Meta-Analysis of Oxidative Transcriptomes in Insects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Curation of Public Gene Expression Data
2.2. Retrieval and Quality Control of Sequence Data
2.3. Gene Expression Quantification
2.4. Functional Annotation and Gene Set Enrichment Analysis
2.5. Visualization
3. Results
3.1. Data Collection
3.2. Quantification of Transcripts Using RNA-seq
- Retrieval of RNA-seq reads from the SRA database
- Conversion of data format and compression
- Trimming and quality control of reads
- Transcriptome assembly by Trinity
- Expression quantification by Salmon
3.3. Differentially Expressed Genes under Oxidative Stress
3.4. Cross-Species Analysis of Transcriptomes under Oxidative Stress
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parkinson, N.; Rodgers, N.; Head Fourman, M.; Wang, B.; Zechner, M.; Swets, M.C.; Millar, J.E.; Law, A.; Russell, C.D.; Baillie, J.K.; et al. Dynamic Data-Driven Meta-Analysis for Prioritisation of Host Genes Implicated in COVID-19. Sci. Rep. 2020, 10, 22303. [Google Scholar] [CrossRef] [PubMed]
- Oki, S.; Ohta, T.; Shioi, G.; Hatanaka, H.; Ogasawara, O.; Okuda, Y.; Kawaji, H.; Nakaki, R.; Sese, J.; Meno, C. ChIP-Atlas: A Data-Mining Suite Powered by Full Integration of Public ChIP-Seq Data. EMBO Rep. 2018, 19. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape Provides a Biologist-Oriented Resource for the Analysis of Systems-Level Datasets. Nat. Commun. 2019, 10, 1523. [Google Scholar] [CrossRef] [PubMed]
- Bono, H.; Hirota, K. Meta-Analysis of Hypoxic Transcriptomes from Public Databases. Biomedicines 2020, 8, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dias, V.; Junn, E.; Mouradian, M.M. The Role of Oxidative Stress in Parkinson’s Disease. J. Park. Dis. 2013, 3, 461–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabunoki, H.; Ono, H.; Ode, H.; Ishikawa, K.; Kawana, N.; Banno, Y.; Shimada, T.; Nakamura, Y.; Yamamoto, K.; Satoh, J.-I.; et al. Identification of Key Uric Acid Synthesis Pathway in a Unique Mutant Silkworm Bombyx Mori Model of Parkinson’s Disease. PLoS ONE 2013, 8, e69130. [Google Scholar] [CrossRef] [PubMed]
- Nojima, Y.; Ito, K.; Ono, H.; Nakazato, T.; Bono, H.; Yokoyama, T.; Sato, R.; Suetsugu, Y.; Nakamura, Y.; Yamamoto, K.; et al. Superoxide Dismutases, SOD1 and SOD2, Play a Distinct Role in the Fat Body during Pupation in Silkworm Bombyx Mori. PLoS ONE 2015, 10, e0116007. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Nojima, Y.; Sakamoto, T.; Iwabuchi, K.; Nakazato, T.; Bono, H.; Toyoda, A.; Fujiyama, A.; Kanost, M.R.; Tabunoki, H. Comparative Analysis of Seven Types of Superoxide Dismutases for Their Ability to Respond to Oxidative Stress in Bombyx Mori. Sci. Rep. 2019, 9, 2170. [Google Scholar] [CrossRef] [PubMed]
- Bono, H. All of Gene Expression (AOE): An Integrated Index for Public Gene Expression Databases. PLoS ONE 2020, 15, e0227076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Holko, M.; et al. NCBI GEO: Archive for Functional Genomics Data Sets-Update. Nucleic Acids Res. 2013, 41, D991–D995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Athar, A.; Füllgrabe, A.; George, N.; Iqbal, H.; Huerta, L.; Ali, A.; Snow, C.; Fonseca, N.A.; Petryszak, R.; Papatheodorou, I.; et al. ArrayExpress Update-from Bulk to Single-Cell Expression Data. Nucleic Acids Res. 2019, 47, D711–D715. [Google Scholar] [CrossRef] [PubMed]
- Kodama, Y.; Mashima, J.; Kosuge, T.; Ogasawara, O. DDBJ Update: The Genomic Expression Archive (GEA) for Functional Genomics Data. Nucleic Acids Res. 2019, 47, D69–D73. [Google Scholar] [CrossRef] [PubMed]
- Kodama, Y.; Shumway, M.; Leinonen, R.; International Nucleotide Sequence Database Collaboration. The Sequence Read Archive: Explosive Growth of Sequencing Data. Nucleic Acids Res. 2012, 40, D54–D56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The NCBI SRA (Sequence Read Archive). Available online: https://github.com/ncbi/sra-tools (accessed on 24 February 2021).
- Krueger, F. Trim Galore. Available online: https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ (accessed on 24 February 2021).
- Martin, M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Patro, R.; Duggal, G.; Love, M.I.; Irizarry, R.A.; Kingsford, C. Salmon Provides Fast and Bias-Aware Quantification of Transcript Expression. Nat. Methods 2017, 14, 417–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amstutz, P.; Crusoe, M.R.; Tijanić, N.; Chapman, B.; Chilton, J.; Heuer, M.; Kartashov, A.; Leehr, D.; Ménager, H.; Nedeljkovich, M.; et al. Common Workflow Language, v1.0. Figshare. Dataset. 2016. [Google Scholar] [CrossRef]
- Ohta, T.I.; yyabuki; Tanjo, T.; Crusoe, M.R. pitagora-network/pitagora-cwl: V0.1.0 (Version v0.1.0). Zenodo. [CrossRef]
- Bono, H. Systematic Analysis for Quantification of Expression (SAQE). Available online: https://github.com/bonohu/SAQE (accessed on 24 February 2021).
- Kinsella, R.J.; Kähäri, A.; Haider, S.; Zamora, J.; Proctor, G.; Spudich, G.; Almeida-King, J.; Staines, D.; Derwent, P.; Kerhornou, A.; et al. Ensembl BioMarts: A Hub for Data Retrieval across Taxonomic Space. Database 2011, 2011, bar030. [Google Scholar] [CrossRef] [PubMed]
- Hiraoka, Y.; Yamada, K.; Kawasaki, Y.; Hirose, H.; Matsumoto, K.; Ishikawa, K.; Yasumizu, Y. Ikra: RNAseq pipeline centered on Salmon. Zenodo 2019. [Google Scholar] [CrossRef]
- Bono, H. TPM for oxidative transcriptomes in D. melanogaster. Figshare. Dataset. 2021. [Google Scholar] [CrossRef]
- Bono, H. Log ratio for oxidative transcriptomes in D. melanogaster. Figshare. Dataset. 2021. [Google Scholar] [CrossRef]
- Bono, H. D. melanogaster list of counts after oxidative stress. Figshare. Dataset. 2021. [Google Scholar] [CrossRef]
- QuickGO:Term GO:0006979 Response to Oxidative Stress. Available online: https://www.ebi.ac.uk/QuickGO/term/GO:0006979 (accessed on 24 February 2021).
- Bono, H. TPM for oxidative transcriptomes in C. elegans. Figshare. Dataset. 2021. [Google Scholar] [CrossRef]
- Bono, H. Log ratio for oxidative transcriptome in C. elengas. Figshare. Dataset. 2021. [Google Scholar] [CrossRef]
- Bono, H. C. elegans list of counts after oxidative stress. Figshare. Dataset. 2021. [Google Scholar] [CrossRef]
- Bono, H. D. melanogaster and C. elegans integrated list of log ratio for oxidative stress. Figshare. Dataset. 2021. [Google Scholar] [CrossRef]
- Bono, H. D. melanogaster and C. elegans integrated list of counts after oxidative stress. Figshare. Dataset. 2021. [Google Scholar] [CrossRef]
- Bono, H. Genes with GO:0006979 (response to oxidative stress) related annotation in meta-analyzed oxidative transcriptomes in D. melanogaster and C. elegans. Figshare. Dataset. 2021. [Google Scholar] [CrossRef]
- Tabunoki, H.; Gorman, M.J.; Dittmer, N.T.; Kanost, M.R. Superoxide Dismutase 2 Knockdown Leads to Defects in Locomotor Activity, Sensitivity to Paraquat, and Increased Cuticle Pigmentation in Tribolium castaneum. Sci. Rep. 2016, 6, 29583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
SRA Project ID | Oxidative Stress | Control | Source of Stress (Reagent) | Conc. (mM) | Time (h) |
---|---|---|---|---|---|
SRP005712 | SRR1509509 | SRR1509506 1 | Rotenone | NA | NA |
SRP005712 | SRR1509508 | SRR1509506 1 | Rotenone | NA | NA |
SRP005712 | SRR124259 | SRR1509506 1 | Paraquat | 5 | NA |
SRP005712 | SRR103718 | SRR1509506 1 | Paraquat | 5 | NA |
SRP005712 | SRR103721 | SRR1509506 1 | Paraquat | 10 | NA |
SRP005712 | SRR103722 | SRR1509506 1 | Paraquat | 10 | NA |
SRP132308 | SRR6677984 | SRR6677982 | Paraquat | 50 | 6 |
SRP132308 | SRR6677985 | SRR6677983 | Paraquat | 50 | 6 |
SRP132308 | SRR6677986 | SRR6677982 | Paraquat | 50 | 12 |
SRP132308 | SRR6677987 | SRR6677983 | Paraquat | 50 | 12 |
SRP136174 | SRR6874835 | SRR6874832 | Paraquat | 10 | 24 |
SRP136174 | SRR6874836 | SRR6874833 | Paraquat | 10 | 24 |
SRP136174 | SRR6874837 | SRR6874834 | Paraquat | 10 | 24 |
SRP136174 | SRR6874841 | SRR6874838 | Paraquat | 10 | 24 |
SRP136174 | SRR6874842 | SRR6874839 | Paraquat | 10 | 24 |
SRP136174 | SRR6874843 | SRR6874840 | Paraquat | 10 | 24 |
SRP060444 | SRR2088914 | SRR2088913 | Paraquat | NA | NA |
SRP044035 | SRR1505749 | SRR1505771 | UVA | NA | 0.5 |
SRP044035 | SRR1505750 | SRR1505771 | UVA | NA | 1 |
Child GO ID | Child GO Term | Relationship to GO:0006979 |
---|---|---|
GO:0001306 | age-dependent response to oxidative stress | is_a |
GO:0033194 | response to hydroperoxide | is_a |
GO:1902882 | regulation of response to oxidative stress | regulates |
GO:1902883 | negative regulation of response to oxidative stress | negatively_regulates |
GO:0070994 | detection of oxidative stress | is_a |
GO:1902884 | positive regulation of response to oxidative stress | positively_regulates |
GO:0000302 | response to reactive oxygen species | is_a |
GO:0080183 | response to photooxidative stress | is_a |
GO:2000815 | regulation of mRNA stability involved in response to oxidative stress | part_of |
GO:0034599 | cellular response to oxidative stress | is_a |
SRA Project ID | Oxidative Stress | Control | Source of Stress (Reagent) | Condition |
---|---|---|---|---|
SRP070204 | SRR3173735 1 | SRR3173720 2 | Sodium arsenite | 10 mM, 5 h |
SRP021083 | SRR827426 | SRR827423 | Rotenone | 100 nM |
SRP021083 | SRR827427 | SRR827424 | Rotenone | 100 nM |
SRP021083 | SRR827428 | SRR827425 | Rotenone | 100 nM |
SRP021083 | SRR827432 | SRR827429 | Rotenone | 100 nM |
SRP021083 | SRR827433 | SRR827430 | Rotenone | 100 nM |
SRP021083 | SRR827434 | SRR827431 | Rotenone | 100 nM |
SRP021083 | SRR827438 | SRR827435 | Rotenone | 100 nM |
SRP021083 | SRR827439 | SRR827436 | Rotenone | 100 nM |
SRP021083 | SRR827440 | SRR827437 | Rotenone | 100 nM |
SRP021083 | SRR827443 | SRR827441 | Rotenone | 100 nM |
SRP021083 | SRR827444 | SRR827442 | Rotenone | 100 nM |
ERP117708 | ERR3580218 | ERR3580215 | Gamma radiation | 10 Gray |
ERP117708 | ERR3580219 | ERR3580216 | Gamma radiation | 10 Gray |
ERP117708 | ERR3580220 | ERR3580217 | Gamma radiation | 10 Gray |
ERP117708 | ERR3580221 | ERR3580215 | Gamma radiation | 100 Gray |
ERP117708 | ERR3580222 | ERR3580216 | Gamma radiation | 100 Gray |
ERP117708 | ERR3580223 | ERR3580217 | Gamma radiation | 100 Gray |
ERP117708 | ERR3580224 | ERR3580215 | Gamma radiation | 0.4 Gray |
ERP117708 | ERR3580225 | ERR3580216 | Gamma radiation | 0.4 Gray |
ERP117708 | ERR3580226 | ERR3580217 | Gamma radiation | 0.4 Gray |
ON-Score | C. elegans Ortholog | Genes |
---|---|---|
+ | yes | CanA1, GstS1, Hsp22, Pde8, Sod2, foxo, per, ple, rl |
+ | no | CG10211, CG30487, CG31659, CG42331, CG6888, Chchd2, Daxx, GLaz, Gyc89Da, Gyc89Db, Jafrac1, MTF-1, Mnn1, Mt2, Nf1, Pi3K92E, SelR, TFAM, Thor, TotX, inaE, p38a, puc, scyl, srl |
− | yes | CG9314, CG9416, CYLD, Ddc, Itp-r83A, ND-B17.2, Trap1, alph, bsk, mtd, park, ple, whd |
− | no | Akt1, CG31659, CG4009, CG42331, CG5948, Ccs, Daxx, GLaz, Gyc88E, Gyc89Da, InR, Irc, Jafrac1, Jafrac2, Karl, Keap1, MTF-1, Mnn1, Mt2, NLaz, Nf1, Pi3K92E, Prx5, Pxd, Ric, SelR, Sid, TotC, TotZ, cd, cnc, dec-1, fbl, inaE, mth, p38a, rut, spz, srl |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bono, H. Meta-Analysis of Oxidative Transcriptomes in Insects. Antioxidants 2021, 10, 345. https://doi.org/10.3390/antiox10030345
Bono H. Meta-Analysis of Oxidative Transcriptomes in Insects. Antioxidants. 2021; 10(3):345. https://doi.org/10.3390/antiox10030345
Chicago/Turabian StyleBono, Hidemasa. 2021. "Meta-Analysis of Oxidative Transcriptomes in Insects" Antioxidants 10, no. 3: 345. https://doi.org/10.3390/antiox10030345
APA StyleBono, H. (2021). Meta-Analysis of Oxidative Transcriptomes in Insects. Antioxidants, 10(3), 345. https://doi.org/10.3390/antiox10030345