LC-ESI/QTOF-MS Profiling of Chicory and Lucerne Polyphenols and Their Antioxidant Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Chemicals and Reagents
2.3. Samples Preparation
2.4. Extraction of Phenolics
2.5. Antioxidant Assays
2.5.1. Total Phenolics Content (TPC)
2.5.2. Total Flavonoids Content (TFC)
2.5.3. Total Tannin Contents (TTC)
2.5.4. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Assay
2.5.5. Ferric Reducing Antioxidant Power (FRAP) Assay
2.5.6. 2,2-Azino-bis-3-ethylbenzothiazoline-6-sulfonic Acid (ABTS) Radical Scavenging Assay
2.5.7. Hydroxyl (OH−) Radical Scavenging Activity Assay
2.5.8. Chelating Ability of Ferrous Ion (Fe2+)
2.5.9. Reducing Power Assay (RPA)
2.6. Profiling of Polyphenols by LC-ESI/QTOF-MS
2.7. Quantification of Polyphenols
2.8. Statistics Analysis
3. Results and Discussion
3.1. Polyphenols Estimation from Chicory and Lucerne Extracts (TPC, TFC and TTC)
3.2. Antioxidant Activities of Chicory and Lucerne Extracts as Determined by DPPH, FRAP, ABTS, RPA, OH− Radical Scavenging Ability, Chelating Ability of Fe2+
3.3. Polyphenols Profile of Chicory and Lucerne
3.3.1. Phenolic Acids
Hydroxybenzoic Acid Derivatives
Hydroxycinnamic Acid Derivatives
Hydroxyphenylpropanoic Acids
3.3.2. Flavonoids and Their Derivatives
Anthocyanins Derivatives
Dihydrochalcones
Flavanols Derivatives
Flavanones Derivatives
Flavones Derivatives
Flavonols Derivatives
Isoflavonoids Derivatives
3.3.3. Lignans and Stilbenes
3.3.4. Other Polyphenols
3.4. Quantification of Polyphenols through HPLC-PDA
3.5. Relationship of Phenolic Contents and Antioxidant Activities
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gulei, D.; Mehterov, N.; Nabavi, S.M.; Atanasov, A.G.; Berindan-Neagoe, I. Targeting ncRNAs by plant secondary metabolites: The ncRNAs game in the balance towards malignancy inhibition. Biotechnol. Adv. 2018, 36, 1779–1799. [Google Scholar] [CrossRef]
- Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (poly) phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 2013, 18, 1818–1892. [Google Scholar] [CrossRef] [Green Version]
- Amararathna, M.; Johnston, M.R.; Rupasinghe, H. Plant polyphenols as chemopreventive agents for lung cancer. Int. J. Mol. Sci. 2016, 17, 1352. [Google Scholar] [CrossRef] [Green Version]
- Gothai, S.; Ganesan, P.; Park, S.-Y.; Fakurazi, S.; Choi, D.-K.; Arulselvan, P. Natural phyto-bioactive compounds for the treatment of type 2 diabetes: Inflammation as a target. Nutrients 2016, 8, 461. [Google Scholar] [CrossRef] [PubMed]
- Selby-Pham, S.N.; Cottrell, J.J.; Dunshea, F.R.; Ng, K.; Bennett, L.E.; Howell, K.S. Dietary phytochemicals promote health by enhancing antioxidant defence in a pig model. Nutrients 2017, 9, 758. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.-C.; Sheen, J.-M.; Hu, W.L.; Hung, Y.-C. Polyphenols and oxidative stress in atherosclerosis-related ischemic heart disease and stroke. Oxidative Med. Cell. Longev. 2017, 2017, 9702820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tufarelli, V.; Casalino, E.; D'Alessandro, A.G.; Laudadio, V. Dietary phenolic compounds: Biochemistry, metabolism and significance in animal and human health. Curr. Drug Metab. 2017, 18, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.-Y.; Yang, J.-Y.; Lu, H.-B.; Wang, S.-S.; Yang, J.; Yang, X.-C.; Chai, M.; Li, L.; Cao, J.-X. Effect of chitosan film incorporated with tea polyphenol on quality and shelf life of pork meat patties. Int. J. Biol. Macromol. 2013, 61, 312–316. [Google Scholar] [CrossRef]
- Sayed-Ahmad, B.; Talou, T.; Saad, Z.; Hijazi, A.; Merah, O. The Apiaceae: Ethnomedicinal family as source for industrial uses. Ind. Crops Prod. 2017, 109, 661–671. [Google Scholar] [CrossRef] [Green Version]
- Aires, A. Phenolics in foods: Extraction, analysis and measurements. In Phenolic Compounds; IntechOpen: London, UK, 2017; pp. 61–88. [Google Scholar]
- Garcia-Salas, P.; Morales-Soto, A.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Phenolic-compound-extraction systems for fruit and vegetable samples. Molecules 2010, 15, 8813–8826. [Google Scholar] [CrossRef]
- Holčapek, M.; Jirásko, R.; Lísa, M. Recent developments in liquid chromatography–mass spectrometry and related techniques. J. Chromatogr. A 2012, 1259, 3–15. [Google Scholar] [CrossRef]
- Iqbal, Y.; Cottrell, J.J.; Suleria, H.A.R.; Dunshea, F.R. Gut Microbiota-Polyphenol Interactions in Chicken: A Review. Animals 2020, 10, 1391. [Google Scholar] [CrossRef] [PubMed]
- Gaweł, E. Chemical composition of lucerne leaf extract (EFL) and its applications as a phytobiotic in human nutrition. Act Sci. Pol. Technol. Aliment. 2012, 11, 303–309. [Google Scholar]
- Hoste, H.; Jackson, F.; Athanasiadou, S.; Thamsborg, S.M.; Hoskin, S.O. The effects of tannin-rich plants on parasitic nematodes in ruminants. Trends. Parasitol. 2006, 22, 253–261. [Google Scholar] [CrossRef]
- Das, S.; Vasudeva, N.; Sharma, S. Cichorium intybus: A concise report on its ethnomedicinal, botanical, and phytopharmacological aspects. Drug Dev. Ther. 2016, 7, 1. [Google Scholar]
- Carazzone, C.; Mascherpa, D.; Gazzani, G.; Papetti, A. Identification of phenolic constituents in red chicory salads (Cichorium intybus) by high-performance liquid chromatography with diode array detection and electrospray ionisation tandem mass spectrometry. Food Chem. 2013, 138, 1062–1071. [Google Scholar] [CrossRef] [PubMed]
- Rafińska, K.; Pomastowski, P.; Wrona, O.; Górecki, R.; Buszewski, B. Medicago sativa as a source of secondary metabolites for agriculture and pharmaceutical industry. Phytochem. Lett. 2017, 20, 520–539. [Google Scholar] [CrossRef]
- Goławska, S.; Łukasik, I.; Kapusta, T.; Janda, B. Analysis of flavonoids content in alfalfa. Ecol. Chem. Eng. A 2010, 17, 261–267. [Google Scholar]
- Gu, C.; Howell, K.; Dunshea, F.R.; Suleria, H.A.R. LC-ESI-QTOF/MS Characterisation of Phenolic Acids and Flavonoids in Polyphenol-Rich Fruits and Vegetables and Their Potential Antioxidant Activities. Antioxidants 2019, 8, 405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Severo, J.; Tiecher, A.; Chaves, F.C.; Silva, J.A.; Rombaldi, C.V. Gene transcript accumulation associated with physiological and chemical changes during developmental stages of strawberry cv. Camarosa. Food Chem. 2011, 126, 995–1000. [Google Scholar] [CrossRef] [Green Version]
- Lamien-Meda, A.; Lamien, C.; Compaoré, M.; Meda, R.; Kiendrebeogo, M.; Zeba, B.; Millogo, J.; Nacoulma, O. Polyphenol content and antioxidant activity of fourteen wild edible fruits from Burkina Faso. Molecules 2008, 13, 581–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rebaya, A.; Belghith, S.I.; Baghdikian, B.; Leddet, V.M.; Mabrouki, F.; Olivier, E.; Cherif, J.; Ayadi, M.T. Total phenolic, total flavonoid, tannin content, and antioxidant capacity of Halimium halimifolium (Cistaceae). J. Appl. Pharm. Sci. 2014, 5, 52–57. [Google Scholar]
- Sogi, D.S.; Siddiq, M.; Greiby, I.; Dolan, K.D. Total phenolics, antioxidant activity, and functional properties of ‘Tommy Atkins’ mango peel and kernel as affected by drying methods. Food Chem. 2013, 141, 2649–2655. [Google Scholar] [CrossRef] [PubMed]
- Pavithra, K.; Vadivukkarasi, S. Evaluation of free radical scavenging activity of various extracts of leaves from Kedrostis foetidissima (Jacq.) Cogn. Food Sci. Hum. Wellness 2015, 4, 42–46. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Dunshea, F.R.; Suleria, H.A.R. LC-ESI-QTOF/MS Characterization of Phenolic Compounds in Palm Fruits (Jelly and Fishtail Palm) and Their Potential Antioxidant Activities. Antioxidants 2019, 8, 483. [Google Scholar] [CrossRef] [Green Version]
- Zagórska-Dziok, M.; Ziemlewska, A.; Nizioł-Łukaszewska, Z.; Bujak, T. Antioxidant Activity and Cytotoxicity of Medicago sativa L. Seeds and Herb Extract on Skin Cells. Biores. Open Access 2020, 9, 229–242. [Google Scholar] [CrossRef]
- Kaur, H.P.; Singh, I.; Singh, N. Phytochemical, antioxidant and antibacterial potential of extracts of Cichorium intybus (chicory). Eur. J. Pharm. Med. Res. 2016, 3, 320–326. [Google Scholar]
- Dorta, E.; González, M.; Lobo, M.G.; Sánchez-Moreno, C.; de Ancos, B. Screening of phenolic compounds in by-product extracts from mangoes (Mangifera indica L.) by HPLC-ESI-QTOF-MS and multivariate analysis for use as a food ingredient. Food Res. Int. 2014, 57, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Shahidi, F.; Zhong, Y. Measurement of antioxidant activity. J. Funct. Foods. 2015, 18, 757–781. [Google Scholar] [CrossRef]
- Nwafor, I.C.; Shale, K.; Achilonu, M.C. Chemical Composition and Nutritive Benefits of Chicory (Cichorium intybus) as an Ideal Complementary and/or Alternative Livestock Feed Supplement. Sci. World J. 2017, 2017, 7343928. [Google Scholar] [CrossRef] [Green Version]
- Chiriac, E.R.; Chiţescu, C.L.; Borda, D.; Lupoae, M.; Gird, C.E.; Geană, E.-I.; Blaga, G.-V.; Boscencu, R. Comparison of the Polyphenolic Profile of Medicago sativa L. and Trifolium pratense L. Sprouts in Different Germination Stages Using the UHPLC-Q Exactive Hybrid Quadrupole Orbitrap High-Resolution Mass Spectrometry. Molecules 2020, 25, 2321. [Google Scholar] [CrossRef] [PubMed]
- Drazen, J.M. Inappropriate advertising of dietary supplements. N. Engl. J. Med. 2003, 348, 777–778. [Google Scholar] [CrossRef] [PubMed]
- Chon, S.U.; Kim, J.D. Biological activity and quantification of suspected allelochemicals from alfalfa plant parts. J. Agron. Crop Sci. 2002, 188, 281–285. [Google Scholar] [CrossRef]
- Belščak-Cvitanović, A.; Durgo, K.; Huđek, A.; Bačun-Družina, V.; Komes, D. Overview of polyphenols and their properties. In Polyphenols: Properties, Recovery, and Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 3–44. [Google Scholar]
- Tsuda, T.; Horio, F.; Uchida, K.; Aoki, H.; Osawa, T. Dietary cyanidin 3-O-β-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. J. Nutr. 2003, 133, 2125–2130. [Google Scholar] [CrossRef]
- Wang, J.; Mazza, G. Effects of anthocyanins and other phenolic compounds on the production of tumor necrosis factor α in LPS/IFN-γ-activated RAW 264.7 macrophages. J. Agric. Food Chem. 2002, 50, 4183–4189. [Google Scholar] [CrossRef]
- Youdim, K.A.; McDonald, J.; Kalt, W.; Joseph, J.A. Potential role of dietary flavonoids in reducing microvascular endothelium vulnerability to oxidative and inflammatory insults. J. Nutr. Biochem. 2002, 13, 282–288. [Google Scholar] [CrossRef]
- Tsuda, T. Dietary anthocyanin-rich plants: Biochemical basis and recent progress in health benefits studies. Mol. Nutr. Food Res. 2012, 56, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Wallace, T.C. Anthocyanins in cardiovascular disease. Adv. Nutr. 2011, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
Phenolic Content | Chicory | Lucerne |
---|---|---|
TPC (mg GAE/g) | 0.44 ± 0.04 a | 0.71 ± 0.01 b |
TFC (mg QE/g) | 0.07 ± 0.01 a | 0.07 ± 0.01 a |
TTC (mg CE/g) | 0.84 ± 0.03 a | 1.32 ± 0.08 b |
Antioxidant Activity | Chicory | Lucerne |
---|---|---|
DPPH (mg AAE/g) | 0.12 ± 0.01 a | 0.13 ± 0.01 a |
ABTS (mg AAE/g) | 0.27 ± 0.01 a | 1.28 ± 0.02 b |
FRAP (mg AAE/g) | 0.01 ± 0.01 a | 0.02 ± 0.01 a |
OH− Radical Scavenging Ability (mg AAE/g) | 8.04 ± 0.33 a | 11.29 ± 0.25 b |
Chelating Ability of Fe2+ (mg EDTAE/g) | 0.07 ± 0.01 a | 0.21 ± 0.01 b |
RPA (mg AAE/g) | 0.34 ± 0.01 a | 0.59 ± 0.02 b |
Sr. No. | Proposed Compounds | Molecular Formula | RT (min) | Mode of Ionisation | Molecular Weight | Theoretical (m/z) | Observed (m/z) | Mass Error (ppm) | Samples |
---|---|---|---|---|---|---|---|---|---|
Phenolic acids | |||||||||
Hydroxybenzoic acids | |||||||||
1 | 2,3-Dihydroxybenzoic acid | C7H6O4 | 12.217 | [M + H]+ | 154.0266 | 155.0339 | 155.0336 | −1.94 | Lucerne |
2 | 2-Hydroxybenzoic acid | C7H6O3 | 13.724 | [M + H]+ | 138.0317 | 139.0390 | 139.0389 | −0.72 | Lucerne |
3 | 4-Hydroxybenzoic acid 4-O-glucoside | C13H16O8 | 29.701 | [M + H]+ | 300.0845 | 301.0918 | 301.0934 | 5.31 | Chicory |
4 | Gallic acid 4-O-glucoside | C13H16O10 | 45.61 | [M − H]− | 332.0743 | 331.0670 | 331.0652 | −5.44 | Chicory |
5 | Ellagic acid glucoside | C20H16O13 | 50.398 | [M − H]− | 464.0591 | 463.0518 | 463.0546 | 6.05 | Chicory |
Hydroxycinnamic acids | |||||||||
6 | m-Coumaric acid | C9H8O3 | 7.811 | [M + H]+ | 164.0473 | 165.0546 | 165.0548 | 1.21 | Lucerne |
7 | Cinnamic acid | C9H8O2 | 12.425 | [M + H]+ | 148.0524 | 149.0597 | 149.0585 | −8.05 | Chicory |
8 | 2-S-Glutathionyl caftaric acid | C23H27N3O15S | 13.954 | [M − H]− | 617.1163 | 616.1090 | 616.1062 | −4.54 | Lucerne |
9 | 3-Sinapoylquinic acid | C18H22O10 | 18.196 | [M + H]+ | 398.1213 | 399.1286 | 399.1288 | 0.50 | Lucerne |
10 | 3-Caffeoylquinic acid | C16H18O9 | 24.781 | [M + H]+ | 354.0951 | 355.1024 | 355.0999 | −7.04 | Chicory |
11 | 1,5-Dicaffeoylquinic acid | C25H24O12 | 68.797 | [M + H]+ | 516.1268 | 517.1341 | 517.1319 | −4.25 | Lucerne |
12 | Chicoric acid | C22H18O12 | 82.603 | [M − H]− | 474.0798 | 473.0725 | 473.0764 | 8.24 | Chicory * & Lucerne |
Hydroxyphenylpropanoic acids | |||||||||
13 | Dihydrocaffeic acid 3-O-glucuronide | C15H18O10 | 28.513 | [M − H]− | 358.09 | 357.0827 | 357.0847 | 5.60 | Chicory * & Lucerne |
14 | Dihydroferulic acid 4-sulfate | C10H12O7S | 35.54 | [M − H]− | 276.0304 | 275.0231 | 275.0218 | −4.73 | Lucerne |
Flavonoids | |||||||||
Anthocyanins | |||||||||
15 | Peonidin | C16H13O6 | 24.126 | [M − H]− | 301.0712 | 300.0639 | 300.0654 | 5.00 | Lucerne |
16 | Cyanidin 3-O-(6″-malonyl-3″-glucosyl-glucoside) | C30H33O19 | 28.513 | [M − H]− | 697.1616 | 696.1543 | 696.1516 | −3.88 | Chicory |
17 | Petunidin 3-O-(6″-p-coumaroyl-glucoside) | C31H29O14 | 49.428 | [M + H]+ | 625.1557 | 626.1630 | 626.166 | 4.79 | Chicory |
18 | Delphinidin 3-O-feruloyl-glucoside | C31H29O15 | 51.955 | [M − H]− | 641.1506 | 640.1433 | 640.145 | 2.66 | Chicory * & Lucerne |
19 | Pelargonidin 3-O-glucosyl-rutinoside | C33H41O19 | 79.658 | [M − H]− | 741.2242 | 740.2169 | 740.2187 | 2.43 | Lucerne |
Dihydrochalcones | |||||||||
20 | Dihydromyricetin 3-O-rhamnoside | C21H22O12 | 84.177 | [M + H]+/[M − H]− * | 466.1111 | 465.1038 | 465.1041 | 0.65 | Chicory * & Lucerne |
Flavanols | |||||||||
21 | 4′-O-Methylepigallocatechin | C16H16O7 | 8.142 | [M + H]+ | 320.0896 | 321.0969 | 321.0986 | 5.29 | Lucerne |
22 | 4″-O-Methylepigallocatechin 3-O-gallate | C23H20O11 | 19.124 | [M + H]+ | 472.1006 | 473.1079 | 473.1049 | −6.34 | Lucerne |
23 | (-)-Epigallocatechin 3′-O-glucuronide | C21H22O13 | 66.318 | [M − H]− | 482.106 | 481.0987 | 481.1007 | 4.16 | Chicory |
24 | 3′-O-Methyl-(-)-epicatechin 7-O-glucuronide | C22H24O12 | 75.38 | [M − H]− | 480.1268 | 479.1195 | 479.1214 | 3.97 | Chicory |
Flavanones | |||||||||
25 | Narirutin | C27H32O14 | 12.463 | [M − H]− | 580.1792 | 579.1719 | 579.1719 | 0.00 | Lucerne |
26 | Neoeriocitrin | C27H32O15 | 15.645 | [M + H]+ | 596.1741 | 597.1814 | 597.1853 | 6.53 | Lucerne |
27 | Hesperetin 3′,7-O-diglucuronide | C28H30O18 | 17.136 | [M + H]+ | 654.1432 | 655.1505 | 655.1523 | 2.75 | Lucerne |
28 | Naringenin 7-O-glucoside | C21H22O10 | 60.018 | [M + H]+ | 434.1213 | 435.1286 | 435.1266 | −4.60 | Lucerne |
29 | Hesperetin 3′-O-glucuronide | C22H22O12 | 74.519 | [M − H]− | 478.1111 | 477.1038 | 477.107 | 6.71 | Chicory |
Flavones | |||||||||
30 | Luteolin 7-O-diglucuronide | C27H26O18 | 20.714 | [M + H]+ | 638.1119 | 639.1192 | 639.1192 | 0.00 | Lucerne |
31 | 6-Hydroxyluteolin 7-O-rhamnoside | C21H20O11 | 40.689 | [M + H]+ | 448.1006 | 449.1079 | 449.1073 | −1.34 | Lucerne |
32 | Apigenin 7-O-glucuronide | C21H18O11 | 43.107 | [M + H]+ | 446.0849 | 447.0922 | 447.0925 | 0.67 | Lucerne |
33 | Chrysoeriol 7-O-glucoside | C22H22O11 | 46.728 | [M + H]+ | 462.1162 | 463.1235 | 463.1231 | −0.86 | Chicory |
34 | Chrysoeriol 7-O-(6″-malonyl-glucoside) | C25H24O14 | 60.201 | [M + H]+ | 548.1166 | 549.1239 | 549.1236 | −0.55 | Lucerne |
35 | 7,4′-Dihydroxyflavone | C15H10O4 | 62.139 | [M + H]+ | 254.0579 | 255.0652 | 255.0647 | −1.96 | Lucerne |
36 | Apigenin 6-C-glucoside | C21H20O10 | 41.948 | [M + H]+ */[M − H]− | 432.1056 | 433.1129 | 433.1126 | −0.69 | Chicory & Lucerne * |
Flavonols | |||||||||
37 | Myricetin 3-O-rutinoside | C27H30O17 | 8.454 | [M − H]− | 626.1483 | 625.1410 | 625.1404 | −0.96 | Lucerne |
38 | Kaempferol 3-O-(6″-acetyl-galactoside) 7-O-rhamnoside | C29H32O16 | 24.682 | [M + H]+ | 636.169 | 637.1763 | 637.1777 | 2.20 | Chicory |
39 | 3-Methoxysinensetin | C21H22O8 | 26.703 | [M + H]+ | 402.1315 | 403.1388 | 403.1367 | −5.21 | Chicory |
40 | Isorhamnetin | C16H12O7 | 29.717 | [M + H]+ | 316.0583 | 317.0656 | 317.0666 | 3.15 | Chicory |
41 | Spinacetin 3-O-glucosyl-(1->6)-[apiosyl(1->2)]-glucoside | C34H42O22 | 32.757 | [M − H]− | 802.2168 | 801.2095 | 801.2084 | −1.37 | Lucerne |
42 | 5,4′-Dihydroxy-3,3′-dimethoxy-6:7-methylenedioxyflavone 4′-O-glucuronide | C24H22O14 | 42.498 | [M − H]− | 534.101 | 533.0937 | 533.0928 | −1.69 | Lucerne |
43 | 3,7-Dimethylquercetin | C17H14O7 | 44.73 | [M + H]+ | 330.074 | 331.0813 | 331.0812 | −0.30 | Lucerne |
44 | Quercetin 3-O-glucosyl-xyloside | C26H28O16 | 47.797 | [M − H]− | 596.1377 | 595.1304 | 595.1286 | −3.02 | Chicory |
45 | Isorhamnetin 3-O-glucoside 7-O-rhamnoside | C28H32O16 | 49.593 | [M + H]+ | 624.169 | 625.1763 | 625.176 | −0.48 | Chicory |
46 | Myricetin 3-O-arabinoside | C20H18O12 | 50.265 | [M − H]− | 450.0798 | 449.0725 | 449.0757 | 7.13 | Chicory |
47 | Isorhamnetin 3-O-glucuronide | C22H20O13 | 55.351 | [M − H]− | 492.0904 | 491.0831 | 491.0856 | 5.09 | Chicory |
Isoflavonoids | |||||||||
48 | 6″-O-Acetylglycitin | C24H24O11 | 7.838 | [M − H]− | 488.1319 | 487.1246 | 487.1232 | −2.87 | Chicory |
49 | 3′,4′,5,7-Tetrahydroxyisoflavanone | C15H12O6 | 19.124 | [M + H]+ | 288.0634 | 289.0707 | 289.0704 | −1.04 | Lucerne |
50 | 3′-Hydroxygenistein | C15H10O6 | 20.034 | [M − H]− | 286.0477 | 285.0404 | 285.042 | 5.61 | Lucerne |
51 | Dihydrobiochanin A | C16H14O5 | 20.594 | [M − H]− | 286.0841 | 285.0768 | 285.0758 | −3.51 | Chicory |
52 | Puerarin | C21H20O9 | 24.341 | [M + H]+ | 416.1107 | 417.1180 | 417.1195 | 3.60 | Lucerne |
53 | Daidzein 4′-O-glucuronide | C21H18O10 | 24.556 | [M + H]+ | 430.09 | 431.0973 | 431.0968 | −1.16 | Lucerne |
54 | Genistein 4′,7-O-diglucuronide | C27H26O17 | 25.186 | [M + H]+ | 622.117 | 623.1243 | 623.1238 | −0.80 | Lucerne |
55 | Irisolidone 7-O-glucuronide | C23H22O12 | 26.345 | [M + H]+ | 490.1111 | 491.1184 | 491.1189 | 1.02 | Lucerne |
56 | Tectorigenin 7-sulfate | C16H12O9S | 31.332 | [M − H]− | 380.0202 | 379.0129 | 379.0147 | 4.75 | Lucerne |
57 | 6″-O-Malonyldaidzin | C24H22O12 | 35.872 | [M − H]− | 502.1111 | 501.1038 | 501.1035 | −0.60 | Lucerne |
58 | 6″-O-Malonylgenistin | C24H22O13 | 58.677 | [M + H]+ | 518.106 | 519.1133 | 519.115 | 3.27 | Lucerne |
59 | 2-Dehydro-O-desmethylangolensin | C15H12O4 | 61.691 | [M + H]+ | 256.0736 | 257.0809 | 257.0801 | −3.11 | Lucerne |
60 | 2′,7-Dihydroxy-4′,5′-dimethoxyisoflavone | C17H14O6 | 64.06 | [M + H]+ | 314.079 | 315.0863 | 315.0855 | −2.54 | Lucerne |
61 | 2′-Hydroxyformononetin | C16H12O5 | 67.008 | [M + H]+ | 284.0685 | 285.0758 | 285.075 | −2.81 | Lucerne |
62 | 3′,4′,7-Trihydroxyisoflavanone | C15H12O5 | 81.004 | [M + H]+ | 272.0685 | 273.0758 | 273.0746 | −4.39 | Lucerne |
63 | 6″-O-Malonylglycitin | C25H24O13 | 82.926 | [M + H]+ | 532.1217 | 533.1290 | 533.1301 | 2.06 | Lucerne |
64 | 3′-Hydroxydaidzein | C15H10O5 | 83.472 | [M + H]+ | 270.0528 | 271.0601 | 271.0594 | −2.58 | Lucerne |
65 | 3′-Hydroxymelanettin | C16H12O6 | 84.251 | [M + H]+ | 300.0634 | 301.0707 | 301.0699 | −2.66 | Lucerne |
66 | Dalbergin | C16H12O4 | 87.066 | [M + H]+ | 268.0736 | 269.0809 | 269.0788 | −7.80 | Lucerne |
Lignans | |||||||||
67 | Sesamin | C20H18O6 | 22.138 | [M + H]+ | 354.1103 | 355.1176 | 355.1171 | −1.41 | Lucerne |
68 | Trachelogenin | C21H24O7 | 35.093 | [M − H]− | 388.1522 | 387.1449 | 387.1457 | 2.07 | Lucerne |
69 | 1-Acetoxypinoresinol | C22H24O8 | 45.196 | [M − H]− | 416.1471 | 415.1398 | 415.1389 | −2.17 | Chicory |
Stilbenes | |||||||||
70 | Piceatannol | C14H12O4 | 7.44 | [M + H]+ | 244.0736 | 245.0809 | 245.0821 | 4.90 | Chicory |
Other polyphenols | |||||||||
Alkylphenols | |||||||||
71 | 4-Vinylphenol | C8H8O | 7.894 | [M + H]+ | 120.0575 | 121.0648 | 121.0638 | −8.26 | Lucerne |
Hydroxybenzaldehydes | |||||||||
72 | 4-Hydroxybenzaldehyde | C7H6O2 | 31.761 | [M + H]+ | 122.0368 | 123.0441 | 123.044 | −0.81 | Lucerne |
Tyrosols | |||||||||
73 | Oleuropein-aglycone | C19H22O8 | 7.954 | [M − H]− | 378.1315 | 377.1242 | 377.1238 | −1.06 | Chicory |
74 | 3,4-DHPEA-AC | C10H12O4 | 20.796 | [M + H]+ | 196.0736 | 197.0809 | 197.0809 | 0.00 | Lucerne |
75 | Oleoside 11-methylester | C17H24O11 | 64.317 | [M − H]− | 404.1319 | 403.1246 | 403.1266 | 4.96 | Lucerne |
76 | 3,4-DHPEA-EDA | C17H20O6 | 67.034 | [M − H]− | 320.126 | 319.1187 | 319.1179 | −2.51 | Lucerne |
Other polyphenols | |||||||||
77 | Salvianolic acid D | C11H10O6 | 6.085 | [M − H]− | 238.0477 | 237.0404 | 237.0408 | 1.69 | Lucerne |
78 | Salvianolic acid C | C26H20O10 | 21.26 | [M − H]− | 492.1056 | 491.0983 | 491.1007 | 4.89 | Lucerne |
79 | Lithospermic acid | C27H22O12 | 24.616 | [M + H]+ | 538.1111 | 539.1184 | 539.1225 | 7.61 | Chicory |
80 | Coumestrol | C15H8O5 | 83.986 | [M + H]+ | 268.0372 | 269.0445 | 269.0437 | −2.97 | Lucerne |
No. | Compound Name | RT | Chicory (µg/g DW) | Lucerne (µg/g DW) | Polyphenol Class |
---|---|---|---|---|---|
1 | Gallic acid | 5.249 | 38.17 ± 0.03 | 55.74 ± 0.04 | Phenolic acids |
2 | Cinnamic acid | 12.871 | 115.00 ± 0.01 | - | Phenolic acids |
3 | 2-hydroxybenzoic acid | 16.427 | - | 1440.64 ± 0.04 | Phenolic acids |
4 | p-hydroxybenzoic acid | 17.129 | 11.55 ± 0.02 | Phenolic acids | |
5 | m-Coumaric acid | 27.598 | - | 2.64 ± 0.01 | Phenolic acids |
6 | Isorhamnetin | 29.872 | 641.80 ± 0.03 | - | Flavonoids |
7 | Epicatechin gallate | 34.303 | 29.28 ± 0.02 | 62.77 ± 0.03 | Flavonoids |
8 | Quercetin 3-rhamnoside | 38.477 | 5.50 ± 0.04 | 187.74 ± 0.05 | Flavonoids |
9 | Chicoric acid | 82.402 | 1692.33 ± 0.04 | 1434.36 ± 0.02 | Phenolic acids |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iqbal, Y.; Ponnampalam, E.N.; Suleria, H.A.R.; Cottrell, J.J.; Dunshea, F.R. LC-ESI/QTOF-MS Profiling of Chicory and Lucerne Polyphenols and Their Antioxidant Activities. Antioxidants 2021, 10, 932. https://doi.org/10.3390/antiox10060932
Iqbal Y, Ponnampalam EN, Suleria HAR, Cottrell JJ, Dunshea FR. LC-ESI/QTOF-MS Profiling of Chicory and Lucerne Polyphenols and Their Antioxidant Activities. Antioxidants. 2021; 10(6):932. https://doi.org/10.3390/antiox10060932
Chicago/Turabian StyleIqbal, Yasir, Eric N. Ponnampalam, Hafiz A. R. Suleria, Jeremy J. Cottrell, and Frank R. Dunshea. 2021. "LC-ESI/QTOF-MS Profiling of Chicory and Lucerne Polyphenols and Their Antioxidant Activities" Antioxidants 10, no. 6: 932. https://doi.org/10.3390/antiox10060932
APA StyleIqbal, Y., Ponnampalam, E. N., Suleria, H. A. R., Cottrell, J. J., & Dunshea, F. R. (2021). LC-ESI/QTOF-MS Profiling of Chicory and Lucerne Polyphenols and Their Antioxidant Activities. Antioxidants, 10(6), 932. https://doi.org/10.3390/antiox10060932