LC-ESI/MS-Phytochemical Profiling with Antioxidant, Antibacterial, Antifungal, Antiviral and In Silico Pharmacological Properties of Algerian Asphodelus tenuifolius (Cav.) Organic Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical and Reagents
2.2. Plant Material and Extraction Procedure
2.3. Total Phenolic Content (TPC)
2.4. Total Flavonoids Content (TFC)
2.5. LC-ESI/MS Analysis
2.6. NMR Analysis
2.7. Evaluation of Antioxidant Activity
DPPH Radical-Scavenging Activity and β-Carotene Bleaching Assay
2.8. Antibacterial and Antifungal Activities
2.8.1. Disk Diffusion Assay
2.8.2. Microdilution Assay: MICs and MBCs Determinations
2.9. Cytotoxic and Antiviral Activities
2.10. In Silico ADME Profiles
2.11. Statistical Analysis
3. Results and Discussion
3.1. Phytochemical Contents
3.2. HPLC-DAD-ESI/MS Analysis
3.3. Antioxidant Activities
3.4. Cytotoxic and Antiviral Activities
3.5. ADME Predictions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADME | Adsorption: distribution, metabolism and extraction |
BBB | Blood–brain barrier |
BE | Butanol extract |
BHT | Butylated hydroxytoluene |
CC | Cytotoxic conentration |
CE | Catechin equivalent |
CHE | Chloroform extract |
CVB-3 | Coxsackievirus B-3 |
CYP | Cytochrome P450 |
DR | Dry residue |
EAE | Ethyl acetate extract |
GAE | Gallic acid equivalent |
GI | Gastrointestinal |
HIA | Human intestinal adsorption |
HSV-2 | Herpes simplex type 2 |
IZ | Inhibition zone |
MIC | Minimal inhibitory concentration |
MBC | Minimal bactericidal concentration |
NI | Not identified |
NMR | Nuclear magnetic resonance |
P-gp | P glycoprotein |
TPSA | Total prostate specific antigen |
References
- Ahmad, B. Antioxidant activity and phenolic compounds from Colchicum luteum Baker (Liliaceae). Afr. J. Biotechnol. 2010, 9, 5762–5766. [Google Scholar]
- Díaz Linfante, Z.; Asphodelus, L.; Talavera, S.; Andrés, C.; Arista, M.; Piedra, M.; Rico, E.; Crespo, M.; Quintanar, A.; Herrero, A. Flora Ibérica. Consejo Superior de Investigaciones Científicas (CSIC); Real Jardin Botänico: Madrid, Spain, 2013. [Google Scholar]
- Di Petrillo, A.; Fais, A.; Pintus, F.; Santos-Buelga, C.; González-Paramás, A.M.; Piras, V.; Orrù, G.; Mameli, A.; Tramontano, E.; Frau, A. Broad-range potential of Asphodelus microcarpus leaves extract for drug development. BMC Microbiol. 2017, 17, 159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Petrillo, A.; González-Paramás, A.M.; Era, B.; Medda, R.; Pintus, F.; Santos-Buelga, C.; Fais, A. Tyrosinase inhibition and antioxidant properties of Asphodelus microcarpus extracts. BMC Complement. Altern. Med. 2016, 16, 453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Çalış, I.; Birincioğlu, S.S.; Kırmızıbekmez, H.; Pfeiffer, B.; Heilmann, J. Secondary Metabolites from Asphodelus aestivus. Z. Nat. B. 2006, 61, 1304–1310. [Google Scholar] [CrossRef]
- El-Ghaly, E.-S.M. Phytochemical and biological activities of Asphodelus microcarpus leaves. J. Pharmacogn. Phytochem. 2017, 6, 259–264. [Google Scholar]
- Adawia, K. Comparison of the total phenol, flavonoid contents and antioxidant activity of methanolic root extracts of As-phodelus microcarpus and Asphodeline lutea growing in Syria. Int. J. Pharmacogn. Phytochem. Res. 2017, 9, 159–164. [Google Scholar]
- Chimona, C.; Karioti, A.; Skaltsa, H.; Rhizopoulou, S. Occurrence of secondary metabolites in tepals of Asphodelus ramosus L. Plant. Biosyst. Int. J. Deal. Asp. Plant. Biol. 2013, 148, 31–34. [Google Scholar]
- Abdel-Mogib, M.; Basaif, S.A. Two new naphthalene and anthraquinone derivatives from Asphodelus tenuifolius. Die Pharm. 2002, 57, 286–287. [Google Scholar]
- Zellagui, A.; Gherraf, N.; Rhouati, S. A Germacrene–D, characteristic essential oil from A. microcarpus Salzm and Viv. flowers growing in Algeria. Glob. J. Biodivers. Sci. Manag. 2013, 3, 108–110. [Google Scholar]
- Fafal, T.; Yilmaz, F.F.; Birincioğlu, S.S.; Hoşgör-Limoncu, M.; Kivçak, B. Fatty acid composition and antimicrobial activity of Asphodelus aestivus seeds. Hum. Vet. Med. 2016, 8, 103–107. [Google Scholar]
- Ghoneim, M.M.; Ma, G.; El-Hela, A.A.; Mohammad, A.-E.I.; Kottob, S.; El-Ghaly, S.; Cutler, S.J.; Ross, S.A. Biologically Active Secondary Metabolites from Asphodelus Microcarpus. Nat. Prod. Commun. 2013, 8, 1117–1119. [Google Scholar] [CrossRef] [Green Version]
- Aslam, N.; Janbaz, K.H.; Jabeen, Q. Hypotensive and diuretic activities of aqueous-ethanol extract of Asphodelus tenuifolius. Bangladesh J. Pharmacol. 2016, 11, 830–837. [Google Scholar] [CrossRef] [Green Version]
- Eddine, L.S.; Segni, L.; Ridha, O.M. In vitro assays of the antibacterial and antioxidant properties of extracts from Asphodelus tenuifolius Cav and its main constituents: A comparative study. Int. J. Pharm. Clin. Res. 2015, 7, 119–125. [Google Scholar]
- Malmir, M.; Serrano, R.; Caniça, M.; Silva-Lima, B.; Silva, O. A Comprehensive Review on the Medicinal Plants from the Genus Asphodelus. Plants 2018, 7, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dangi, A.; Aparna, M.S.; Yadav, J.; Arora, D.; Chaudhary, U. Antimicrobial potential of Asphodelus tunifolius (CAV). J. Evol. Med. Dent. Sci. 2013, 2, 5663–5667. [Google Scholar]
- Faidi, K.; Hammami, S.; Salem, A.B.; El Mokni, R.; Mastouri, M.; Gorcii, M.; Ayedi, M. Polyphenol derivatives from bioactive butanol phase of the Tunisian narrow-leaved asphodel (Asphodelus tenuifolius Cav., Asphodelaceae). J. Med. Plant. Res. 2014, 8, 550–557. [Google Scholar]
- Kalim, M.D.; Bhattacharyya, D.; Banerjee, A.; Chattopadhyay, S. Oxidative DNA damage preventive activity and antioxidant potential of plants used in Unani system of medicine. BMC Complement. Altern. Med. 2010, 10, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menghani, E.; Bhatnagar, K.; Saraswat, P.; Soni, M. Isolation and characterization of bioactives from arid zone plants. Int. J. Pharm. Res. Dev. 2012, 4, 113–118. [Google Scholar]
- Panghal, M.; Kaushal, V.; Yadav, J.P. In vitro antimicrobial activity of ten medicinal plants against clinical isolates of oral cancer cases. Ann. Clin. Microbiol. Antimicrob. 2011, 10, 21. [Google Scholar] [CrossRef] [Green Version]
- Vaghasiya, Y.; Chanda, S. Screening of methanol and acetone extracts of fourteen Indian medicinal plants for antimicrobial activity. Turk. J. Biol. 2007, 31, 243–248. [Google Scholar]
- Mahboub, N.; Slimani, N.; Hechifa, D.; Merad, K.; Khelil, A. Study of the effect of drying methods on biochemical determi-nation of some spontaneous plants character medicinales in the Northen Algerian Sahara. Adv. Environ. Biol. 2016, 10, 131–140. [Google Scholar]
- Falleh, H.; Ksouri, R.; Chaieb, K.; Karray-Bouraoui, N.; Trabelsi, N.; Boulaaba, M.; Abdelly, C. Phenolic composition of Cynara cardunculus L. organs, and their biological activities. Comptes Rendus Biol. 2008, 331, 372–379. [Google Scholar] [CrossRef]
- Ncube, B.; Finnie, J.; Van Staden, J. Quality from the field: The impact of environmental factors as quality determinants in medicinal plants. S. Afr. J. Bot. 2012, 82, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal Processing Enhances the Nutritional Value of Tomatoes by Increasing Total Antioxidant Activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef] [PubMed]
- Espín, J.C.; Soler-Rivas, C.; Wichers, H.J. Characterization of the Total Free Radical Scavenger Capacity of Vegetable Oils and Oil Fractions Using 2,2-Diphenyl-1-picrylhydrazyl Radical. J. Agric. Food Chem. 2000, 48, 648–656. [Google Scholar] [CrossRef] [PubMed]
- Condelli, N.; Caruso, M.C.; Galgano, F.; Russo, D.; Milella, L.; Favati, F. Prediction of the antioxidant activity of extra virgin olive oils produced in the Mediterranean area. Food Chem. 2015, 177, 233–239. [Google Scholar] [CrossRef]
- Ríos, J.L.; Recio, M.C. Medicinal plants and antimicrobial activity. J. Ethnopharmacol. 2005, 100, 80–84. [Google Scholar] [CrossRef]
- Snoussi, M.; Noumi, E.; Trabelsi, N.; Flamini, G.; Papetti, A.; De Feo, V. Mentha spicata Essential Oil: Chemical Composition, Antioxidant and Antibacterial Activities against Planktonic and Biofilm Cultures of Vibrio spp. Strains. Molecules 2015, 20, 14402–14424. [Google Scholar] [CrossRef]
- Snoussi, M.; Trabelsi, N.; Dehmeni, A.; Benzekri, R.; Bouslama, L.; Hajlaoui, B.; Al-Sieni, A.; Papetti, A. Phytochemical analysis, antimicrobial and antioxidant activities of Allium roseum var. odoratissimum (Desf.) Coss extracts. Ind. Crop. Prod. 2016, 89, 533–542. [Google Scholar] [CrossRef]
- Parveen, M.; Ghalib, R.M.; Khanam, Z.; Mehdi, S.H.; Ali, M. A novel antimicrobial agent from the leaves of Peltophorum vogelianum (Benth.). Nat. Prod. Res. 2010, 24, 1268–1273. [Google Scholar] [CrossRef]
- Gormez, A.; Bozari, S.; Yanmis, D.; Gulluce, M.; Sahin, F.; Agar, G. Chemical composition and antibacterial activity of essential oils of two species of Lamiaceae against phytopathogenic bacteria. Pol. J. Microbiol. 2015, 64, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Boulaaba, M.; Snoussi, M.; Saada, M.; Mkadmini, K.; Smaoui, A.; Abdelly, C.; Ksouri, R. Antimicrobial activities and phy-tochemical analysis of Tamarix gallica extracts. Ind. Crop. Prod. 2015, 76, 1114–1122. [Google Scholar] [CrossRef] [Green Version]
- Clarkson, C.; Maharaj, V.J.; Crouch, N.R.; Grace, O.M.; Pillay, P.; Matsabisa, M.G.; Bhagwandin, N.; Smith, P.J.; Folb, P.I. In vitro antiplasmodial activity of medicinal plants native to or naturalised in South Africa. J. Ethnopharmacol. 2004, 92, 177–191. [Google Scholar] [CrossRef] [PubMed]
- Oketch-Rabah, H.; Dossaji, S.; Mberu, E. Antimalarial Activity of Some Kenyan Medicinal Plants. Pharm. Biol. 1999, 37, 329–334. [Google Scholar] [CrossRef]
- Kadri, A.; Aouadi, K. In vitro antimicrobial and α-glucosidase inhibitory potential of enantiopure cycloalkylglycine deriv-atives: Insights into their in silico pharmacokinetic, druglikeness, and medicinal chemistry properties. J. Appl. Pharm. Sci. 2020, 10, 107–115. [Google Scholar]
- Othman, I.M.; Gad-Elkareem, M.A.; Snoussi, M.; Aouadi, K.; Kadri, A. Novel fused pyridine derivatives containing pyrimidine moiety as prospective tyrosyl-tRNA synthetase inhibitors: Design, synthesis, pharmacokinetics and molecular docking studies. J. Mol. Struct. 2020, 1219, 128651. [Google Scholar] [CrossRef]
- Munir, H.; Sarfraz, R.; Hussain, A.; Shahid, M.; Sultana, B. Antioxidant and antimicrobial activities of different solvent extracts of Asphodilus tenifolius. Oxid. Commun. 2014, 37, 741–754. [Google Scholar]
- Al-Laith, A.A.; Alkhuzai, J.; Freije, A. Assessment of antioxidant activities of three wild medicinal plants from Bahrain. Arab. J. Chem. 2019, 12, 2365–2371. [Google Scholar] [CrossRef] [Green Version]
- Bakari, S.; Ncir, M.; Felhi, S.; Hajlaoui, H.; Saoudi, M.; Gharsallah, N.; Kadri, A. Chemical composition and in vitro evaluation of total phenolic, flavonoid, and antioxydant properties of essential oil and solvent extract from the aerial parts of Teucrium polium grown in Tunisia. Food Sci. Biotechnol. 2015, 24, 1943–1949. [Google Scholar] [CrossRef]
- Bakari, S.; Daoud, A.; Felhi, S.; Smaoui, S.; Gharsallah, N.; Kadri, A. Proximate analysis, mineral composition, phytochemical contents, antioxidant and antimicrobial activities and GC-MS investigation of various solvent extracts of cactus cladode. Food Sci. Technol. 2017, 37, 286–293. [Google Scholar] [CrossRef] [Green Version]
- Reynaud, J.; Lussignol, M.; Flament, M.M.; Becchi, M. Flavonoid content of Asphodelus ramosus (Liliaceae). Can. J. Bot. 1997, 75, 2105–2107. [Google Scholar] [CrossRef]
- El-Fattah, H.A. Chemistry of Asphodelus fistulosus. Int. J. Pharmacogn. 1997, 35, 274–277. [Google Scholar] [CrossRef]
- Adinolfi, M.; Corsaro, M.M.; Lanzetta, R.; Parrilli, M.; Scopa, A. A bianthrone C-glycoside from Asphodelus ramosus tubers. Phytochemistry 1989, 28, 284–288. [Google Scholar] [CrossRef]
- Hammouda, F.; Rizk, A.; El-Nasr, M.S.; Asr, E.-N. Anthraquinones of Certain Egyptian Asphodelus Species. Z. Nat. C 1974, 29, 351–354. [Google Scholar] [CrossRef] [Green Version]
- Oudtshoorn, M.V.R.V. Chemotaxonomic investigations in asphodeleae and aloineae (liliaceae). Phytochemistry 1964, 3, 383–390. [Google Scholar] [CrossRef]
- Khalfaoui, A.; Chini, M.G.; Bouheroum, M.; Belaabed, S.; Lauro, G.; Terracciano, S.; Vaccaro, M.C.; Bruno, I.; Benayache, S.; Mancini, I. Glucopyranosylbianthrones from the Algerian Asphodelus tenuifolius: Structural insights and biological evalua-tion on melanoma cancer cells. J. Nat. Prod. 2018, 81, 1786–1794. [Google Scholar] [CrossRef]
- Ghoneim, M.M.; Elokely, K.M.; El-Hela, A.A.; Mohammad, A.-E.I.; Jacob, M.; Radwan, M.M.; Doerksen, R.J.; Cutler, S.J.; Ross, S.A. Asphodosides A-E, anti-MRSA metabolites from Asphodelus microcarpus. Phytochemistry 2014, 105, 79–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Wyk, B.-E.; Yenesew, A.; Dagne, E. Chemotaxonomic significance of anthraquinones in the roots of asphodeloideae (asphodelaceae). Biochem. Syst. Ecol. 1995, 23, 277–281. [Google Scholar] [CrossRef]
- Beara, I.N.; Lesjak, M.M.; Četojević-Simin, D.D.; Orčić, D.Z.; Janković, T.; Anačkov, G.T.; Mimica-Dukić, N.M. Phenolic profile, antioxidant, anti-inflammatory and cytotoxic activities of endemic Plantago reniformis G. Beck. Food Res. Int. 2012, 49, 501–507. [Google Scholar] [CrossRef]
- Dave, H.; Ledwani, L. A review on anthraquinones isolated from Cassia species and their applications. Indian J. Nat. Prod. Resour. 2012, 3, 291–319. [Google Scholar]
- De Martino, L.; Mencherini, T.; Mancini, E.; Aquino, R.P.; De Almeida, L.F.R.; De Feo, V. In vitro phytotoxicity and antioxidant activity of selected flavonoids. Int. J. Mol. Sci. 2012, 13, 5406–5419. [Google Scholar] [CrossRef] [PubMed]
- Firuzi, O.; Miri, R.; Tavakkoli, M.; Saso, L. Antioxidant Therapy: Current Status and Future Prospects. Curr. Med. Chem. 2011, 18, 3871–3888. [Google Scholar] [CrossRef]
- Mellado, M.; Madrid, A.; Pena-Cortes, H.; López, R.; Jara, C.; Espinoza, L. Antioxidant activity of anthraquinones isolated from leaves of Muehlenbeckia hastulata (je sm.) johnst.(polygonaceae). J. Chil. Chem. Soc. 2013, 58, 1767–1770. [Google Scholar] [CrossRef] [Green Version]
- Zargar, B.A.; Masoodi, M.H.; Ahmed, B.; Ganie, S.A. Phytoconstituents and therapeutic uses of Rheum emodi wall. ex Meissn. Food Chem. 2011, 128, 585–589. [Google Scholar] [CrossRef]
- Felhi, S.; Hajlaoui, H.; Ncir, M.; Bakari, S.; Ktari, N.; Saoudi, M.; Gharsallah, N.; Kadri, A. Nutritional, phytochemical and antioxidant evaluation and FT-IR analysis of freeze dried extracts of Ecballium elaterium fruit juice from three localities. Food Sci. Technol. 2016, 36, 646–655. [Google Scholar] [CrossRef] [Green Version]
- Felhi, S.; Saoudi, M.; Daoud, A.; Hajlaoui, H.; Ncir, M.; Chaabane, R.; El Feki, A.; Gharsallah, N.; Kadri, A. Investigation of phytochemical contents, in vitro antioxidant and antibacterial behavior and in vivo anti-inflammatory potential of Ecballium elaterium methanol fruits extract. Food Sci. Technol. 2017, 37, 558–563. [Google Scholar] [CrossRef] [Green Version]
- Moorthy, K.K.; Subramaniam, P.; Senguttuvan, J. In vitro antifungal activity of various extracts of leaf and stem parts of Solena amplexicaulis (Lam.) Gandhi. Int. J. Pharm. Pharm. Sci. 2013, 5, 745–747. [Google Scholar]
- Soliman, S.S.M.; Semreen, M.H.; El-Keblawy, A.A.; Abdullah, A.; Uppuluri, P.; Ibrahim, A.S. Assessment of herbal drugs for promising anti-Candida activity. BMC Complement. Altern. Med. 2017, 17, 257. [Google Scholar] [CrossRef] [Green Version]
- Dziri, S.; Hassen, I.; Fatnassi, S.; Mrabet, Y.; Casabianca, H.; Hanchi, B.; Hosni, K. Phenolic constituents, antioxidant and an-timicrobial activities of rosy garlic (Allium roseum var. odoratissimum). J. Funct. Foods 2012, 4, 423–432. [Google Scholar] [CrossRef]
- Asdadi, A.; Gharby, S.; Hamdouch, A.; Moutaj, R.; Chebli, B.; Hassani, L.M.I. Screening for antifungal activity of medicinal and aromatic plants is another way to valuing the Moroccan Arganeraie. J. Chem. Pharm. Res. 2016, 8, 590–595. [Google Scholar]
- Salhi, N.; Saghir, S.A.M.; Terzi, V.; Brahmi, I.; Ghedairi, N.; Bissati, S. Antifungal Activity of Aqueous Extracts of Some Dominant Algerian Medicinal Plants. BioMed Res. Int. 2017, 2017, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marmonier, A. Introduction aux techniques d’étude des antibiotiques. In Bactériologie médicale techniques usuelles; Doin: Paris, France, 1990; pp. 227–236. [Google Scholar]
- Selway, J.W. Antiviral activity of flavones and flavans. Prog. Clin. Boil. Res. 1986, 213, 521–536. [Google Scholar]
Extracts | Total Phenolic Content (mg GAE/g DR) | Total Flavonoids Content (mg CE/g DR) | DPPH IC50 (µg/mL) | β-Carotene IC50 (µg/mL) |
---|---|---|---|---|
CHE | 40.99 ± 0.41 c | 213.07 ± 1.72 c | 25 ± 4.36 a | 95.692 ± 0.027 b |
EAE | 24.04 ± 0.55 b | 202.89 ± 6.15 b | 45 ± 2.88 b | 73.581 ± 0.087 a |
BE | 10.54 ± 0.20 a | 62.85 ± 1.33 a | 92 ± 4.05 c | 97.775 ± 0.007 b |
BHT | - | - | 11.5 ± 0.01 | 75 ± 0.2 |
Peaks | Rt (min) | MW | m/z [M-H]− | Molecular Formula | λ max (nm) | Probable Compounds |
---|---|---|---|---|---|---|
1 | 8.9 | 432 | 431.3 | C21H20O10 | 254, 330 | Apigenin-7-O-glucoside |
2 | 14.5 | 207 | 206.1 | NI | 254 | NI |
3 | 37.6 | 313 | 312.2 | C18H19O4N | 254, 330 | Tamgermanetin |
4 | 38.2 | 584 | 583.0 | NI | 254, 330 | NI |
5 | 39.0 | 286 | 284.9 | C15H10O6 | 254, 330 | Luteolin |
6 | 41.6 | 270 | 269.0 | C15H10O5 | 254, 330 | Apigenin |
7 | 44.5 | 672 | 671.0 | C36H32O13 | 254, 330 | Ramosin |
8 | 45.3 | 270 | 269.2 | C15H10O5 | 254 | Aloe-emodin |
9 | 46.1 | 670 | 668.9 | C36H30O13 | 254, 330 | NI |
10 | 46.5 | 670 | 668.9 | C36H30O13 | 254, 330 | (P,10′S)-oxanthrone-10′-β-glucopyranosyl asphodelin |
11 | 47.6 | 670 | 668.9 | C36H30O13 | 254, 330 | NI |
12 | 48.0 | 670 | 668.9 | C36H30O13 | 254, 330 | (M,10′S)-oxanthrone-10′-β-glucopyranosyl asphodelin |
13 | 48.6 | 640 | 639.0 | C35H28O12 | 254, 330 | (10′R)-oxanthrone-10′-β-D-xylopyranoside asphodelin |
14 | 48.9 | 640 | 639.1 | C35H28O12 | 254, 330 | (10′S)-oxanthrone-10′-β-D-xylopyranoside asphodelin |
15 | 50.1 | 640 | 638.8 | C35H28O12 | 254, 330 | (10′S)-oxanthrone-10′-β-L-arabinopyranoside asphodelin |
16 | 52.9 | 594 | 593.3 | NI | 254 | NI |
17 | 59.2 | 506 | 505.0 | C30H18O8 | 254 | Asphodelin |
Tested Microorganisms | Chloroformic Extract | Ethyl Acetate Extract | Butanol Extract | Ampicillin (10 mg/mL) | ||||||||
GIZ ± SD | MIC | MBC | GIZ ± SD | MIC | MBC | GIZ ± SD | MIC | MBC | GIZ ± SD | MIC | MBC | |
Staphylococcus epidermidis CIP 106510 | 13 ± 2 b | 0.58 | 2.34 | 6 ± 0 a | 25 | >50 | 6 ± 0 a | 50 | >50 | 21.33 ± 0.57 c | 0.078 | 0.625 |
Staphylococcus aureus ATCC 25923 | 9.67 ± 0.58 b | 2.34 | 9.37 | 9.67 ± 0.58 b | 3.12 | 6.25 | 6 ± 0 a | 25 | >50 | 26.66 ± 0.57 c | 0.078 | 0.625 |
Vibrio parahaemolyticus ATCC 17802 | 8.67 ± 1.15 b | 18.75 | 75 | 6 ± 0 a | 25 | >50 | 6 ± 0 a | 50 | >50 | 13.33 ± 0.57 c | 0.011 | 3 |
Listeria monocytogenes ATCC 19115 | 6 ± 0 a | 37.5 | >75 | 6 ± 0 a | 0.39 | 1.56 | 6 ± 0 a | 0.78 | 3.125 | 12.33 ± 0.57 b | 0.023 | 0.093 |
Bacillus cereus ATCC 11778 | 6 ± 0 a | 4.68 | 18.75 | 6 ± 0 a | 25 | >50 | 6 ± 0 a | 50 | >100 | 26 ± 1 b | 0.078 | 0.625 |
Salmonella typhimurium DT 104 | 19.3 ± 1.15 c | 18.75 | 37.5 | 10.7 ± 2.08 b | 3.12 | 6.25 | 6 ± 0 a | 50 | >50 | * | * | * |
Salmonella typhimurium ATCC 1408 | 6 ± 0 a | 18.75 | 75 | 6 ± 0 a | 12.5 | >25 | 6 ± 0 a | 50 | >50 | 18 ± 1 b | 0.023 | 0.093 |
Escherichia coli ATCC 35218 | 6 ± 0 a | 9.37 | 37.5 | 6 ± 0 a | 25 | >50 | 6 ± 0 a | 50 | >50 | 12.33 ± 0.57 b | 0.023 | 0.093 |
Tested Microorganisms | Chloroform Extract | Ethyl Acetate Extract | Butanol Extract | Amphotricin B (10 mg/mL) | ||||||||
GIZ ± SD | MIC | MFC | GIZ ± SD | MIC | MFC | GIZ ± SD | MIC | MFC | GIZ ± SD | MIC | MFC | |
Candida krusei ATCC 6258 | 6 ± 0 a | 37.5 | >75 | 6 ± 0 a | 25 | >50 | 6 ± 0 a | 25 | >50 | 12 ± 0 b | 0.097 | 0.195 |
Candida albicans ATCC 2019 | 6 ± 0 a | 18.75 | 75 | 6 ± 0 a | 12.5 | 25 | 6 ± 0 a | 25 | >50 | 12.66 ± 0.57 b | 0.024 | 0.781 |
Candida parapsilosis ATCC 22019 | 6 ± 0 a | 37.5 | >75 | 6 ± 0 a | 25 | >50 | 6 ± 0 a | 25 | >50 | 10.33 ± 0.57 b | 0.195 | 0.39 |
Candida tropicalis 06-085 | 6 ± 0 a | 37.5 | >75 | 6 ± 0 a | 25 | >50 | 6 ± 0 a | 25 | >50 | 12 ± 0 b | 0.39 | 6.25 |
Entry | 1 | 3 | 5 | 6 | 7 | 8 | 10 | 12 | 13 | 14 | 15 | 17 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
GI absorption | Low | High | High | High | Low | High | Low | Low | Low | Low | Low | Low |
BBB permeant | No | No | No | No | No | No | No | No | No | No | No | No |
P-gp substrate | Yes | No | No | No | No | No | No | No | No | No | No | No |
CYP1A2 inhibitor | No | No | Yes | Yes | No | Yes | No | No | No | No | No | No |
CYP2C19 inhibitor | No | No | No | No | No | No | No | No | No | No | No | Yes |
CYP2C9 inhibitor | No | No | No | No | Yes | No | Yes | Yes | Yes | Yes | Yes | Yes |
CYP2D6 inhibitor | No | Yes | Yes | Yes | No | No | No | No | No | No | No | No |
CYP3A4 inhibitor | No | Yes | Yes | Yes | No | Yes | No | No | No | No | No | No |
Log Kp (cm/s) | −7.65 | −6.72 | −6.25 | −5.80 | −8.95 | −6.66 | −8.39 | −8.39 | −8.16 | −8.16 | −8.16 | −5.24 |
Lipinski’s Rule | Yes | Yes | Yes | Yes | Yes | Yes | No | No | No | No | No | Yes |
Bioavailability Score | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalfaoui, A.; Noumi, E.; Belaabed, S.; Aouadi, K.; Lamjed, B.; Adnan, M.; Defant, A.; Kadri, A.; Snoussi, M.; Khan, M.A.; et al. LC-ESI/MS-Phytochemical Profiling with Antioxidant, Antibacterial, Antifungal, Antiviral and In Silico Pharmacological Properties of Algerian Asphodelus tenuifolius (Cav.) Organic Extracts. Antioxidants 2021, 10, 628. https://doi.org/10.3390/antiox10040628
Khalfaoui A, Noumi E, Belaabed S, Aouadi K, Lamjed B, Adnan M, Defant A, Kadri A, Snoussi M, Khan MA, et al. LC-ESI/MS-Phytochemical Profiling with Antioxidant, Antibacterial, Antifungal, Antiviral and In Silico Pharmacological Properties of Algerian Asphodelus tenuifolius (Cav.) Organic Extracts. Antioxidants. 2021; 10(4):628. https://doi.org/10.3390/antiox10040628
Chicago/Turabian StyleKhalfaoui, Ayoub, Emira Noumi, Soumia Belaabed, Kaïss Aouadi, Bouslama Lamjed, Mohd Adnan, Andrea Defant, Adel Kadri, Mejdi Snoussi, Mushtaq Ahmad Khan, and et al. 2021. "LC-ESI/MS-Phytochemical Profiling with Antioxidant, Antibacterial, Antifungal, Antiviral and In Silico Pharmacological Properties of Algerian Asphodelus tenuifolius (Cav.) Organic Extracts" Antioxidants 10, no. 4: 628. https://doi.org/10.3390/antiox10040628
APA StyleKhalfaoui, A., Noumi, E., Belaabed, S., Aouadi, K., Lamjed, B., Adnan, M., Defant, A., Kadri, A., Snoussi, M., Khan, M. A., & Mancini, I. (2021). LC-ESI/MS-Phytochemical Profiling with Antioxidant, Antibacterial, Antifungal, Antiviral and In Silico Pharmacological Properties of Algerian Asphodelus tenuifolius (Cav.) Organic Extracts. Antioxidants, 10(4), 628. https://doi.org/10.3390/antiox10040628