Optimization of Phlorizin Extraction from Annurca Apple Tree Leaves Using Response Surface Methodology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Sample Collection and Extraction Protocol
2.3. HPLC Analyses of Samples
2.3.1. Qualitative Polyphenolic Composition by HPLC-DAD-HESI-MS/MS
2.3.2. Quantitative Polyphenols Analysis by HPLC-DAD-FLD
2.4. Total Phenolic Content Determination
2.5. Antioxidant Activity
2.5.1. DPPH• Radical Scavenging Assay
2.5.2. Ferric Reducing/Antioxidant Power (FRAP) Assay
2.5.3. ABTS• Radical Scavenging Assay
2.6. Advanced Glycation End-Product (AGE) Inhibition Assay
2.7. Statistics
3. Results and Discussion
3.1. Optimisation of Phloridzin Extraction using RSM Model
3.2. Quantitative Polyphenols Analysis by HPLC-DAD-FLD
3.3. Qualitative Polyphenols Analysis by HPLC-HESI-MS/MS
3.4. Total Polyphenols and In Vitro Antiradical Activity of OAALE
3.5. In Vitro Antidiabetic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ehrenkranz, J.R.L.; Lewis, N.; Kahn, C.R.; Roth, J. Phlorizin: A review. Diabetes/Metab. Res. Rev. 2005, 21, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Cao, J.; Zhao, T.; Liu, Y.; Khan, A.; Cheng, G. The Bioavailability, Extraction, Biosynthesis and Distribution of Natural Dihydrochalcone: Phloridzin. Int. J. Mol. Sci. 2021, 22, 962. [Google Scholar] [CrossRef] [PubMed]
- Osorio, H.; Bautista, R.; Rios, A.; Franco, M.; Arellano, A.; Vargas-Robles, H.; Romo, E.; Escalante, B. Effect of phlorizin on SGLT2 expression in the kidney of diabetic rats. J. Nephrol. 2010, 23, 541–546. [Google Scholar]
- Najafian, M.; Jahromi, M.Z.; Nowroznejhad, M.J.; Khajeaian, P.; Kargar, M.M.; Sadeghi, M.; Arasteh, A. Phloridzin reduces blood glucose levels and improves lipids metabolism in streptozotocin-induced diabetic rats. Mol. Biol. Rep. 2012, 39, 5299–5306. [Google Scholar] [CrossRef]
- Wang, J.; Huang, Y.; Li, K.; Chen, Y.; Vanegas, D.; McLamore, E.; Shen, Y. Leaf Extract from Lithocarpus polystachyus Rehd. Promote Glycogen Synthesis in T2DM Mice. PLoS ONE 2016, 11, e0166557. [Google Scholar] [CrossRef]
- Lv, Q.; Lin, Y.; Tan, Z.; Jiang, B.; Xu, L.; Ren, H.; Tai, W.C.-S.; Chan, C.-O.; Lee, C.-S.; Gu, Z.; et al. Dihydrochalcone-derived polyphenols from tea crab apple (Malus hupehensis) and their inhibitory effects on α-glucosidase in vitro. Food Funct. 2019, 10, 2881–2887. [Google Scholar] [CrossRef]
- Poyrazoğlu, E.; Gökmen, V.; Artιk, N. Organic Acids and Phenolic Compounds in Pomegranates (Punica granatum L.) Grown in Turkey. J. Food Compos. Anal. 2002, 15, 567–575. [Google Scholar] [CrossRef]
- Zhang, X.; Su, M.; Du, J.; Zhou, H.; Li, X.; Li, X.; Ye, Z. Comparison of Phytochemical Differences of the Pulp of Different Peach [Prunus persica (L.) Batsch] Cultivars with Alpha-Glucosidase Inhibitory Activity Variations in China Using UPLC-Q-TOF/MS. Molecules 2019, 24, 1968. [Google Scholar] [CrossRef]
- Hvattum, E. Determination of phenolic compounds in rose hip (Rosa canina) using liquid chromatography coupled to electrospray ionisation tandem mass spectrometry and diode-array detection. Rapid Commun. Mass Spectrom. 2002, 16, 655–662. [Google Scholar] [CrossRef]
- Bhullar, K.S.; Rupasinghe, H.V. Antioxidant and cytoprotective properties of partridgeberry polyphenols. Food Chem. 2015, 168, 595–605. [Google Scholar] [CrossRef]
- Turner, A.; Chen, S.-N.; Joike, M.K.; Pendland, S.L.; Pauli, A.G.F.; Farnsworth, N.R. Inhibition of Uropathogenic Escherichia coli by Cranberry Juice: A New Antiadherence Assay. J. Agric. Food Chem. 2005, 53, 8940–8947. [Google Scholar] [CrossRef] [PubMed]
- Ben-Othman, S.; Kaldmäe, H.; Rätsep, R.; Bleive, U.; Aluvee, A.; Rinken, T. Optimization of Ultrasound-Assisted Extraction of Phloretin and Other Phenolic Compounds from Apple Tree Leaves (Malus domestica Borkh.) and Comparison of Different Cultivars from Estonia. Antioxidants 2021, 10, 189. [Google Scholar] [CrossRef]
- Picinelli, A.; Dapena, E.; Mangas, J.J. Polyphenolic Pattern in Apple Tree Leaves in Relation to Scab Resistance. A Preliminary Study. J. Agric. Food Chem. 1995, 43, 2273–2278. [Google Scholar] [CrossRef]
- Schieber, A.; Hilt, P.; Streker, P.; Endreß, H.-U.; Rentschler, C.; Carle, R. A New Process for the Combined Recovery of Pectin and Phenolic Compounds from Apple Pomace. Innov. Food Sci. Emerg. Technol. 2003, 4, 99–107. [Google Scholar] [CrossRef]
- Schiano, E.; Piccolo, V.; Novellino, E.; Maisto, M.; Iannuzzo, F.; Summa, V.; Tenore, G.C. Thinned Nectarines, an Agro-Food Waste with Antidiabetic Potential: HPLC-HESI-MS/MS Phenolic Characterization and In Vitro Evaluation of Their Beneficial Activities. Foods 2022, 11, 1010. [Google Scholar] [CrossRef] [PubMed]
- Schiano, E.; Maisto, M.; Piccolo, V.; Novellino, E.; Annunziata, G.; Ciampaglia, R.; Montesano, C.; Croce, M.; Caruso, G.; Iannuzzo, F.; et al. Beneficial Contribution to Glucose Homeostasis by an Agro-Food Waste Product Rich in Abscisic Acid: Results from a Randomized Controlled Trial. Foods 2022, 11, 2637. [Google Scholar] [CrossRef]
- Tenore, G.C.; Caruso, D.; Buonomo, G.; D’Avino, M.; Campiglia, P.; Marinelli, L.; Novellino, E. A Healthy Balance of Plasma Cholesterol by a Novel Annurca Apple-Based Nutraceutical Formulation: Results of a Randomized Trial. J. Med. Food 2017, 20, 288–300. [Google Scholar] [CrossRef] [PubMed]
- Panzella, L.; Petriccione, M.; Rega, P.; Scortichini, M.; Napolitano, A. A reappraisal of traditional apple cultivars from Southern Italy as a rich source of phenols with superior antioxidant activity. Food Chem. 2013, 140, 672–679. [Google Scholar] [CrossRef] [PubMed]
- Tenore, G.C.; Carotenuto, A.; Caruso, D.; Buonomo, G.; D’Avino, M.; Brancaccio, D.; Ciampaglia, R.; Maisto, M.; Schisano, C.; Novellino, E. A nutraceutical formulation based on Annurca apple polyphenolic extract is effective on intestinal cholesterol absorption: A randomised, placebo-controlled, crossover study. PharmaNutrition 2018, 6, 85–94. [Google Scholar] [CrossRef]
- Maisto, M.; Annunziata, G.; Schiano, E.; Piccolo, V.; Iannuzzo, F.; Santangelo, R.; Ciampaglia, R.; Tenore, G.; Novellino, E.; Grieco, P. Potential Functional Snacks: Date Fruit Bars Supplemented by Different Species of Lactobacillus spp. Foods 2021, 10, 1760. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.-K.; Shibamoto, T. Antioxidant Assays for Plant and Food Components. J. Agric. Food Chem. 2009, 57, 1655–1666. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of ‘Antioxidant Power’: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Babbar, N.; Oberoi, H.S.; Uppal, D.S.; Patil, R.T. Total phenolic content and antioxidant capacity of extracts obtained from six important fruit residues. Food Res. Int. 2011, 44, 391–396. [Google Scholar] [CrossRef]
- Antony, A.; Farid, M. Effect of Temperatures on Polyphenols during Extraction. Appl. Sci. 2022, 12, 2107. [Google Scholar] [CrossRef]
- Jovanovic, A.; Petrovic, P.; Ðordjevic, V.; Zdunic, G.; Savikin, K.; Bugarski, B. Polyphenols extraction from plant sources. Lek. sirovine 2017, 37, 45–49. [Google Scholar] [CrossRef]
- Miron, T.; Plaza, M.; Bahrim, G.; Ibáñez, E.; Herrero, M. Chemical composition of bioactive pressurized extracts of Romanian aromatic plants. J. Chromatogr. A 2011, 1218, 4918–4927. [Google Scholar] [CrossRef] [PubMed]
- Vergara-Salinas, J.R.; Pérez-Jiménez, J.; Torres, J.L.; Agosin, E.; Pérez-Correa, J.R. Effects of Temperature and Time on Polyphenolic Content and Antioxidant Activity in the Pressurized Hot Water Extraction of Deodorized Thyme (Thymus vulgaris). J. Agric. Food Chem. 2012, 60, 10920–10929. [Google Scholar] [CrossRef] [PubMed]
- Liaudanskas, M.; Viškelis, P.; Raudonis, R.; Kviklys, D.; Uselis, N.; Janulis, V. Phenolic Composition and Antioxidant Activity of Malus domestica Leaves. Sci. World J. 2014, 2014, 306217. [Google Scholar] [CrossRef] [PubMed]
- Wojdyło, A.; Oszmiański, J. Antioxidant Activity Modulated by Polyphenol Contents in Apple and Leaves during Fruit Development and Ripening. Antioxidants 2020, 9, 567. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Liang, F.; Bin, Y.; Li, P.; Duan, C. Molecules Screening Non-Colored Phenolics in Red Wines Using Liquid Chromatography/Ultraviolet and Mass Spectrometry/Mass Spectrometry Libraries. Molecules 2007, 12, 679–693. [Google Scholar] [CrossRef] [PubMed]
- Sinosaki, N.; Tonin, A.; Ribeiro, M.; Poliseli, C.; Roberto, S.; Da Silveira, R.; Visentainer, J.; Santos, O.; Meurer, E. Structural Study of Phenolic Acids by Triple Quadrupole Mass Spectrometry with Electrospray Ionization in Negative Mode and H/D Isotopic Exchange. J. Braz. Chem. Soc. 2020, 31, 402–408. [Google Scholar] [CrossRef]
- Ncube, E.N.; Mhlongo, M.I.; Piater, L.A.; Steenkamp, P.A.; Dubery, I.A.; Madala, N.E. Analyses of chlorogenic acids and related cinnamic acid derivatives from Nicotiana tabacumtissues with the aid of UPLC-QTOF-MS/MS based on the in-source collision-induced dissociation method. Chem. Central J. 2014, 8, 66. [Google Scholar] [CrossRef] [PubMed]
- Rue, E.A.; Rush, M.D.; Van Breemen, R.B. Procyanidins: A comprehensive review encompassing structure elucidation via mass spectrometry. Phytochem. Rev. 2018, 17, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, Y.; Liu, R.; Liu, S.; Zhang, X.; Wang, Z.; Zhang, J.; Lu, J. HPLC-LTQ-orbitrap MSn profiling method to comprehensively characterize multiple chemical constituents in xiao-er-qing-jie granules. Anal. Methods 2015, 7, 7511–7526. [Google Scholar] [CrossRef]
- Li, Z.-H.; Guo, H.; Xu, W.-B.; Ge, J.; Li, X.; Alimu, M.; He, D.-J. Rapid Identification of Flavonoid Constituents Directly from PTP1B Inhibitive Extract of Raspberry (Rubus idaeus L.) Leaves by HPLC–ESI–QTOF–MS-MS. J. Chromatogr. Sci. 2016, 54, 805–810. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Singh, A.; Kumar, B. Identification and characterization of phenolics and terpenoids from ethanolic extracts of Phyllanthus species by HPLC-ESI-QTOF-MS/MS. J. Pharm. Anal. 2017, 7, 214–222. [Google Scholar] [CrossRef]
- Mekam, P.N.; Martini, S.; Nguefack, J.; Tagliazucchi, D.; Stefani, E. Phenolic compounds profile of water and ethanol extracts of Euphorbia hirta L. leaves showing antioxidant and antifungal properties. S. Afr. J. Bot. 2019, 127, 319–332. [Google Scholar] [CrossRef]
- Mena, P.; Calani, L.; Dall’Asta, C.; Galaverna, G.; García-Viguera, C.; Bruni, R.; Crozier, A.; Del Rio, D. Rapid and Comprehensive Evaluation of (Poly)phenolic Compounds in Pomegranate (Punica granatum L.) Juice by UHPLC-MSn. Molecules 2012, 17, 14821–14840. [Google Scholar] [CrossRef] [PubMed]
- Maritim, A.C.; Sanders, R.A.; Watkins, J.B. Diabetes, Oxidative Stress, and Antioxidants: A Review. J. Biochem. Mol. Toxicol. 2003, 17, 24–38. [Google Scholar] [CrossRef] [PubMed]
- Gramza, A.; Korczak, J.; Amarowicz, R. Tea Polyphenols-Their Antioxidant Properties and Biological Activity-A Review. Pol. J. Food Nutr. Sci. 2005, 55, 219–235. [Google Scholar]
- Graziani, G.; Gaspari, A.; Di Vaio, C.; Cirillo, A.; Ronca, C.; Grosso, M.; Ritieni, A. Assessment of In Vitro Bioaccessibility of Polyphenols from Annurca, Limoncella, Red Delicious, and Golden Delicious Apples Using a Sequential Enzymatic Digestion Model. Antioxidants 2021, 10, 541. [Google Scholar] [CrossRef] [PubMed]
- Moldogazieva, N.T.; Mokhosoev, I.M.; Mel’Nikova, T.I.; Porozov, Y.B.; Terentiev, A.A. Oxidative Stress and Advanced Lipoxidation and Glycation End Products (ALEs and AGEs) in Aging and Age-Related Diseases. Oxid Med. Cell Longev. 2019, 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perrone, A.; Giovino, A.; Benny, J.; Martinelli, F. Advanced Glycation End Products (AGEs): Biochemistry, Signaling, Analytical Methods, and Epigenetic Effects. Oxidative Med. Cell. Longev. 2020, 2020, 1–18. [Google Scholar] [CrossRef]
- Zielinska, D.; Laparra-Llopis, J.M.; Zielinski, H.; Szawara-Nowak, D.; Giménez-Bastida, J.A. Role of Apple Phytochemicals, Phloretin and Phloridzin, in Modulating Processes Related to Intestinal Inflammation. Nutrients 2019, 11, 1173. [Google Scholar] [CrossRef] [PubMed]
- Yeh, W.-J.; Hsia, S.-M.; Lee, W.-H.; Wu, C.-H. Polyphenols with antiglycation activity and mechanisms of action: A review of recent findings. J. Food Drug Anal. 2017, 25, 84–92. [Google Scholar] [CrossRef]
- Spagnuolo, L.; Della Posta, S.; Fanali, C.; Dugo, L.; De Gara, L.; Gugliucci, A. Antioxidant and Antiglycation Effects of Polyphenol Compounds Extracted from Hazelnut Skin on Advanced Glycation End-Products (AGEs) Formation. Antioxidants 2021, 10, 424. [Google Scholar] [CrossRef]
Independent Variable | Factor Levels | |||
---|---|---|---|---|
Incubation time (min) | 30 | 60 | 120 | 240 |
% Acid in the extraction solvent | 0.1 | 1 | 5 | |
Temperature (°C) | 45 | 35 | 25 | |
Sonication | Yes | No | ||
Total runs | 69 |
Compound | Mean Value ± SD (mg/g) |
---|---|
Chlorogenic acid | 0.2090 ± 0.0040 |
Caffeic acid | 0.0785 ± 0.0013 |
p-Cumaric acid | 0.0081 ± 0.0001 |
Procyanidin B1+B3 | 0.1634 ± 0.0003 |
Procyanidin B2 | 0.4540 ± 0.0080 |
Epicatechin | 0.2000 ± 0.0037 |
Rutin | 0.3510 ± 0.0010 |
Quercetin-3-O-glucoside | 3.2740 ± 0.0010 |
Kaempferol-3-O-rhamnoside | 0.1680 ± 0.0070 |
Kaempferol-3-O-glucoside | 20.0970 ± 0.3820 |
Apigenin-7-O-glucoside | 0.0081 ± 0.0001 |
Phloridzin | 126.8900 ± 7.5790 |
Quercetin | 0.0152 ± 0.0001 |
Phloretin | 0.8650 ± 0.0070 |
No. | Compound | Rt (min) | UV–Vis (nm) | m/z | Diagnostic Fragment | Ref. |
---|---|---|---|---|---|---|
1 | Syringic acid | 9.56 | 210, 260 | 197 | 182 [M-H-CH3]−, 179 [M-H-H2O]−, 153 [M-H-CO2]−, 138 [M-H-CO2-CH3]− | [30] |
2 | Coumaric acid isomer 1 | 11.17 | 215, 310 | 163 | 145 [M-H-H2O]−, 135 [M-H-CO]−, 119 [M-H-CO2]− | [31] |
3 | Chlorogenic acid | 11.52 | 215, 295, 325 | 353 | 191 [M-H-CA]−, 179 [M-H-QA]−, 173 [M-H-CA-H2O]−, 161 [M-H-QA-H2O]− | [32] |
4 | Coumaric acid isomer 2 | 11.71 | 210, 305 | 163 | 145 [M-H-H2O]−, 135 [M-H-CO]−, 119 [M-H-CO2]−, 101 [M-H-CO2-H2O]− | [31] |
5 | Caffeic acid | 11.95 | 205, 280 | 179 | 161 [M-H-H2O]−, 151 [M-H-CO]−, 135 [M-H-CO2]−, 107 [M-H-CO-CO2]− | [32] |
6 | Procyanidin B2 | 12.35 | 210, 295 | 577 | 451 [M-H-C6H6O3]−, 425 [M-H-C8H8O3]−, 289 [M-H-C15H12O6]−, 287 [M-H-C15H14O6]− | [31] |
7 | 4-O-Coumaroylquinic acid isomer 1 | 12.90 | 215, 310 | 337 | 319 [M-H-H2O]−, 191 [QA-H]−, 173 [QA-H-H2O]−, 163 [M-H-QA]− | [33] |
8 | 4-O-Coumaroylquinic acid isomer 2 | 13.15 | 215, 310 | 337 | 319 [M-H-H2O]−, 191 [QA-H]−, 173 [QA-H-H2O]−, 163 [M-H-QA]− | [34] |
9 | Quercetin O-hexoside isomer 1 | 14.81 | 255, 355 | 463 | 445 [M-H-H2O]−, 301 [M-H-Hex]−, 179 [M-H-Hex-C7H6O2]−, 161 [M-H-Hex-C7H8O3]− | [34] |
10 | Quercetin O-rutinoside isomer 1 | 14.94 | 205, 280, 310 | 609 | 591 [M-H-H2O]−, 463 [M-H-Rha]−, 301 [M-H-Glu-Rha]−, 179 [M-H-Glu-Rha-C7H6O2]− | [35] |
11 | Naringenin O-hexoside | 15.19 | 215, 280, 310 | 433 | 415 [M-H-H2O]−, 313 [M-H-C4H8O4]−, 271 [M-H-Hex]−, 151 [M-H-Hex-C8H8O]− | [35] |
12 | Rutin | 15.21 | 210, 280, 320 | 609 | 591 [M-H-H2O]−, 463 [M-H-Rha]−, 301 [M-H-Glu-Rha]−, 179 [M-H-Glu-Rha-C7H6O2]− | [35] |
13 | Quercetin O-hexoside isomer 2 | 15.58 | 255, 355 | 463 | 445 [M-H-H2O]−, 343 [M-H-C4H8O4]−, 301 [M-H-Hex]−, 179 [M-H-Hex-C7H6O2]− | [35] |
14 | Apigenin O-hexoside | 15.93 | 215, 280, 320 | 431 | 413 [M-H-H2O]−, 353 [?], 311 [M-H-C4H8O4]−, 269 [M-H-Hex]− | [35] |
15 | Kaempferol O-rutinoside | 16.07 | 255, 350 | 593 | 575 [M-H-H2O]−, 327 [M-H-Pent-C4H8O4]−, 285 [M-H-Pent-Hex]−, 257 [M-H-Pent-Hex-CO]− | [36] |
16 | Quercetin O-hexoside isomer 3 | 16.12 | 255, 350 | 463 | 445 [M-H-H2O]−, 343 [M-H-C4H8O4]−, 301 [M-H-Hex]−, 179 [M-H-Hex-C7H6O2]− | [36] |
17 | Quercetin O-pentoside | 16.74 | 265, 320 | 433 | 415 [M-H-H2O]−, 301 [M-H-Pent]−, 179 [M-H-Pent-C7H6O2]−, 151 [M-H-Pent-C8H6O3]− | [37] |
18 | Quercetin O-rhamnoside | 16.89 | 255, 345 | 447 | 429 [M-H-H2O]−, 301 [M-H-Rha]−, 179 [M-H-Rha-C7H6O2]−, 151 [M-H-Rha-C8H6O3]− | [37] |
19 | Quercetin O-hexoside isomer 4 | 17.02 | 280, 320 | 463 | 445 [M-H-H2O]−, 343 [M-H-C4H8O4]−, 301 [M-H-Hex]−, 179 [M-H-Hex-C7H6O2]− | [37] |
20 | Phloridzin | 17.57 | 220, 285 | 435 | 417 [M-H-H2O]−, 273 [M-H-Hex]−, 167 [M-H-C13H16O6]− | [38] |
21 | Kaempferol 3-O-rhamnoside | 18.16 | 215, 265, 315 | 431 | 403 [M-H-CO]−, 327 [M-H-C4H8O3]−, 285 [M-H-Rha]−, 179 [M-H-Rha-C7H6O]− | [36] |
22 | Quercetin O-rutinoside isomer 2 | 19.01 | 220, 280, 320 | 609 | 591 [M-H-H2O]−, 463 [M-H-Rha]−, 343 [M-H-Rha-C4H8O4]−, 301 [M-H-Glu-Rha]− | [36] |
23 | Phloretin | 22.28 | 220, 285 | 273 | 255 [M-H-H2O]−, 167 [M-H-C7H6O]−, 125 [M-H-C9H8O2]− | [36] |
Antiradical Activity (µmol TE/g AAL DW ± SD) | ||
---|---|---|
DPPH Assay | ABTS Assay | FRAP Assay |
21.17 ± 2.30 | 38.82 ± 0.69 | 34.14 ± 3.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maisto, M.; Piccolo, V.; Novellino, E.; Schiano, E.; Iannuzzo, F.; Ciampaglia, R.; Summa, V.; Tenore, G.C. Optimization of Phlorizin Extraction from Annurca Apple Tree Leaves Using Response Surface Methodology. Antioxidants 2022, 11, 1933. https://doi.org/10.3390/antiox11101933
Maisto M, Piccolo V, Novellino E, Schiano E, Iannuzzo F, Ciampaglia R, Summa V, Tenore GC. Optimization of Phlorizin Extraction from Annurca Apple Tree Leaves Using Response Surface Methodology. Antioxidants. 2022; 11(10):1933. https://doi.org/10.3390/antiox11101933
Chicago/Turabian StyleMaisto, Maria, Vincenzo Piccolo, Ettore Novellino, Elisabetta Schiano, Fortuna Iannuzzo, Roberto Ciampaglia, Vincenzo Summa, and Gian Carlo Tenore. 2022. "Optimization of Phlorizin Extraction from Annurca Apple Tree Leaves Using Response Surface Methodology" Antioxidants 11, no. 10: 1933. https://doi.org/10.3390/antiox11101933
APA StyleMaisto, M., Piccolo, V., Novellino, E., Schiano, E., Iannuzzo, F., Ciampaglia, R., Summa, V., & Tenore, G. C. (2022). Optimization of Phlorizin Extraction from Annurca Apple Tree Leaves Using Response Surface Methodology. Antioxidants, 11(10), 1933. https://doi.org/10.3390/antiox11101933