW. Ethanol Extract of Yak-Kong Fermented by Lactic Acid Bacteria from a Korean Infant Markedly Reduces Matrix Metallopreteinase-1 Expression Induced by Solar Ultraviolet Irradiation in Human Keratinocytes and a 3D Skin Model. Antioxidants. 2021; 10(2):291. https://doi.org/10.3390/antiox10020291
Chicago/Turabian StylePark, Heanim, Ji Won Seo, Tae Kyung Lee, Jae Hwan Kim, Jong-Eun Kim, Tae-Gyu Lim, Jung Han Yoon Park, Chul Sung Huh, Hee Yang, and Ki Won Lee. 2021. "Ethanol Extract of Yak-Kong Fermented by Lactic Acid Bacteria from a Korean Infant Markedly Reduces Matrix Metallopreteinase-1 Expression Induced by Solar Ultraviolet Irradiation in Human Keratinocytes and a 3D Skin Model" Antioxidants 10, no. 2: 291. https://doi.org/10.3390/antiox10020291
APA StylePark, H., Seo, J. W., Lee, T. K., Kim, J. H., Kim, J. -E., Lim, T. -G., Park, J. H. Y., Huh, C. S., Yang, H., & Lee, K. W. (2021). Ethanol Extract of Yak-Kong Fermented by Lactic Acid Bacteria from a Korean Infant Markedly Reduces Matrix Metallopreteinase-1 Expression Induced by Solar Ultraviolet Irradiation in Human Keratinocytes and a 3D Skin Model. Antioxidants, 10(2), 291. https://doi.org/10.3390/antiox10020291