Mori Ramulus Inhibits Pancreatic β-Cell Apoptosis and Prevents Insulin Resistance by Restoring Hepatic Mitochondrial Function
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. High-Performance Liquid Chromatography Analysis (HPLC)
2.3. Cell Culture and Viability
2.4. Insulin Secretion Assay
2.5. Apoptosis Detection
2.6. Detection of Mitochondrial Membrane Potential
2.7. Animals and Diet
2.8. Oral Glucose Tolerance Test (OGTT) and Intraperitoneal Insulin Tolerance Test (ipITT)
2.9. Blood Biochemical Analysis
2.10. Histological Examination and Immunohistochemical Staining
2.11. Mitochondria Isolation
2.12. Mitochondrial OXPHOS Enzyme Activity Measurement
2.13. Western Blot Analysis
2.14. Mitochondrial ATP Production Determination
2.15. Statistical Analyses
3. Results
3.1. ME Prevents Tunicamycin-Induced Cell Death in NIT-1 Pancreatic β-Cells
3.2. ME Improves Insulin Secretion in Tunicamycin-Treated NIT-1 Pancreatic β-Cells
3.3. ME Prevents Tunicamycin-Induced ROS Formation and Activation of the Mitochondrial Apoptosis Pathway in NIT-1 Pancreatic β-Cells
3.4. ME Improves Tunicamycin-Induced ER Stress
3.5. Effect of ME on Body Weight, Organ Weight, and Serum Biochemical Profiles in Diabetic Mice
3.6. ME Improves Insulin Resistance and β-Cell Loss Induced by HFD Feeding
3.7. ME Increased Hepatic Mitochondrial Enzyme Expression
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Srinivasan, K.; Viswanad, B.; Asrat, L.; Kaul, C.L.; Ramarao, P. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: A model for type 2 diabetes and pharmacological screening. Pharmacol. Res. 2005, 52, 313–320. [Google Scholar] [CrossRef]
- Nadeau, K.J.; Zeitler, P.S.; Bauer, T.A.; Brown, M.S.; Dorosz, J.L.; Draznin, B.; Reusch, J.E.; Regensteiner, J.G. Insulin resistance in adolescents with type 2 diabetes is associated with impaired exercise capacity. J. Clin. Endocrinol. Metab. 2009, 94, 3687–3695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shulman, G.I. Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N. Engl. J. Med. 2014, 371, 2237–2238. [Google Scholar] [CrossRef]
- Cree-Green, M.; Triolo, T.M.; Nadeau, K.J. Etiology of insulin resistance in youth with type 2 diabetes. Curr. Diab. Rep. 2013, 13, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.U.; Harris, R.A. Mitochondria and endoplasmic reticulum in diabetes and its complications. Exp. Diabetes Res. 2012, 2012, 985075. [Google Scholar] [CrossRef]
- Di Martino, R.; Sticco, L.; Luini, A. Regulation of cargo export and sorting at the trans-Golgi network. FEBS Lett. 2019, 593, 2306–2318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Z.A.; Zhao, Z.; Turk, J. Mitochondrial dysfunction and beta-cell failure in type 2 diabetes mellitus. Exp. Diabetes Res. 2012, 2012, 703538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ristow, M.; Zarse, K.; Oberbach, A.; Kloting, N.; Birringer, M.; Kiehntopf, M.; Stumvoll, M.; Kahn, C.R.; Bluher, M. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc. Natl. Acad. Sci. USA 2009, 106, 8665–8670. [Google Scholar] [CrossRef] [Green Version]
- Loh, K.; Deng, H.; Fukushima, A.; Cai, X.; Boivin, B.; Galic, S.; Bruce, C.; Shields, B.J.; Skiba, B.; Ooms, L.M.; et al. Reactive oxygen species enhance insulin sensitivity. Cell Metab. 2009, 10, 260–272. [Google Scholar] [CrossRef] [Green Version]
- Orrenius, S. Mitochondrial regulation of apoptotic cell death. Toxicol. Lett. 2004, 149, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Butler, A.E.; Janson, J.; Bonner-Weir, S.; Ritzel, R.; Rizza, R.A.; Butler, P.C. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 2003, 52, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Meeprom, A.; Chan, C.B.; Sompong, W.; Adisakwattana, S. Isoferulic acid attenuates methylglyoxal-induced apoptosis in INS-1 rat pancreatic beta-cell through mitochondrial survival pathways and increasing glyoxalase-1 activity. Biomed. Pharmacother. 2018, 101, 777–785. [Google Scholar] [CrossRef]
- Krentz, A.J.; Bailey, C.J. Oral antidiabetic agents: Current role in type 2 diabetes mellitus. Drugs 2005, 65, 385–411. [Google Scholar] [CrossRef]
- Prattichizzo, F.; La Sala, L.; Ryden, L.; Marx, N.; Ferrini, M.; Valensi, P.; Ceriello, A. Glucose-lowering therapies in patients with type 2 diabetes and cardiovascular diseases. Eur. J. Prev. Cardiol. 2019, 26, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Miyazaki, Y.; Glass, L.; Triplitt, C.; Wajcberg, E.; Mandarino, L.J.; DeFronzo, R.A. Abdominal fat distribution and peripheral and hepatic insulin resistance in type 2 diabetes mellitus. Am. J. Physiol. Endocrinol. Metab. 2002, 283, E1135–E1143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Fang, M.; Ma, Y.L.; Zhang, Y.Q. Preparation of the Branch Bark Ethanol Extract in Mulberry Morus alba, Its Antioxidation, and Antihyperglycemic Activity In Vivo. Evid. Based Complement. Alternat. Med. 2014, 2014, 569652. [Google Scholar] [CrossRef]
- Yin, X.L.; Liu, H.Y.; Zhang, Y.Q. Mulberry branch bark powder significantly improves hyperglycemia and regulates insulin secretion in type II diabetic mice. Food Nutr. Res. 2017, 61, 1368847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, E.; Lee, J.; Jeon, Y.H.; Choi, S.W.; Kim, E. Anti-diabetic effects of mulberry (Morus alba L.) branches and oxyresveratrol in streptozotocin-induced diabetic mice. Food Sci. Biotechnol. 2017, 26, 1693–1702. [Google Scholar] [CrossRef]
- Ham, I.J.E.; Lee, B.; Choi, H. The Study on Anti-hypertensive and Anti-diabetic Effect of Mori Ramulus. Kor. J. Herbol. 2008, 23, 203–212. [Google Scholar]
- Park, Y.H.; An, M.; Kim, J.K.; Lim, Y.H. Antiobesity effect of ethanolic extract of Ramulus mori in differentiated 3T3-L1 adipocytes and high-fat diet-induced obese mice. J. Ethnopharmacol. 2020, 251, 112542. [Google Scholar] [CrossRef]
- Yoshida, S.; Ohishi, T.; Matsui, T.; Tanaka, H.; Oshima, H.; Yonetoku, Y.; Shibasaki, M. The role of small molecule GPR119 agonist, AS1535907, in glucose-stimulated insulin secretion and pancreatic beta-cell function. Diabetes Obes. Metab. 2011, 13, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Ko, E.; Um, M.Y.; Choi, M.; Han, T.; Kim, I.H.; Shin, S. Cassia tora Seed Improves Pancreatic Mitochondrial Function Leading to Recovery of Glucose Metabolism. Am. J. Chin. Med. 2020, 48, 615–629. [Google Scholar] [CrossRef]
- Choi, W.H.; Ahn, J.; Jung, C.H.; Jang, Y.J.; Ha, T.Y. Beta-Lapachone Prevents Diet-Induced Obesity by Increasing Energy Expenditure and Stimulating the Browning of White Adipose Tissue via Downregulation of miR-382 Expression. Diabetes 2016, 65, 2490–2501. [Google Scholar] [CrossRef] [Green Version]
- Marre, M.L.; James, E.A.; Piganelli, J.D. Beta cell ER stress and the implications for immunogenicity in type 1 diabetes. Front. Cell Dev. Biol. 2015, 3, 67. [Google Scholar] [CrossRef] [Green Version]
- Guha, P.; Kaptan, E.; Gade, P.; Kalvakolanu, D.V.; Ahmed, H. Tunicamycin induced endoplasmic reticulum stress promotes apoptosis of prostate cancer cells by activating mTORC1. Oncotarget 2017, 8, 68191–68207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamaguchi, K.; Gaskins, H.R.; Leiter, E.H. NIT-1, a pancreatic beta-cell line established from a transgenic NOD/Lt mouse. Diabetes 1991, 40, 842–849. [Google Scholar] [CrossRef] [PubMed]
- Jung, T.W.; Lee, M.W.; Lee, Y.J.; Kim, S.M. Metformin prevents endoplasmic reticulum stress-induced apoptosis through AMPK-PI3K-c-Jun NH2 pathway. Biochem. Biophys. Res. Commun. 2012, 417, 147–152. [Google Scholar] [CrossRef]
- Eizirik, D.L.; Cardozo, A.K.; Cnop, M. The role for endoplasmic reticulum stress in diabetes mellitus. Endocr. Rev. 2008, 29, 42–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.; Im, S.W.; Jung, C.H.; Jang, Y.J.; Ha, T.Y.; Ahn, J. Tyrosol, an olive oil polyphenol, inhibits ER stress-induced apoptosis in pancreatic beta-cell through JNK signaling. Biochem. Biophys. Res. Commun. 2016, 469, 748–752. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, T.A.; Xiang, A.H.; Peters, R.K.; Kjos, S.L.; Marroquin, A.; Goico, J.; Ochoa, C.; Tan, S.; Berkowitz, K.; Hodis, H.N.; et al. Preservation of pancreatic beta-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk hispanic women. Diabetes 2002, 51, 2796–2803. [Google Scholar] [CrossRef] [Green Version]
- Castro, G.; MF, C.A.; Weissmann, L.; Quaresma, P.G.; Katashima, C.K.; Saad, M.J.; Prada, P.O. Diet-induced obesity induces endoplasmic reticulum stress and insulin resistance in the amygdala of rats. FEBS Open Bio 2013, 3, 443–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasuga, M. Insulin resistance and pancreatic beta cell failure. J. Clin. Investig. 2006, 116, 1756–1760. [Google Scholar] [CrossRef]
- Muoio, D.M.; Newgard, C.B. Mechanisms of disease:Molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nat. Rev. Mol. Cell Biol. 2008, 9, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Omar, R.A.; Chyan, Y.J.; Andorn, A.C.; Poeggeler, B.; Robakis, N.K.; Pappolla, M.A. Increased Expression but Reduced Activity of Antioxidant Enzymes in Alzheimer’s Disease. J. Alzheimers Dis. 1999, 1, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Wauthier, V.; Schenten, V.; Verbeeck, R.K.; Calderon, P.B. Ageing is associated with increased expression but decreased activity of CYP2E1 in male Wistar rats. Life Sci. 2006, 79, 1913–1920. [Google Scholar] [CrossRef]
- Huttemann, M.; Helling, S.; Sanderson, T.H.; Sinkler, C.; Samavati, L.; Mahapatra, G.; Varughese, A.; Lu, G.; Liu, J.; Ramzan, R.; et al. Regulation of mitochondrial respiration and apoptosis through cell signaling: Cytochrome c oxidase and cytochrome c in ischemia/reperfusion injury and inflammation. Biochim. Biophys. Acta 2012, 1817, 598–609. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Jin, B.; Shin, J.H.; Adisakwattana, S.; Kwon, O. Standardized Mori ramulus extract improves insulin secretion and insulin sensitivity in C57BLKS/J db/db mice and INS-1 cells. Biomed. Pharmacother. 2017, 92, 308–315. [Google Scholar] [CrossRef]
- Jeon, Y.H.; Choi, S.W. Isolation, Identification, and Quantification of Tyrosinase and alpha-Glucosidase Inhibitors from UVC-Irradiated Mulberry (Morus alba L.) Leaves. Prev. Nutr. Food Sci. 2019, 24, 84–94. [Google Scholar] [CrossRef]
- Su, H.C.; Hung, L.M.; Chen, J.K. Resveratrol, a red wine antioxidant, possesses an insulin-like effect in streptozotocin-induced diabetic rats. Am. J. Physiol. Endocrinol. Metab. 2006, 290, E1339–E1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
ND | HFD | HFD + LS | HFD + HS | |
---|---|---|---|---|
Initial body weight (g) | 22.3 ± 1.2 | 22.2 ± 1.0 | 22.3 ± 1.2 | 22.3 ± 0.7 |
Final body weight (g) | 34.1 ± 3.3 | 40.1 ± 4.4 ## | 39.1 ± 3.2 | 38.5 ± 2.7 |
Body weight gain (g) | 11.7 ± 2.3 | 17.8 ± 4.0 ## | 16.7 ± 2.2 | 16.1 ± 3.0 |
Food intake (g/day) | 2.4 ± 0.1 | 2.2 ± 0.1 # | 2.2 ± 0.0 | 2.3 ± 0.1 |
Liver weight (g) | 1.20 ± 0.32 | 1.46 ± 0.36 | 1.29 ± 0.19 | 1.34 ± 0.26 |
Epididymal fat weight (g) | 1.64 ± 0.47 | 2.48 ± 0.50 ### | 2.59 ± 0.27 | 2.42 ± 0.26 |
Retroperitoneal fat weight (g) | 0.66 ± 0.20 | 1.03 ± 0.28 # | 01.03 ± 0.21 | 0.90 ± 0.27 |
ND | HFD | HFD + LS | HFD + HS | |
---|---|---|---|---|
Total cholesterol (mg/dL) | 101.1 ± 22.3 | 123.6 ± 18.8 | 137.7 ± 11.4 | 132.0 ± 13.5 |
HDL cholesterol (mg/dL) | 115.8 ± 26.9 | 146.7 ± 24.8 ## | 166.2 ± 1.5 | 159.3 ± 11.5 |
Triglyceride (mg/dL) | 93.6 ± 26.1 | 123.6 ± 18.6 # | 116.4 ± 19.0 | 123.9 ± 18.5 |
Free fatty acid (μM/mL) | 13.0 ± 2.3 | 21.1 ± 1.6 ### | 17.5 ± 1.4 *** | 17.2 ± 3.4 *** |
Fasting glucose (mg/dL) | 189.0 ± 6.3 | 235.2 ± 17.0 ### | 230.7 ± 12.2 | 202.4 ± 10.0 *** |
Insulin (ng/mL) | 0.30 ± 0.12 | 1.65 ± 0.12 ### | 1.33 ± 0.62 | 0.96 ± 0.50 * |
HOMA-IR | 4.05 ± 1.67 | 27.45 ± 3.25 ### | 21.92 ± 10.54 | 13.97 ± 7.39 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, T.; Ko, E.; Kim, M.; Choi, M.; Lee, C.; Kim, I.-H.; Shin, S.; Um, M.Y. Mori Ramulus Inhibits Pancreatic β-Cell Apoptosis and Prevents Insulin Resistance by Restoring Hepatic Mitochondrial Function. Antioxidants 2021, 10, 901. https://doi.org/10.3390/antiox10060901
Han T, Ko E, Kim M, Choi M, Lee C, Kim I-H, Shin S, Um MY. Mori Ramulus Inhibits Pancreatic β-Cell Apoptosis and Prevents Insulin Resistance by Restoring Hepatic Mitochondrial Function. Antioxidants. 2021; 10(6):901. https://doi.org/10.3390/antiox10060901
Chicago/Turabian StyleHan, Taewon, Eun Ko, Minji Kim, Moonsung Choi, Changho Lee, In-Ho Kim, Sooim Shin, and Min Young Um. 2021. "Mori Ramulus Inhibits Pancreatic β-Cell Apoptosis and Prevents Insulin Resistance by Restoring Hepatic Mitochondrial Function" Antioxidants 10, no. 6: 901. https://doi.org/10.3390/antiox10060901
APA StyleHan, T., Ko, E., Kim, M., Choi, M., Lee, C., Kim, I. -H., Shin, S., & Um, M. Y. (2021). Mori Ramulus Inhibits Pancreatic β-Cell Apoptosis and Prevents Insulin Resistance by Restoring Hepatic Mitochondrial Function. Antioxidants, 10(6), 901. https://doi.org/10.3390/antiox10060901