Targeting Pro-Oxidant Iron with Deferoxamine as a Treatment for Ischemic Stroke: Safety and Optimal Dose Selection in a Randomized Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Subject Clinical Characteristics
3.2. Safety Data
3.3. Hemodynamic Vital Signs and Routine Clinical Laboratory Results
3.4. Ferritin, DFO Pharmacokinetics, and Effects on TSAT
3.5. Clinical Outcome
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AE | adverse events |
AIS | acute ischemic stroke |
aPTT | activated partial thromboplastin time |
ASPECTS | Alberta Stroke Program Early CT Score |
ATf | apotransferrin |
BBB | blood–brain barrier |
CT | computed tomography |
DFO | deferoxamine |
diFe-Tf | diferric transferrin |
DSMB | data safety monitoring board |
DTS | dose tier sub-study |
ENW | early neurological worsening |
HTf | holotransferrin |
ICH | intracerebral hemorrhage |
i.m. | intramuscular |
IV | intravenous |
MCA | middle cerebral artery |
mFe-Tf | monoferric transferrin |
mRS | modified Rankin Scale |
NIHSS | National Institute of Health Stroke Scale |
ROS | reactive oxygen species |
SAE | serious adverse events |
sICH | symptomatic intracranial hemorrhage; study |
TANDEM | Thrombolysis And Deferoxamine in Middle Cerebral Artery Occlusion |
Tf | transferrin |
tPA | tissue plasminogen activator |
TSAT | % of iron saturation of blood transferrin |
U-PAGE/WB | urea-polyacrylamide gel electrophoresis/Western Blot |
References
- Yang, W.; Liu, X.; Song, C.; Ji, S.; Yang, J.; Liu, Y.; You, J.; Zhang, J.; Huang, S.; Cheng, W.; et al. Structure-activity relationship studies of phenothiazine derivatives as a new class of ferroptosis inhibitors together with the therapeutic effect in an ischemic stroke model. Eur. J. Med. Chem. 2021, 209, 112842. [Google Scholar] [CrossRef]
- Magtanong, L.; Dixon, S.J. Ferroptosis and brain injury. Dev. Neurosci. 2018, 40, 382–395. [Google Scholar] [CrossRef]
- DeGregorio-Rocasolano, N.; Martí-Sistac, O.; Gasull, T. Deciphering the iron side of stroke: Neurodegeneration at the crossroads between iron dyshomeostasis, excitotoxicity, and ferroptosis. Front. Neurosci. 2019, 13, 85. [Google Scholar] [CrossRef] [Green Version]
- Abdul, Y.; Li, W.; Ward, R.; Abdelsaid, M.; Hafez, S.; Dong, G.; Jamil, S.; Wolf, V.; Johnson, M.H.; Fagan, S.C.; et al. Deferoxamine treatment prevents post-stroke vasoregression and neurovascular unit remodeling leading to improved functional outcomes in type 2 male diabetic rats: Role of endothelial ferroptosis. Transl. Stroke Res. 2020, 12, 615–630. [Google Scholar] [CrossRef]
- Lu, J.; Xu, F.; Lu, H. LncRNA PVT1 regulates ferroptosis through miR-214-mediated TFR1 and p53. Life Sci. 2020, 260, 118305. [Google Scholar] [CrossRef]
- Lan, B.; Ge, J.; Cheng, S.; Zheng, X.; Liao, J.; He, C.; Rao, Z.-Q.; Wang, G.-Z. Extract of Naotaifang, a compound Chinese herbal medicine, protects neuron ferroptosis induced by acute cerebral ischemia in rats. J. Integr. Med. 2020, 18, 344–350. [Google Scholar] [CrossRef]
- Geng, Z.; Guo, Z.; Guo, R.; Ye, R.; Zhu, W.; Yan, B. Ferroptosis and traumatic brain injury. Brain Res. Bull. 2021, 172, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Tan, Q.; Fang, Y.; Gu, Q. Mechanisms of Modulation of Ferroptosis and Its, Role in Central, Nervous System, Diseases. Front. Pharmacol. 2021, 12, 657033. [Google Scholar] [CrossRef] [PubMed]
- Mehta, S.H.; Webb, R.C.; Ergul, A.; Tawfik, A.; Dorrance, A.M. Neuroprotection by tempol in a model of iron-induced oxidative stress in acute ischemic stroke. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004, 286, R283–R288. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Hua, Y.; Keep, R.F.; Nakamura, T.; Hoff, J.T.; Xi, G. Iron and iron-handling proteins in the brain after intracerebral hemorrhage. Stroke 2003, 34, 2964–2969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Yébenes, I.; García-Culebras, A.; Peña-Martínez, C.; Fernández-López, D.; Díaz-Guzmán, J.; Negredo, P.; Avendaño, C.; Castellanos, M.; Gasull, T.; Dávalos, A.; et al. Iron overload exacerbates the risk of hemorrhagic transformation after tPA (tissue-type plasminogen activator) administration in thromboembolic stroke mice. Stroke 2018, 49, 2163–2172. [Google Scholar] [CrossRef] [PubMed]
- DeGregorio-Rocasolano, N.; Martí-Sistac, O.; Ponce, J.; Castelló-Ruiz, M.; Millán, M.; Guirao, V.; García-Yébenes, I.; Salom, J.B.; Ramos-Cabrer, P.; Alborch, E.; et al. Iron-loaded transferrin (Tf) is detrimental whereas iron-free Tf confers protection against brain ischemia by modifying blood Tf saturation and subsequent neuronal damage. Redox Biol. 2018, 15, 143–158. [Google Scholar] [CrossRef] [PubMed]
- Castellanos, M.; Puig, N.; Carbonell, T.; Castillo, J.; Martinez, J.M.; Rama, R.; Davalos, A. Iron intake increases infarct volume after permanent middle cerebral artery occlusion in rats. Brain Res. 2002, 952, 1–6. [Google Scholar] [CrossRef]
- Nakamura, T.; Keep, R.F.; Hua, Y.; Schallert, T.; Hoff, J.T.; Xi, G. Deferoxamine-induced attenuation of brain edema and neurological deficits in a rat model of intracerebral hemorrhage. J. Neurosurg. 2004, 100, 672–678. [Google Scholar] [CrossRef]
- Mehdiratta, M.; Kumar, S.; Hackney, D.; Schlaug, G.; Selim, M. Association between serum ferritin level and perihematoma edema volume in patients with spontaneous intracerebral hemorrhage. Stroke 2008, 39, 1165–1170. [Google Scholar] [CrossRef] [Green Version]
- De la Ossa, N.P.; Sobrino, T.; Silva, Y.; Blanco, M.; Millan, M.; Gomis, M.; Agulla, J.; Araya, P.; Reverté-Villarroya, S.; Serena, J.; et al. Iron-related brain damage in patients with intracerebral hemorrhage. Stroke 2010, 41, 810–813. [Google Scholar] [CrossRef] [Green Version]
- Dávalos, A.; Castillo, J.; Marrugat, J.; Fernandez-Real, J.M.; Armengou, A.; Cacabelos, P.; Rama, R. Body iron stores and early neurologic deterioration in acute cerebral infarction. Neurology 2000, 54, 1568–1574. [Google Scholar] [CrossRef]
- Millan, M.; Sobrino, T.; Castellanos, M.; Nombela, F.; Arenillas, J.F.; Riva, E.; Cristobo, I.; García, M.M.; Vivancos, J.; Serena, J.; et al. Increased body iron stores are associated with poor outcome after thrombolytic treatment in acute stroke. Stroke 2007, 38, 90–95. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, K.; Ghosh, K. Iron chelators or therapeutic modulators of iron overload: Are we anywhere near ideal one? Indian J. Med. Res. 2018, 148, 369–372. [Google Scholar] [CrossRef]
- Hanson, L.R.; Roeytenberg, A.; Martinez, P.M.; Coppes, V.G.; Sweet, D.C.; Rao, R.J.; Marti, D.L.; Hoekman, J.D.; Matthews, R.B.; Frey, W.H.; et al. Intranasal deferoxamine provides increased brain exposure and significant protection in rat ischemic stroke. J. Pharmacol. Exp. Ther. 2009, 330, 679–686. [Google Scholar] [CrossRef] [Green Version]
- Xing, Y.; Hua, Y.; Keep, R.; Xi, G. Effects of deferoxamine on brain injury after transient focal cerebral ischemia in rats with hyperglycemia. Brain Res. 2009, 1291, 113–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, H.J.; He, H.Y.; Yang, A.L.; Zhou, H.J.; Wang, C.; Luo, J.K.; Lin, Y.; Tang, T. Efficacy of deferoxamine in animal models of intracerebral hemorrhage: A systematic review and stratified meta-analysis. PLoS ONE 2015, 10, e0127256. [Google Scholar] [CrossRef]
- Guo, X.; Qi, X.; Li, H.; Duan, Z.; Wei, Y.; Zhang, F.; Tian, M.; Ma, L.; You, C. Deferoxamine alleviates iron overload and brain injury in a rat model of brainstem hemorrhage. World Neurosurg. 2019, 128, e895–e904. [Google Scholar] [CrossRef] [PubMed]
- Im, D.S.; Jeon, J.W.; Lee, J.S.; Won, S.J.; Cho, S.I.; Lee, Y.B.; Gwag, B.J. Role of the NMDA receptor and iron on free radical production and brain damage following transient middle cerebral artery occlusion. Brain Res. 2012, 1455, 114–123. [Google Scholar] [CrossRef]
- Selim, M.; Yeatts, S.; Goldstein, J.N.; Gomes, J.; Greenberg, S.; Morgenstern, L.B.; Schlaug, G.; Torbey, M.; Waldman, B.; Xi, G.; et al. Safety and tolerability of deferoxamine mesylate in patients with acute intracerebral hemorrhage. Stroke 2011, 42, 3067–3074. [Google Scholar] [CrossRef]
- Summers, M.R.; Jacobs, A.; Tudway, D.; Perera, P.; Ricketss, C. Studies in desferrioxamine and ferrioxamine metabolism in normal and iron-loaded subjects. Br. J. Haematol. 1979, 42, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Menéndez-Fraga, P.; Blanco-González, E.; Sanz-Medel, A.; Cannata-Andía, J.B. Micellar versus reversed phase liquid chromatography for the determination of desferrioxamine and its chelates with aluminium and iron in uremic serum. Talanta 1997, 45, 25–33. [Google Scholar] [CrossRef]
- Larrue, V.; von Kummer, R.; Müller, A.; Bluhmki, E. Risk factors for severe hemorrhagic transformation in ischemic stroke patients treated with recombinant tissue plasminogen activator. Stroke 2001, 32, 438–441. [Google Scholar] [CrossRef] [Green Version]
- Wahlgren, N.; Ahmed, N.; Dávalos, A.; Ford, G.A.; Grond, M.; Hacke, W.; Hennerici, M.G.; Kaste, M.; Kuelkens, S.; Larrue, V.; et al. Thrombolysis with alteplase for acute ischaemic stroke in the Safe Implementation of Thrombolysis in Stroke-Monitoring Study (SITS-MOST): An observational study. Lancet 2007, 369, 275–282. [Google Scholar] [CrossRef]
- Adams, P.C.; Reboussin, D.M.; Barton, J.C.; McLaren, C.E.; Eckfeldt, J.H.; McLaren, G.D.; Dawkins, F.W.; Acton, R.T.; Harris, E.L.; Gordeuk, V.R.; et al. Hemochromatosis and iron-overload screening in a racially diverse population. N. Engl. J. Med. 2005, 352, 1769–1778. [Google Scholar] [CrossRef] [Green Version]
- Karuppagounder, S.S.; Alin, L.; Chen, Y.; Brand, D.; Bourassa, M.W.; Dietrich, K.; Wilkinson, C.M.; Nadeau, C.A.; Kumar, A.; Perry, S.; et al. N-acetylcysteine targets 5 lipoxygenase-derived, toxic lipids and can synergize with PGE 2 to inhibit ferroptosis and improve outcomes following hemorrhagic stroke in mice. Ann. Neurol. 2018, 84, 854–872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, B.; Chen, Z.; Liu, M.; Gao, X.; Cheng, Y.; Wei, Y.; Wu, Z.B.; Cui, D.; Shang, H. Inhibition of neuronal ferroptosis in the acute phase of intracerebral hemorrhage shows long-term cerebroprotective effects. Brain Res. Bull. 2019, 153, 122–132. [Google Scholar] [CrossRef]
- Tuo, Q.; Lei, P.; Jackman, K.-A.; Li, X.; Xiong, H.; Li, X.; Liuyang, Z.-Y.; Roisman, L.; Zhang, S.-T.; Ayton, S.; et al. Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol. Psychiatry 2017, 22, 1520–1530. [Google Scholar] [CrossRef] [PubMed]
- Palmer, C.; Roberts, R.; Bero, C. Deferoxamine posttreatment reduces ischemic brain injury in neonatal rats. Stroke 1994, 25, 1039–1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freret, T.; Valable, S.; Chazalviel, L.; Saulnier, R.; Mackenzie, E.T.; Petit, E.; Bernaudin, M.; Boulouard, M.; Schumann-Bard, P. Delayed administration of deferoxamine reduces brain damage and promotes functional recovery after transient focal cerebral ischemia in the rat. Eur. J. Neurosci. 2006, 23, 1757–1765. [Google Scholar] [CrossRef]
- Li, Y.X.; Ding, S.J.; Xiao, L.; Guo, W.; Zhan, Q. Desferoxamine preconditioning protects against cerebral ischemia in rats by inducing expressions of hypoxia inducible factor 1α and erythropoietin. Neurosci. Bull. 2008, 24, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Rempe, D.A. Prophylactic neuroprotection against stroke: Low-dose, prolonged treatment with deferoxamine or deferasirox establishes prolonged neuroprotection independent of HIF-1 function. J. Cereb. Blood Flow Metab. 2011, 31, 1412–1423. [Google Scholar] [CrossRef]
- Sakamoto, K.; Suzuki, T.; Takahashi, K.; Koguchi, T.; Hirayama, T.; Mori, A.; Nakahara, T.; Nagasawa, H.; Ishii, K. Iron-chelating agents attenuate NMDA-Induced neuronal injury via reduction of oxidative stress in the rat retina. Exp. Eye Res. 2018, 171, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; He, Y.; Song, W.; Zhang, E.; Xia, X. Neuroprotective effect of deferoxamine on N-methyl-d-aspartate-induced excitotoxicity in RGC-5 cells. Acta Biochim. Biophys. Sin. 2017, 49, 827–834. [Google Scholar] [CrossRef] [Green Version]
- Aaseth, J.; Skaug, M.A.; Cao, Y.; Andersen, O. Chelation in metal intoxication-Principles and paradigms. J. Trace Elem. Med. Biol. 2015, 31, 260–266. [Google Scholar] [CrossRef]
- Allain, P.; Mauras, Y.; Chaleil, D.; Simon, P.; Ang, K.; Cam, G.; Le Mignon, L.; Simon, M. Pharmacokinetics and renal elimination of desferrioxamine and ferrioxamine in healthy subjects and patients with haemochromatosis. Br. J. Clin. Pharmacol. 1987, 24, 207–212. [Google Scholar] [CrossRef] [Green Version]
- Lee, P.; Mohammed, N.; Marshall, L.; Abeysinghe, R.D.; Hider, R.C.; Porter, J.B.; Singh, S. Intravenous infusion pharmacokinetics of desferrioxamine in thalassaemic patients. Drug Metab. Dispos. 1993, 21, 640–644. [Google Scholar]
- Selim, M.; Foster, L.D.; Moy, C.S.; Xi, G.; Hill, M.D.; Morgenstern, L.B.; Greenberg, S.M.; James, M.L.; Singh, V.; Clark, W.M.; et al. Deferoxamine mesylate in patients with intracerebral haemorrhage (i-DEF): A multicentre, randomised, placebo-controlled, double-blind phase 2 trial. Lancet Neurol. 2019, 18, 428–438. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.; Lin, T.M.; Chanana, S.; Xiong, M.P. Nanogel-DFO conjugates as a model to investigate pharmacokinetics, biodistribution, and iron chelation in vivo. Int. J. Pharm. 2018, 538, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Abergel, R.J.; Raymond, K.N. Terephthalamide-containing ligands: Fast removal of iron from transferrin. J Biol. Inorg. Chem. 2008, 13, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Porter, J.B.; Abeysinghe, R.D.; Marshall, L.; Hider, R.C.; Singh, S. Kinetics of removal and reappearance of non-transferrin-bound plasma iron with deferoxamine therapy. Blood 1996, 88, 705–713. [Google Scholar] [CrossRef] [Green Version]
- Porter, J.B.; Rafique, R.; Srichairatanakool, S.; Davis, B.A.; Shah, F.T.; Hair, T.; Evans, P. Recent insights into interactions of deferoxamine with cellular and plasma iron pools: Implications for clinical use. Ann. N. Y. Acad. Sci. 2005, 1054, 155–168. [Google Scholar] [CrossRef]
- Bajbouj, K.; Shafarin, J.; Hamad, M. High-dose deferoxamine treatment disrupts intracellular iron homeostasis reduces growth and induces apoptosis in metastatic and nonmetastatic breast cancer cell lines. Technol. Cancer Res. Treat. 2018, 17, 1533033818764470. [Google Scholar] [CrossRef] [Green Version]
- Worwood, M.; May, A.M.; Bain, B.J. Iron deficiency anaemia and iron overload. In Dacie and Lewis Practical Haematology, 20th ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 165–186. [Google Scholar]
- Yeatts, S.D.; Palesch, Y.Y.; Moy, C.S.; Selim, M. High dose deferoxamine in intracerebral hemorrhage (Hi-Def) trial: Rationale, design, and methods. Neurocrit. Care 2013, 19, 257–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, T.; Zhang, X.; Liu, Y.; Wang, H.; Luo, J.; Luo, Y.; An, P. Effects of dietary polyphenol supplementation on iron status and erythropoiesis: A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2021, 114, 780–793. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zhao, W.; Zhu, C.; Kong, Z.; Xu, Y.; Liu, G.; Gao, X. The clinical effect of deferoxamine mesylate on edema after intracerebral hemorrhage. PLoS ONE 2015, 10, e0122371. [Google Scholar] [CrossRef] [PubMed]
- Byrappa, V.; Lamperti, M.; Ruzhyla, A.; Killian, A.; John, S.; St Lee, T. Acute ischemic stroke & emergency mechanical thrombectomy: The effect of type of anesthesia on early outcome. Clin. Neurol. Neurosurg. 2021, 202, 106494. [Google Scholar] [CrossRef] [PubMed]
- Gulati, A.; Agrawal, N.; Vibha, D.; Misra, U.K.; Paul, B.; Jain, D.; Pandian, J.; Borgohain, R. Safety and Efficacy of Sovateltide (IRL-1620) in a Multicenter Randomized Controlled Clinical Trial in Patients with Acute Cerebral Ischemic Stroke. CNS Drugs 2021, 35, 85–104. [Google Scholar] [CrossRef] [PubMed]
KERRYPNX | DTS 1 | DTS 2 | DTS 3 | |||
---|---|---|---|---|---|---|
Placebo (n = 5) | DFO 20 (n = 15) | Placebo (n = 5) | DFO 40 (n = 16) | Placebo (n = 5) | DFO 60 (n = 16) | |
Age | 64.4 ± 8 | 67.8 ± 13 | 67.6 ± 8 | 64.1 ± 10 | 60.0 ± 16 | 70.0 ± 11 |
Sex, % male | 40 | 60 | 80 | 75 | 100 | 81 |
Medical history, % patients | ||||||
Hypertension | 80 | 53 | 80 | 50 | 80 | 63 |
Diabetes | 60 | 20 | 20 | 19 | 40 | 19 |
Current smoking habit | 20 | 20 | 20 | 13 | 20 | 6 |
Dislipemia | 40 | 40 | 40 | 31 | 40 | 44 |
Alcohol consumption | 20 | 0 | 60 | 19 | 20 | 31 |
Atrial fibrillation | 20 | 40 | 20 | 13 | 20 | 13 |
Prior stroke | 0 | 7 | 0 | 13 | 0 | 19 |
Vital signs and laboratory parameters | ||||||
Systolic BP, mmHg | 166 ± 41 | 148 ±21 | 143 ± 10 | 140 ± 16 | 147 ± 16 | 150 ± 21 |
Diastolic BP, mmHg | 79 ± 9 | 78 ± 18 | 80 ± 15 | 77 ± 11 | 85 ± 24 | 80 ± 14 |
Body temperature, °C | 35.8 ± 0.5 | 36.0 ± 0.3 | 35.5 ± 0.3 | 36.0 ± 0.4 | 35.9 ± 0.6 | 35.9 ± 0.5 |
Heart rate, bpm | 62 ± 12 | 82 ± 22 | 81 ± 19 | 71 ± 19 | 94 ± 9.4 | 70 ± 10 |
Serum glucose, mg/dL | 142 ± 19 | 107 ± 33 | 155 ± 71 | 160 ± 94 | 212 ± 197 | 147 ± 72 |
Platelet count (×1000) | 226 ± 61 | 218 ± 61 | 277 ± 54 | 237 ± 75 | 285 ± 102 | 234 ± 63 |
aPTT, s | 28 ± 5 | 26 ± 3 | 26 ± 6 | 25 ± 4 | 28 ± 5 | 27 ± 3 |
Hematocrit, % | 40.4 ± 3.8 | 41.4 ± 3.1 | 45.8 ±3.4 | 41.0 ± 3.6 | 45.1 ± 1.1 | 41.8 ± 4.6 |
Hemoglobin, g/dL | 13.5 ± 1.5 | 14.0 ± 1.1 | 15.3 ± 1.0 | 13.8 ± 1.3 | 15.3 ± 0.4 | 14.2 ± 1.5 |
Creatinin, mg/dL | 0.9 ± 0.1 | 0.9 ± 0.1 | 0.9 ± 0.5 | 0.9 ± 0.2 | 1.1 ± 0.3 | 0.9 ± 0.2 |
NIHSS at baseline | 14 | 11 | 16 | 17 | 21.5 | 12 |
[12, 15] | [9, 18.5] | [13, 21] | [8, 21] | [17.5, 25] | [7.5, 16.5] | |
Stroke subtype, % patients | ||||||
Atherothrombotic | 40 | 7 | 0 | 13 | 40 | 0 |
Cardioembolic | 20 | 60 | 20 | 44 | 60 | 50 |
Undetermined | 40 | 33 | 80 | 31 | 0 | 50 |
Other | 0 | 0 | 0 | 6 | 0 | 0 |
ASPECTS score on baseline CT scan | 10 | 10 | 10 | 10 | 9.5 | 10 |
[9, 10] | [10, 10] | [10, 10] | [9, 10] | [7.5, 10] | [9, 10] | |
Time from onset to tPA, min | 110 | 136 | 100 | 140 | 132 | 140 |
[90, 110] | [102, 168] | [90, 130] | [95, 155] | [88, 174] | [115, 157] | |
Time from onset to trial treatment, min | 140 | 163 | 125 | 170 | 163 | 155 |
[135, 143] | [150, 213] | [125, 150] | [140, 190] | [128, 192] | [141, 195] | |
Rescue endovascular treatment, % patients | 0 | 7 | 20 | 19 | 80 | 31 |
DTS 1 | DTS 2 | DTS 3 | |||||||
---|---|---|---|---|---|---|---|---|---|
Placebo (n = 5) | DFO 20 (n = 15) | p | Placebo (n = 5) | DFO 40 (n = 16) | p | Placebo (n = 5) | DFO 60 (n = 16) | p | |
Patients with AE, % | 100 | 73.3 | 0.197 | 100 | 75 | 0.214 | 100 | 87.5 | 0.406 |
AE | n = 13 2.6 ± 1.1 | n = 28 1.9 ± 1.8 | 0.349 | n = 12 2.4 ± 1.1 | n = 36 2.1 ± 1.8 | 0.603 | n = 18 3.5 ± 3.1 | n = 44 2.7 ± 1.8 | 0.603 |
Patients with SAE, % | 40 | 33.4 | 0.787 | 0 | 25 | 0.214 | 40 | 25 | 0.517 |
SAE | n = 2 0.4 ± 0.5 | n = 6 0.4 ± 0.6 | 0.933 | n = 0 | n = 6 0.4 ± 0.8 | 0.445 | n = 4 0.5 ± 1 | n = 6 0.4 ± 0.8 | 0.548 |
ENW, % | 20 | 20 | 1 | 0 | 6 | 0.567 | 0 | 6 | 0.567 |
sICH, % | 0 | 13.3 | 0.389 | 0 | 0 | - | 0 | 0 | - |
Mortality 7 days, % | 20 | 6.7 | 0.389 | 0 | 6.3 | 0.567 | 20 | 12.5 | 0.676 |
Mortality 90 days, % | 20 | 13.3 | 0.718 | 0 | 18.8 | 0.296 | 20 | 12.5 | 0.676 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Millán, M.; DeGregorio-Rocasolano, N.; Pérez de la Ossa, N.; Reverté, S.; Costa, J.; Giner, P.; Silva, Y.; Sobrino, T.; Rodríguez-Yáñez, M.; Nombela, F.; et al. Targeting Pro-Oxidant Iron with Deferoxamine as a Treatment for Ischemic Stroke: Safety and Optimal Dose Selection in a Randomized Clinical Trial. Antioxidants 2021, 10, 1270. https://doi.org/10.3390/antiox10081270
Millán M, DeGregorio-Rocasolano N, Pérez de la Ossa N, Reverté S, Costa J, Giner P, Silva Y, Sobrino T, Rodríguez-Yáñez M, Nombela F, et al. Targeting Pro-Oxidant Iron with Deferoxamine as a Treatment for Ischemic Stroke: Safety and Optimal Dose Selection in a Randomized Clinical Trial. Antioxidants. 2021; 10(8):1270. https://doi.org/10.3390/antiox10081270
Chicago/Turabian StyleMillán, Mònica, Núria DeGregorio-Rocasolano, Natàlia Pérez de la Ossa, Sílvia Reverté, Joan Costa, Pilar Giner, Yolanda Silva, Tomás Sobrino, Manuel Rodríguez-Yáñez, Florentino Nombela, and et al. 2021. "Targeting Pro-Oxidant Iron with Deferoxamine as a Treatment for Ischemic Stroke: Safety and Optimal Dose Selection in a Randomized Clinical Trial" Antioxidants 10, no. 8: 1270. https://doi.org/10.3390/antiox10081270
APA StyleMillán, M., DeGregorio-Rocasolano, N., Pérez de la Ossa, N., Reverté, S., Costa, J., Giner, P., Silva, Y., Sobrino, T., Rodríguez-Yáñez, M., Nombela, F., Campos, F., Serena, J., Vivancos, J., Martí-Sistac, O., Cortés, J., Dávalos, A., & Gasull, T. (2021). Targeting Pro-Oxidant Iron with Deferoxamine as a Treatment for Ischemic Stroke: Safety and Optimal Dose Selection in a Randomized Clinical Trial. Antioxidants, 10(8), 1270. https://doi.org/10.3390/antiox10081270