Assessment of In Vitro Bioaccessibility of Polyphenols from Annurca, Limoncella, Red Delicious, and Golden Delicious Apples Using a Sequential Enzymatic Digestion Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Chemical Analysis of Fruits
2.3. Reagents and Materials
2.4. Polyphenols Extraction
2.5. UHPLC-Q-Orbitrap HRMS Analysis
2.6. Determination of Antioxidant Activity
2.7. Total Polyphenolic Content Determination
2.8. In Vitro Sequential Enzyme Digestion
2.9. Statistical Analysis
3. Results and Discussion
3.1. Total Soluble Solids (TSS) Content, Total Acidity (TA), and pH of Fruits
3.2. Antioxidant Activity and Total Polyphenolic Content Measurements
3.3. Quali-Quantitative Polyphenolic Profile by UHPLC-Q-Orbitrap HRMS
3.4. Bioaccessibility of Apple Polyphenols and Antioxidant Activity upon Digestion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, R.H. Health-promoting components of fruits and vegetables in the diet. Adv. Nutr. 2013, 4, 384S–392S. [Google Scholar] [CrossRef]
- Gerhauser, C. Cancer chemopreventive potential of apples, apple juice, and apple components. Planta Med. 2008, 74, 1608–1624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hyson, D.; Studebaker-Hallman, D.; Davis, P.A.; Gershwin, M.E. Apple juice consumption reduces plasma low-density lipoprotein oxidation in healthy men and women. J. Med. Food 2000, 3, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Smanalieva, J.; Iskakova, J.; Oskonbaeva, Z.; Wichern, F.; Darr, D. Investigation of nutritional characteristics and free radical scavenging activity of wild apple, pear, rosehip, and barberry from the walnut-fruit forests of Kyrgyzstan. Eur. Food Res. Technol. 2020, 246, 1095–1104. [Google Scholar] [CrossRef]
- Cheng, Y.C.; Sheen, J.M.; Hu, W.L.; Hung, Y.C. Polyphenols and oxidative stress in atherosclerosis-related ischemic heart disease and stroke. Oxid. Med. Cell. Longev. 2017, 2017, 8526438. [Google Scholar] [CrossRef] [Green Version]
- Skinner, R.C.; Warren, D.C.; Lateef, S.N.; Benedito, V.A.; Tou, J.C. Apple pomace consumption favorably alters hepatic lipid metabolism in young female sprague-dawley rats fed a western diet. Nutrients 2018, 10, 1882. [Google Scholar] [CrossRef] [Green Version]
- Sampath, C.; Rashid, M.R.; Sang, S.; Ahmedna, M. Specific bioactive compounds in ginger and apple alleviate hyperglycemia in mice with high fat diet-induced obesity via Nrf2 mediated pathway. Food Chem. 2017, 226, 79–88. [Google Scholar] [CrossRef]
- De Oliveira Raphaelli, C.; dos Santos Pereira, E.; Camargo, T.M.; Vinholes, J.; Rombaldi, C.V.; Vizzotto, M.; Nora, L. Apple phenolic extracts strongly inhibit α-glucosidase activity. Plant Foods Hum. Nutr. 2019, 74, 430–435. [Google Scholar] [CrossRef]
- Hyson, D.A. A Comprehensive Review of Apples and Apple Components and Their Relationship to Human Health. Adv. Nutr. 2011, 2, 408–420. [Google Scholar] [CrossRef]
- Kalinowska, M.; Bielawska, A.; Lewandowska-Siwkiewicz, H.; Priebe, W.; Lewandowski, W. Apples: Content of phenolic compounds vs. variety, part of apple and cultivation model, extraction of phenolic compounds, biological properties. Plant Physiol. Biochem. 2014, 84, 169–188. [Google Scholar] [CrossRef]
- Sies, H. Polyphenols and health: Update and perspectives. Arch Biochem. Biophys. 2010, 501, 2–5. [Google Scholar] [CrossRef] [PubMed]
- Lamperi, L.; Chiuminatto, U.; Cincinelli, A.; Galvan, P.; Giordani, E.; Lepri, L.; Del Bubba, M. Polyphenol levels and free radical scavenging activities of four apple cultivars from integrated and organic farming in different italian areas. J. Agric. Food Chem. 2008, 56, 6536–6546. [Google Scholar] [CrossRef] [PubMed]
- Raudone, L.; Raudonis, R.; Liaudanskas, M.; Janulis, V.; Viskelis, P. Phenolic antioxidant profiles in the whole fruit, flesh and peel of apple cultivars grown in Lithuania. Sci. Hortic. 2017, 216, 186–192. [Google Scholar] [CrossRef]
- Zielińska, D.; Turemko, M. Electroactive Phenolic Contributors and Antioxidant Capacity of Flesh and Peel of 11 Apple Cultivars Measured by Cyclic Voltammetry and HPLC–DAD–MS/MS. Antioxidants 2020, 9, 1054. [Google Scholar] [CrossRef]
- Napolitano, A.; Cascone, A.; Graziani, G.; Ferracane, R.; Scalfi, L.; Di Vaio, C.; Ritieni, A.; Fogliano, V. Influence of Variety and Storage on the Polyphenol Composition of Apple Flesh. J. Agric. Food Chem. 2004, 52, 21, 6526–6531. [Google Scholar] [CrossRef]
- Koutsos, A.; Lima, M.; Conterno, L.; Gasperotti, M.; Bianchi, M.; Fava, F.; Vrhovsek, U.; Lovegrove, J.A.; Tuohy, K.M. Effects of Commercial Apple Varieties on Human Gut Microbiota Composition and Metabolic Output Using an In Vitro Colonic Model. Nutrients 2017, 9, 533. [Google Scholar] [CrossRef] [Green Version]
- Déprez, S.; Brezillon, C.; Rabot, S.; Philippe, C.; Mila, I.; Lapierre, C.; Scalbert, A. Polymeric proanthocyanidins are catabolized by human colonic microflora into low-molecular-weight phenolic acids. J. Nutr. 2000, 130, 2733–2738. [Google Scholar] [CrossRef] [Green Version]
- Papillo, V.A.; Vitaglione, P.; Graziani, G.; Gokmen, V.; Fogliano, V. Release of antioxidant capacity from five plant foods during a multistep enzymatic digestion protocol. J. Agric. Food Chem. 2014, 62, 4119–4126. [Google Scholar] [CrossRef]
- Petkovska, A.; Gjamovski, V.; Stefova, M. Comparison of different extraction solvents for assay of the polyphenol content in the peel and pulp of 21 apple cultivars from Macedonia. Maced. J. Chem. Chem. Eng. 2016, 35, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Graziani, G.; Ritieni, A.; Cirillo, A.; Cice, D.; Di Vaio, C. Effects of biostimulants on Annurca fruit quality and potential nutraceutical compounds at harvest and during storage. Plants 2020, 9, 775. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma as a measure of antioxodant. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carriere, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food–an international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoehn, E.; Gasser, F.; Guggenbühl, B.; Künsch, U. Efficacy of instrumental measurements or determination of minimum requirements of firmness, soluble solids, and acidity of several apple varieties in comparison to consumer expectations. Postharv. Biol. Tech. 2003, 27, 27–37. [Google Scholar] [CrossRef]
- Daillant-Spinnler, B.; MacFie, H.J.H.; Beyts, P.K.; Hedderley, D. Relationships between perceived sensory properties and major preference directions of 12 varieties of apples from the southern hemisphere. Food Qual. Prefer. 1996, 7, 113–126. [Google Scholar] [CrossRef]
- Minnocci, A.; Iacopini, P.; Martinelli, F.; Sebastiani, L. Micromorphological, biochemical, and genetic characterization of two ancient, late-bearing apple varieties. Eur. J. Hortic. Sci. 2010, 75, 1–7. [Google Scholar]
- Wu, J.; Gao, H.; Zhao, L.; Liao, X.; Chen, F.; Wang, Z.; Hu, X. Chemical compositional characterization of some apple cultivars. Food Chem. 2007, 103, 88–93. [Google Scholar] [CrossRef]
- Tsao, R.; Yang, R.; Young, J.C.; Zhu, H. Polyphenolic profiles in eight apple cultivars using high-performance liquid chromatography (HPLC). J. Agric. Food Chem. 2003, 51, 6347–6353. [Google Scholar] [CrossRef]
- Vieira, F.G.K.; Borges, G.D.S.C.; Copetti, C.; Gonzaga, L.V.; Nunes, E.C.; Fett, R. Activity and contents of polyphenolic antioxidants in the whole fruit, flesh and peel of three apple cultivars. Arch Latinoam Nutr. 2009, 59, 101–106. [Google Scholar]
- McGhie, T.K.; Hunt, M.; Barnett, L.E. Cultivar and growing region determine the antioxidant polyphenolic concentration and composition of apples grown in New Zealand. J. Agric. Food Chem. 2005, 53, 3065–3070. [Google Scholar] [CrossRef] [PubMed]
- Babbar, N.; Oberoi, H.S.; Uppal, D.S.; Patil, R.T. Total phenolic content and antioxidant capacity of extracts obtained from six important fruit residues. Food Res. Int. 2011, 44, 391–396. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Tsao, R.; Yang, R.; Xie, S.; Sockovie, E.; Khanizadeh, S. Which polyphenolic compounds contribute to the total antioxidant activities of apple? J. Agric. Food Chem. 2005, 53, 4989–4995. [Google Scholar] [CrossRef]
- Scalzo, R.L.; Testoni, A.; Genna, A. ‘Annurca’apple fruit, a southern Italy apple cultivar: Textural properties and aroma composition. Food Chem. 2001, 73, 333–343. [Google Scholar] [CrossRef]
- Panzella, L.; Petriccione, M.; Rega, P.; Scortichini, M.; Napolitano, A. A reappraisal of traditional apple cultivars from Southern Italy as a rich source of phenols with superior antioxidant activity. Food Chem. 2013, 140, 672–679. [Google Scholar] [CrossRef]
- Kschonsek, J.; Wolfram, T.; Stöckl, A.; Böhm, V. Polyphenolic compounds analysis of old and new apple cultivars and contribution of polyphenolic profile to the in vitro antioxidant capacity. Antioxidants 2018, 7, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Abrosca, B.; Pacifico, S.; Cefarelli, G.; Mastellone, C.; Fiorentino, A. ‘Limoncella’apple, an Italian apple cultivar: Phenolic and flavonoid contents and antioxidant activity. Food Chem. 2007, 104, 1333–1337. [Google Scholar] [CrossRef]
- Jakobek, L.; Barron, A.R. Ancient apple varieties from Croatia as a source of bioactive polyphenolic compounds. J. Food Compos. Anal. 2016, 45, 9–15. [Google Scholar] [CrossRef]
- Bouayed, J.; Deußer, H.; Hoffmann, L.; Bohn, T. Bioaccessible and dialysable polyphenols in selected apple varieties following in vitro digestion vs. their native patterns. Food Chem. 2012, 131, 1466–1472. [Google Scholar]
- Goristein, S.; Zachwieja, Z.; Folta, M.; Barton, H.; Piotrowicz, J.; Zember, M.; Weisz, M.; Trakhtenberg, S.; Martin-Belloso, O. Comparative content of dietary fiber, total phenolics, and minerals in persimmons and apples. J. Agric. Food Chem. 2001, 49, 952–957. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Jiménez, J.; Arranz, S.; Saura-Calixto, F. Proanthocyanidin content in foods is largely underestimated in the literature data: An approach to quantification of the missing proanthocyanidins. Food Res. Int. 2009, 42, 1381–1388. [Google Scholar] [CrossRef]
- Colantuono, A.; Ferracane, R.; Vitaglione, P. Potential bioaccessibility and functionality of polyphenols and cynaropicrin from breads enriched with artichoke stem. Food Chem. 2018, 245, 838–844. [Google Scholar] [CrossRef] [PubMed]
- Alrahmany, R.; Avis, T.J.; Tsopmo, A. Treatment of oat bran with carbohydrases increases soluble phenolic acid content and influences antioxidant and antimicrobial activities. Food Res. Int. 2013, 52, 568–574. [Google Scholar] [CrossRef]
- Palócz, O.; Pászti-Gere, E.; Gálfi, P.; Farkas, O. Chlorogenic acid combined with Lactobacillus plantarum 2142 reduced LPS-induced intestinal inflammation and oxidative stress in IPEC-J2 cells. PLoS ONE 2016, 11, e0166642. [Google Scholar] [CrossRef]
- Schaefer, S.; Baum, M.; Eisenbrand, G.; Dietrich, H.; Will, F.; Janzowski, C. Polyphenolic apple juice extracts and their major constituents reduce oxidative damage in human colon cell lines. Mol. Nutr. Food Res. 2006, 50, 24–33. [Google Scholar] [CrossRef]
- Choi, B.Y. Biochemical basis of anti-cancer-effects of phloretin—A natural dihydrochalcone. Molecules 2019, 24, 278. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, S.; Baum, M.; Eisenbrand, G.; Janzowski, C. Modulation of oxidative cell damage by reconstituted mixtures of phenolic apple juice extracts in human colon cell lines. Mol. Nutr. Food Res. 2006, 50, 413–417. [Google Scholar] [CrossRef]
Cultivar | TSS (°Brix) | TA (g L−1 Malic Acid) | pH |
---|---|---|---|
Limoncella | 16.07 ± 0.03 a | 7.57 ± 0.32 a | 3.83 ± 0.14 ab |
Red Delicious | 10.57 ± 0.33 c | 3.03 ± 0.03 c | 4.07 ± 0.05 a |
Golden Delicious | 11.93 ± 0.03 b | 5.47 ± 0.61 b | 3.63 ± 0.07 b |
Annurca | 11.73 ± 0.31 b | 5.87 ± 0.30 b | 3.60 ± 0.06 b |
Significance | *** | * | *** |
Cultivar | FOLIN | ABTS | DPPH | FRAP |
---|---|---|---|---|
(mg/g dw) | (mmol Trolox/Kg dw) | (mmol Trolox/kg dw) | (mmol Trolox/kg) | |
Peel | ||||
Limoncella | 2.29 ± 0.05 b | 88.89 ± 3.30 c | 28.21 ± 0.21 b | 61.14 ± 1.76 a |
Red Delicious | 3.54 ± 0.07 a | 131.95 ± 6.73 a | 42.08 ± 1.05 a | 48.08 ± 0.30 c |
Golden | 1.64 ± 0.05 c | 58.90 ± 4.40 d | 24.72 ± 0.77 c | 44.61 ± 1.70 d |
Annurca | 2.13 ± 0.09 b | 104.42 ± 5.39 b | 29.32 ± 1.08 b | 54.40 ± 0.97 b |
Significance | *** | *** | *** | *** |
Flesh | ||||
Limoncella | 2.17 ± 0.02 a | 44.19 ± 0.52 a | 15.31 ± 0.28 a | 36.54 ± 1.14 a |
Red Delicious | 1.21 ± 0,00 c | 28.59 ± 0.00 c | 8.96 ± 0.06 d | 20.75 ± 0.68 c |
Golden | 1.11 ± 0.01 c | 27.96 ± 0.00 c | 10.43 ± 0.02 c | 17.39 ± 0.56 d |
Annurca | 1.80 ± 0.02 b | 33.20 ± 2.71 b | 14.07 ± 0.23 b | 25.86 ± 0.36 b |
Significance | *** | *** | *** | *** |
Whole fruit | ||||
Limoncella | 2.48 ± 0.05 a | 48.60 ± 0.68 a | 16.97 ± 0.06 a | 38.82 ± 0.43 a |
Red Delicious | 1.44 ± 0.01 c | 38.36 ± 0.78 c | 12.29 ± 0.54 c | 23.46 ± 0.22 c |
Golden | 1.26 ± 0.02 c | 31.05 ± 0.18 d | 11.96 ± 0.07 c | 20.44 ± 0.61 d |
Annurca | 1.94 ± 0.03 b | 40.98 ± 1.19 b | 15.59 ± 0.11 b | 26.63 ± 0.70 b |
Significance | *** | *** | *** | *** |
Polyphenols | Molecular Formula | Theoretical Mass [M−H]- | Experimental Mass [M−H]- | Err [ppm] | Tr (min) |
---|---|---|---|---|---|
procyanidin b1 | C30H26O12 | 577.13515 | 577.1358 | 1.13 | 7.50 |
catechin | C15H14O6 | 289.07176 | 289.07224 | 1.66 | 7.65 |
chlorogenic acid | C16H18O9 | 353.0878 | 353.08798 | 0.51 | 8.13 |
caffeic acid | C9H8O4 | 179.03498 | 179.03455 | −2.40 | 8.25 |
procyanidin b2 | C30H26O12 | 577.13515 | 577.1355 | 0.61 | 8.31 |
epicatechin | C15H14O6 | 289.07176 | 289.07196 | 0.69 | 8.51 |
coumaroyl quinic acid | C16H18O8 | 337.09289 | 337.09338 | 1.45 | 9.39 |
rutin | C27H30O16 | 609.14611 | 609.14624 | 0.21 | 9.78 |
phloretin xylo-glucoside | C26H32O14 | 567.17193 | 567.17206 | 0.23 | 9.83 |
hyperoside | C21H20O12 | 463.0882 | 463.085 | −6.91 | 9.89 |
phloridzin | C21H24O10 | 435.12967 | 435.12961 | −0.14 | 10.11 |
kaempferol-3-O-glucoside | C21H20O11 | 447.09328 | 447,09366 | 0.85 | 10.28 |
apigenin-7-glucoside | C21H20O10 | 431.09837 | 431.09869 | 0.74 | 10.67 |
phloretin | C15H14O5 | 273.07684 | 273.07755 | 2.60 | 11.21 |
epicatechin trimer | C45H38O18 | 865.19854 | 865.19928 | 0.86 | 8.74 |
epicatechin tetramer | C60H50O24 | 1153.26193 | 1153.26233 | 0.35 | 8.84 |
isorhamnetin glucoside | C22H22O12 | 477.10385 | 477.1044 | 1.15 | 10.47 |
isorhamnetin derivative | C29H34O15 | 621.14611 | 621.14667 | 0.90 | 10.74 |
Limoncella | Red Delicious | Golden Delicious | Annurca | Limoncella | Red Delicious | Golden Delicious | Annurca | |
---|---|---|---|---|---|---|---|---|
Polyphenols | Flesh | Whole fruit | ||||||
procyanidin b1 | 171.12 ± 4.46 a | 65.39± 0.75 c | 16.46 ± 0.10 d | 96.30 ± 1.05 b | 174.231 ± 0.65 a | 65.099 ± 0.75 b | 22.106 ± 1.11 c | 94.358 ± 2.22 d |
catechin | 268.58 ± 5.79 a | 137.02 ± 0.73 b | 17.16 ± 0.27 d | 123.27 ± 0.97 c | 256.232 ± 11.33 a | 127.500 ± 1.43 b | 20.547 ± 0.33 c | 116.345 ± 1.33 d |
chlorogenic acid | 882.76 ± 19.94 a | 333.20 ± 10.49 c | 580.85 ± 7.30 b | 861.79 ± 6.02 a | 841.568 ± 2.44 a | 314.564 ± 8.22 b | 601.332 ± 11.77 c | 820.283 ± 14.22 a |
caffeic acid | nd | nd | nd | nd | 0.43 ± 0.02 a | 0.019 ± 0.001 b | 0.071 ± 0.001 c | 0.400 ± 0.001 a |
procyanidin b2 | 149.98 ± 2.46 b | 75.95 ± 6.83 d | 104.48 ± 0.0 c | 164.74 ± 0.41 a | 157.181 ± 1.66 a | 84.545 ± 1.33 b | 115.327 1.11 c | 106.907 ± 0.22 d |
epicatechin | 279.30 ± 3.66 b | 254.70 ± 3.90 c | 146.15 ± 6.58 d | 361.56 ± 4.68 a | 288.600 ± 1.66 a | 241.264 ± 0.33 b | 170.664 ± 2.44 c | 240.306 ± 3.33 b |
epicatechin trimer | 31.71 ± 3.27 a | 32.81 ± 1.03 a | 20.89 ± 1.72 b | 30.60 ± 0.31 a | 34.740 ± 0.45 a | 45.821 ± 0.67 b | 25.623 ± 0.41 c | 32.566 ± 0.77 a |
epicatechin tetramer | 2.44 ± 0.19 c | 4.60 ± 0.05 a | 2.90 ± 0.05 b | 2.84 ± 0.02 b | 4.932 ± 0.04 a | 5.566 ± 0.66 b | 3.349 ± 0.04 c | 1.902 ± 0.03 d |
coumaroyl quinic acid | 3.45 ± 0–04 c | 27.36 ± 0.97 b | 26.41 ± 0.67 b | 70.27 ± 0.53 a | 3.304 ± 0.66 a | 24.855 ± 1.11 b | 22.61 0.88 2c | 65.383 ± 2.77 d |
rutin | 0.35 ± 0.00 b | 0.12 ± 0.00 d | 0.26 ± 0.00 b | 0.55 ± 0.00 a | 2.784 ± 0.03 a | 1.311 ± 0.01 b | 2.064 ± 0.01a | 6.383 ± 0.44 c |
phloretin-xylo-glucoside | 56.39 ± 0.44 b | 19.32 ± 0.13 d | 52.83 ± 0.39 c | 125.17 ± 0.65 a | 58.776 ± 1.44 a | 26.623 ± 0.77 b | 56.985 ± 1.11 a | 108.538 ± 0.88 c |
hyperoside | 6.32 ± 0.06 b | 1.40 ± 0.14 d | 11.80 ± 0.30 a | 4.91 ± 0.34 c | 25.292 ± 0.77 a | 45.425 ± 0.71 b | 48.186 ± 0.99 b | 53.322 ± 1.22 c |
phloridzin | 44.94 ± 0.07 b | 57.68 ± 0.70 a | 26.62 ± 0.27 c | 10.06 ± 0.27 d | 46.754 ± 0.88 a | 59.270 ± 1.11 b | 27.733 ± 0.66 c | 16.989 ± 0.56 d |
kaempferolo-3-O-glucoside | 9.10 ± 0.18 b | 4.31 ± 0.02 d | 21.36 ± 0.32 a | 5.06 ± 0.01 c | 9.552 ± 0.78 a | 8.004 ± 0.55 b | 24.659 ± 0.66 c | 19.197 ± 0.63 d |
isorhamnetin-glucoside | 0.94 ± 0.01 b | 0.93 ± 0.02 b | 3.40 ± 0.01 a | 0.74 ± 0.05 c | 1.598 ± 0.03 a | 3.154 ± 0.02 b | 3.060 0.05 b | 3.599 ± 0.01 c |
apigenin-7-glucoside | 0.15 ± 0.00 b | 0.02 ± 0.00 c | 0.34 ± 0.01 a | 0.14 ± 0.00 b | 0.222 ± 0.01a | 0.087 ± 0.01 b | 0.301 ± 0.05 c | 0.275 ± 0.01 d |
phloretin | 0.30 ± 0.01 c | 0.96 ± 0.01 a | 0.32 ± 0.00 c | 0.57 ± 0.00 b | 0.315 ± 0.002 a | 0.740 ± 0.001 b | 0.358 ± 0.001 a | 0.779 ± 0.02b |
isorhamnetin derivative | nd | nd | nd | nd | 0.001 ± 0.0001a | 0.001 ± 0.0001a | nd | 0.440 ± 0.001b |
Total polyphenols | 1907.84 ± 39.55 a | 1015.76 ± 24.04 b | 1032.23 ± 14.06 b | 1858.55 ± 13.46 a | 1906.520 ± 21.22 a | 1053.848 ± 12.22 b | 1144.976 ± 9.11 b | 1687.973 ± 24.11 c |
Limoncella | Red Delicious | Golden Delicious | Annurca | |
---|---|---|---|---|
Polyphenols | Peel | |||
procyanidin b1 | 133.02 ± 1.50 a | 44.38 ± 0.52 c | 19.52 ± 0.55 d | 91.13 ± 2.78 b |
catechin | 118.59 ± 0.33 a | 52.44 ± 0.36 c | 40.32 ± 0.62 d | 84.35 ± 2.10 b |
chlorogenic acid | 340.37 ± 15.52 b | 127.38 ± 10.05 c | 313.13 ± 1.97 b | 476.68 ± 6.41 a |
caffeic acid | 0.12 ± 0.00 a | nd | nd | 0.04 ± 0.01 b |
procyanidin b2 | 174.87 ± 18.35 c | 195.25 ± 11.58 b | 156.64 ± 3.29 c | 262.31 ± 2.71 a |
epicatechin | 367.47 ± 8.46 a | 281.59 ± 1.39 c | 327.61 ± 7.74 b | 342.64 ± 17.87 ab |
epicatechin trimer | 58.15 ± 7.20 b | 91.64 ± 2.11 a | 57.17 ± 1.87 b | 60.54 ± 1.56 b |
epicatechin tetramer | 8.19 ± 0.35 b | 15.87 ± 0.96 a | 7.11 ± 0.13 b | 8.22 ± 0.32 b |
coumaroyl quinic acid | 2.44 ± 0.07 b | 2.58 ± 0.07 b | 7.80 ± 0.97 b | 28.21 ± 3.55 a |
rutin | 31.80 ± 0.47 b | 15.21 ± 0.25 c | 13.83 ± 0.98 c | 66.06 ± 9.03 a |
phloretin-xylo-glucoside | 105.72 ± 1.34 b | 76.37 ± 1.68 b | 88.23 ± 1.81 b | 210.85 ± 21.07 a |
hyperoside | 213.77 ± 2.75 c | 427.82 ± 3.20 ab | 401.35 ± 7.52 b | 468.18 ± 32.74 a |
phloridzin | 72.47 ± 1.77 c | 101.51 ± 3.30 a | 66.39 ± 1.82 c | 92.06 ± 2.53 b |
kaempferolo-3-O-glucoside | 73.38 ± 0.21 c | 90.97 ± 0.81 b | 124.53 ± 7.19 a | 87.31 ± 6.84 c |
isorhamnetin-glucoside | 5.21 ± 0.11 c | 28.10 ± 0.08 b | 5.07 ± 0.29 c | 72.59 ± 6.95 a |
apigenin-7-glucoside | 1.48 ± 0.01 a | 0.80 ± 0.00 c | 1.59 ± 0.06 a | 1.12 ± 0.04 b |
phloretin | 0.51 ± 0.01 c | 1.55 ± 0.07 b | 0.62 ± 0.03 c | 3.38 ± 0.07 a |
isorhamnetin derivative | 0.28 ± 0.00 b | 0.24 ± 0.00 b | nd | 5.26 ± 0.23 a |
Total polyphenols | 1707.84 ± 12.53 b | 1553.71 ± 25.48 d | 1630.91 ± 19.76 c | 2360.93 ± 8.89 a |
Compound | Annurca (Whole Fruit) | Annurca Flesh | Annurca Peel | ||||||
---|---|---|---|---|---|---|---|---|---|
SDP | SCP | Total | SDP | SCP | Total | SDP | SCP | Total | |
Flavanols | 0.041 ± 0.001 a | 2.770 ± 0.01 b | 2.811 ± 0.02 b | 0.001 ± 0.0001 c | 4.723 ± 0.01 d | 4.723 ± 0.21 d | NF | 14.341 ± 0.33 e | 14.341 ± 0.37 e |
Procyanidins | NF | 1.544 ± 0.02 a | 1.544 ± 0.02 a | NF | 1.454 ± 0.03 a | 1.454 ± 0.03 a | NF | 7.023 ± 0.22 b | 7.023 ± 0.22 b |
Hydroxycinnamic acids | 119.557 ± 0.88 a | 92.101 ± 1.33 b | 211.658 ± 2.33 c | 39.607 ± 1.45 d | 72.408 ± 3.33 e | 112.014 ± 1.44 f | 13.479 ± 1.41 g | 52.187 ± 0.44 h | 65.666 ± 1.33 i |
Flavonols | 44.712 ± 0.78 a | 17.270 ± 0.91 b | 61.982 ± 1.88 c | 1.029 ± 0.02 d | 0.931 ± 0.02 d | 1.960 ± 0.08 e | 52.159 ± 1.33 f | 78.294 ± 2.33 g | 130.453 ± 4.55 h |
Dihydrochalcones | 31.880 ± 0.66 a | 12.880 ± 1.66 b | 44.760 ± 0.83 c | 12.226 ± 1.63 b | 9.739 ± 0.56 d | 21.965 ± 0.67 e | 19.223 ± 0.87 e | 28.678 ± 0.76 f | 47.900 ± 1.76 g |
Total PPs | 196.189 ± 11.12 a | 126.565 ± 7.34 b | 322.754 ± 15.76 c | 52.862 ± 3.44 d | 89.254 ± 2.67 e | 142.116 ± 1.67 f | 84.860 ± 0.56 g | 180.522 ± 11.78 h | 265.382 ± 7.65 |
Compound | Golden Delicious (whole fruit) | Golden Delicious (flesh) | Golden Delicious (peel) | ||||||
SDP | SCP | Total | SDP | SCP | Total | SDP | SCP | Total | |
Flavanols | 0.143 ± 0.02 a | 1.512 ± 0.04 b | 1.655 ±0.03 c | NF | 0.108 ±0.04 d | 0.108 ± 0.04 d | NF | 1.712 ±0.03 e | 1.712 ± 0.03 e |
Procyanidins | NF | 0.796 ±0.01 a | 0.796 ± 0.01 a | NF | 0.035 ±0.002 b | 0.035 ±0.002 b | NF | 3.679 ±0.03 c | 3.679 ±0.03 c |
Hydroxycinnamic acids | 83.120 ± 1.56 a | 75.132 ± 2.44 b | 158.252 ± 3.67 c | 3.860 ± 0.77 d | 5.587 ± 0.99 e | 9.447 ± 0.88 f | 1.401 ± 0.05 g | 6.314 ± 0.14 h | 7.715 ± 0.87 i |
Flavonols | 22.641 ± 0.99 a | 5.695 ± 1.44 b | 28.336 ± 0.88 c | 1.913 ± 0.01 d | 2.947 ± 0.01 e | 4.859 ± 0.44 f | 93.074 ± 1.66 g | 67.314 ±2.77 h | 160.388 ± 0.63 i |
Dihydrochalcones | 11.723 ± 0.88 a | 4.641 ± 0.77 b | 16.364 ± 0.71 c | 0.211 ± 0.03 d | 0.517 ± 0.01 e | 0.728 ± 0.05 f | 5.255 ± 0.03 g | 3.226 ± 0.11 h | 8.481 ± 0.92 i |
Total PPs | 117.627 ± 1.55 a | 87.776 ± 2.55 b | 205.403 ± 5.56 c | 5.983 ± 0.54 d | 9.194 ± 0.65 e | 15.178 ± 0.43 f | 99.730 ± 1.66 g | 82.245 ±1.87 h | 181.976 ± 3.44 i |
Compound | Limoncella (whole fruit) | Limoncella (flesh) | Limoncella (peel) | ||||||
SDP | SCP | Total | SDP | SCP | Total | SDP | SCP | Total | |
Flavanols | 0.621 ± 0.01 a | 9.843 ±0.11 b | 10.464 ± 0.55 c | 0.003 ± 0.001 d | 5.557 ± 0.61 e | 5.560 ± 0.65 e | NF | 16.449 ± 1.33 f | 16.449 ± 1.33 f |
Procyanidins | NF | 5.997 ± 0.34 a | 5.997 ± 0.34 a | 0.001 ± 0.0001 b | 1.549 ± 0.02 c | 1.550 ± 0.02 c | NF | 8.359 ± 0.76 d | 8.359 ± 0.76 d |
Hydroxycinnamic acids | 97.438 ± 2.55 a | 113.302 ± 9.11 b | 210.740 ± 3.76 c | 45.980 ± 2.66 d | 120.023 ± 2.65 e | 166.002 ± 3.11 f | 14.352 ± 0.56 g | 61.785 ± 2.76 h | 137.922 ± 2.79 i |
Flavonols | 58.800 ± 1.67 a | 19.554 ± 2.76 b | 78.354 ± 3.65 c | 1.016 ± 0.02 d | 0.337 ± 0.03 e | 1.353 ± 0.06 f | 56.650 ± 2.76 g | 76.914 ± 2.69 h | 133.564 ± 3.71 i |
Dihydrochalcones | 37.678 ± 1.87 a | 17.706 ± 0.91 b | 55.384 ± 2.54 c | 19.201 ± 0.65 d | 10.578 ± 0.54 e | 29.779 ± 1.62 f | 3.759 ± 0.23 g | 28.371 ± 1.81 h | 32.130 ± 0.65 i |
Total PPs | 194.538 ± 2.87 a | 166.402 ± 2.89 b | 360.940 ± 3.91 c | 66.201 ± 0.81 d | 138.044 ± 2.97 e | 204.245 ± 4.11 f | 74.761 ± 3.44 g | 191.878 ± 1.33 h | 266.639 ± 5.79 i |
Compound | Red Delicious (whole fruit) | Red Delicious (flesh) | Red Delicious (peel) | ||||||
SDP | SCP | Total | SDP | SCP | Total | SDP | SCP | Total | |
Flavanols | 0.448 ± 0.03 a | 1.091 ± 0.04 b | 1.538 ± 0.01 c | NF | 0.261 ± 0.04 d | 0.261 ± 0.04 d | NF | 2.106 ± 0.05 e | 2.106 ± 0.05 e |
Procyanidins | NF | 0.608 ± 0.03 a | 0.608 ± 0.03 a | NF | 0.279 ± 0.01 b | 0.279 ± 0.01 b | NF | 3.943 ± 0.14 c | 3.943 ± 0.14 c |
Hydroxycinnamic acids | 85.997 ± 3.34 a | 46.019 ± 1.67 b | 132.016 ± 2.66 c | 2.055 ± 0.33 d | 2.757 ± 0.11 e | 4.812 ± 0.77 f | 2.571 ± 0.66 g | 5.059 ± 0.88 h | 7.630 ± 1.63 i |
Flavonols | 8.426 ± 0.56 a | 2.095 ± 0.77 b | 10.520 ± 0.91 c | 0.164 ± 0.01 d | 0.644 ± 0.02 e | 0.807 ± 0.02 f | 73.498 ± 2.67 g | 46.954 ± 1.89 h | 120.453 ± 3.91 i |
Dihydrochalcones | 9.056 ± 1.22 a | 2.971 ± 0.91 b | 12.027 ± 0.56 c | 0.059 ±0.004 d | 0.253 ± 0.02 e | 0.313 ± 0.01 f | 17.002 ± 0.91 g | 9.563 ± 1.56 h | 26.566 ± 0.87 i |
Total PPs | 103.926 ± 2.75 a | 52.783 ± 3.67 b | 156.709 ± 4.56 c | 2.278 ± 0.95 d | 4.194 ± 0.56 e | 6.472 ± 0.95 f | 93.071 ± 2.96 g | 67.626 ± 2.77 h | 160.697 ± 3.83 i |
% of Polyphenols Released in the SDP | % of Polyphenols Released in the SCP | ||||
---|---|---|---|---|---|
Annurca | Annurca | ||||
Whole | Flesh | Peel | Whole | Flesh | Peel |
60.786 ± 0.121 a | 37.197 ± 0.812 a | 31.977 ± 0.123 a | 39.214 ± 0.821 a | 62.803 ± 1.012 a | 68.023 ± 0.231 a |
Golden Delicious | Golden Delicious | ||||
Whole | Flesh | Peel | Whole | Flesh | Peel |
57.267 ± 0.123 b | 39.423 ± 0.161 b | 54.804 ± 0.341 b | 42.733 ± 0.211 b | 60.57 ± 0.236 b | 45.19 ± 0.439 b |
Limoncella | Limoncella | ||||
Whole | Flesh | Peel | Whole | Flesh | Peel |
53.898 ± 0.714 c | 32.412 ± 0.581 c | 28.038 ± 0.619 c | 46.102 ± 1.371 c | 67.588 ± 0.912 c | 71.96 ± 0.459 c |
Red Delicious | Red Delicious | ||||
Whole | Flesh | Peel | Whole | Flesh | Peel |
66.318 ± 1.812 d | 35.200 ± 0.172 d | 57.917 ±0.291 d | 33.68 ± 1.671 d | 64.8 ± 0.291 d | 42.08 ±0.457 d |
Apple Samples | SDP | SCP | TOTAL |
---|---|---|---|
TEAC (mmol trolox/kg DW) | |||
Annurca | |||
Whole fruit | 4.480 ± 0.71 a | 7.854 ±0.23 b | 12.334 ± 0.67 c |
Flesh | 3.920 ± 0.12 a | 7.943 ± 0.23 b | 11.863 ± 0.24 c |
Peel | 9.125 ± 0.67 a | 15.580 ± 0.21 b | 24.705 ± 1.76 c |
Golden Delicious | |||
Whole fruit | 3.610 ± 0.72 a | 5.861 ± 1.33 b | 9.471 ± 0.56 c |
Flesh | 3.152 ± 0.65 a | 5.438 ± 0.43 b | 8.590 ± 0.12 c |
Peel | 7.876 ± 0.11 a | 10.785 ± 0.32 b | 18.661 ± 0.72 c |
Limoncella | |||
Whole fruit | 2.720 ± 0.81 a | 12.653 ± 1.76 b | 15.373 ± 1.11 c |
Flesh | 4.127 ± 0.67 a | 9.654 ± 1.56 b | 13.781 ± 0.88 c |
Peel | 9.873 ± 1.77 a | 18.743 ± 0.99 b | 28.616 ± 1.61 c |
Red Delicious | |||
Whole fruit | 4.012 ± 0.71 a | 4.874 ± 0.12 b | 8.886 ± 0.91 c |
Flesh | 3.580 ± 0.61 a | 4.870 ± 0.93 b | 8.450 ± 0.45 c |
Peel | 8.010 ± 0.65 a | 13.650 ± 0.56 b | 21.660 ± 1.41 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Graziani, G.; Gaspari, A.; Di Vaio, C.; Cirillo, A.; Ronca, C.L.; Grosso, M.; Ritieni, A. Assessment of In Vitro Bioaccessibility of Polyphenols from Annurca, Limoncella, Red Delicious, and Golden Delicious Apples Using a Sequential Enzymatic Digestion Model. Antioxidants 2021, 10, 541. https://doi.org/10.3390/antiox10040541
Graziani G, Gaspari A, Di Vaio C, Cirillo A, Ronca CL, Grosso M, Ritieni A. Assessment of In Vitro Bioaccessibility of Polyphenols from Annurca, Limoncella, Red Delicious, and Golden Delicious Apples Using a Sequential Enzymatic Digestion Model. Antioxidants. 2021; 10(4):541. https://doi.org/10.3390/antiox10040541
Chicago/Turabian StyleGraziani, Giulia, Anna Gaspari, Claudio Di Vaio, Aurora Cirillo, Carolina Liana Ronca, Michela Grosso, and Alberto Ritieni. 2021. "Assessment of In Vitro Bioaccessibility of Polyphenols from Annurca, Limoncella, Red Delicious, and Golden Delicious Apples Using a Sequential Enzymatic Digestion Model" Antioxidants 10, no. 4: 541. https://doi.org/10.3390/antiox10040541
APA StyleGraziani, G., Gaspari, A., Di Vaio, C., Cirillo, A., Ronca, C. L., Grosso, M., & Ritieni, A. (2021). Assessment of In Vitro Bioaccessibility of Polyphenols from Annurca, Limoncella, Red Delicious, and Golden Delicious Apples Using a Sequential Enzymatic Digestion Model. Antioxidants, 10(4), 541. https://doi.org/10.3390/antiox10040541