Relationship between Phenolic Compounds and Antioxidant Activity in Berries and Leaves of Raspberry Genotypes and Their Genotyping by SSR Markers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Preparation of Extracts
2.3. Total Phenolic Content (TPC)
2.4. Total Flavonoid Content (TFC)
2.5. Total Anthocyanin Content (TAC)
2.6. ABTS (2,20-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) Diamonium Salt) Assay
2.7. FRAP (Ferric Reducing Antioxidant Power) Assay
2.8. DNA Isolation, PCR Amplification and Fragment Analysis
2.9. Statistical Analysis
3. Results
3.1. Phenolic Content and Antioxidant Activity in Raspberry Berries
3.2. Phenolic Content and Antioxidant Activity in Raspberry Leaves
3.3. Effect of Phenological Phase on Antioxidant Value of Raspberry Leaves
3.4. SSR Marker Analysis
4. Discussion
4.1. Impact of Genotype on Polyphenols Content and Antioxidant Capacity of Raspberry Berries
4.2. Impact of Genotype on Polyphenols Content and Antioxidant Capacity of Raspberry Leaves
4.3. Impact of Harvest Time on Biochemical Parameters of Leaves
4.4. Genetic Diversity of Raspberry Genotypes
4.5. Comparison of Biochemical and Genetic Data
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- de Souza, V.R.; Pereira, P.A.P.; da Silva, T.L.T.; de Oliveira Lima, L.C.; Pio, R.; Queiroz, F. Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chem. 2014, 156, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Ribera-Fonseca, A.; Jiménez, D.; Leal, P.; Riquelme, I.; Roa, J.C.; Alberdi, M.; Peek, R.M.; Reyes-Díaz, M. The anti-proliferative and anti-invasive effect of leaf extracts of blueberry plants treated with methyl jasmonate on human gastric cancer in vitro is related to their antioxidant properties. Antioxidants 2020, 9, 45. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. 2022. Available online: http://www.fao.org/faostat/ (accessed on 10 August 2022).
- Beekwilder, J.; Jonker, H.; Meesters, P.; Hall, R.D.; van der Meer, I.M.; Ric de Vos, C.H. Antioxidants in raspberry: On-line analysis links antioxidant activity to a diversity of individual metabolites. J. Agric. Food Chem. 2005, 53, 3313–3320. [Google Scholar] [CrossRef] [PubMed]
- Pantelidis, G.; Vasilakakis, M.; Manganaris, G.A.; Diamantidis, G. Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chem. 2007, 102, 777–783. [Google Scholar] [CrossRef]
- Chen, L.; Xin, X.; Yuan, Q.; Su, D.; Wei Liu, W. Phytochemical properties and antioxidant capacities of various colored berries. J. Sci. Food Agric. 2014, 94, 180–188. [Google Scholar] [CrossRef]
- Hano, C.; Tungmunnithum, D. Plant polyphenols, more than just simple natural antioxidants: Oxidative stress, aging and age-related diseases. Medicines 2020, 7, 26. [Google Scholar] [CrossRef]
- Hidalgo, G.-I.; Almajano, M.P. Red fruits: Extraction of antioxidants, phenolic content, and radical scavenging determination: A review. Antioxidants 2017, 6, 7. [Google Scholar] [CrossRef]
- Zafra-Stone, S.; Yasmin, T.; Bagchi, M.; Chatterjee, A.; Vinson, J.A.; Bagchi, D. Berry anthocyanins as novel antioxidants in human health and disease prevention. Mol. Nutr. Food Res. 2007, 51, 675–683. [Google Scholar] [CrossRef]
- Baby, B.; Antony, P.; Vijayan, R. Antioxidant and anticancer properties of berries. Crit. Rev. Food Sci. Nutr. 2018, 58, 2491–2507. [Google Scholar] [CrossRef]
- Bhatt, D.S.; Debnath, S.C. Genetic diversity of blueberry genotypes estimated by antioxidant properties and molecular markers. Antioxidants 2021, 10, 458. [Google Scholar] [CrossRef]
- Ponder, A.; Hallmann, E. The effects of organic and conventional farm management and harvest time on the polyphenol content in different raspberry cultivars. Food Chem. 2019, 301, 125295. [Google Scholar] [CrossRef] [PubMed]
- Wojdyło, A.; Oszmianski, J. Antioxidant activity modulated by polyphenol contents in apple and leaves during fruit development and ripening. Antioxidants 2020, 9, 567. [Google Scholar] [CrossRef] [PubMed]
- Gudej, J.; Tomczyk, M. Determination of flavonoids, tannins and ellagic acid in leaves from Rubus L. species. Arch. Pharm. Res. 2004, 27, 1114–1119. [Google Scholar] [CrossRef] [PubMed]
- Dudzinska, D.; Luzak, B.; Boncler, M.; Rywaniak, J.; Sosnowska, D.; Podsedek, A.; Watala, C. CD39/NTPDase-1 expression and activity in human umbilical vein endothelial cells are differentially regulated by leaf extracts from Rubus caesius and Rubus idaeus. Cell. Mol. Biol. Lett. 2014, 19, 361–380. [Google Scholar] [CrossRef] [PubMed]
- Ferlemi, A.-V.; Lamari, F.N. Berry leaves: An alternative source of bioactive natural products of nutritional and medicinal value. Antioxidants 2016, 5, 17. [Google Scholar] [CrossRef]
- Kramberger, K.; Pražnikar, Z.J.; Arbeiter, A.B.; Petelin, A.; Bandelj, D.; Kenig, S.A. Comparative study of the antioxidative effects of Helichrysum italicum and Helichrysum arenarium infusions. Antioxidants 2021, 10, 380. [Google Scholar] [CrossRef]
- Stefanescu, B.-E.; Calinoiu, L.F.; Ranga, F.; Fetea, F.; Mocan, A.; Vodnar, D.C.; Crisan, G. Chemical composition and biological activities of the Nord-West Romanian wild bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea L.) leaves. Antioxidants 2020, 9, 495. [Google Scholar] [CrossRef]
- Ziemlewska, A.; Zagórska-Dziok, M.; Nizioł-Łukaszewska, Z. Assessment of cytotoxicity and antioxidant properties of berry leaves as by-products with potential application in cosmetic and pharmaceutical products. Sci. Rep. 2021, 11, 3240. [Google Scholar] [CrossRef]
- Wang, S.Y.; Lin, H.-S. Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. J. Agric. Food Chem. 2000, 48, 140–146. [Google Scholar] [CrossRef]
- Li, C.; Feng, J.; Huang, W.-Y.; An, X.-T. Composition of polyphenols and antioxidant activity of rabbiteye blueberry (Vaccinium ashei) in Nanjing. J. Agric. Food Chem. 2013, 61, 523–531. [Google Scholar] [CrossRef]
- Teleszko, M.; Wojdyło, A. Comparison of phenolic compounds and antioxidant potential between selected edible fruits and their leaves. J. Funct. Foods 2015, 14, 736–746. [Google Scholar] [CrossRef]
- Bujor, O.-C.; Le Bourvellec, C.; Volf, I.; Popa, I.V.; Dufour, C. Seasonal variations of the phenolic constituents in bilberry (Vaccinium myrtillus L.) leaves, stems and fruits, and their antioxidant activity. Food Chem. 2016, 213, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Bujor, O.-C.; Ginies, C.; Popa, V.I.; Dufour, C. Phenolic compounds and antioxidant activity of lingonberry (Vaccinium vitisidaea L.) leaf, stem and fruit at different harvest periods. Food Chem. 2018, 252, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Liu, Y.; Qin, Y.; Wang, L.; Wu, Z. HPLC-ESI-qTOF-MS/MS characterization, antioxidant activities and inhibitory ability of digestive enzymes with molecular docking analysis of various parts of raspberry (Rubus ideaus L.). Antioxidants 2019, 8, 274. [Google Scholar] [CrossRef] [PubMed]
- Hancock, R.D.; Petridis, A.; McDougall, G.J. Raspberry fruit chemistry in relation to fruit quality and human nutrition. In Raspberry. Breeding, Challenges and Advances; Graham, J., Brennan, R., Eds.; Springer: Cham, Switzerland, 2018; pp. 89–119. [Google Scholar]
- Debnath, S.C.; Siow, Y.L.; Petkau, J.; An, D.; Bykova, N.V. Molecular markers and antioxidant activity in berry crops: Genetic diversity analysis. Can. J. Plant Sci. 2012, 92, 1121–1133. [Google Scholar] [CrossRef]
- Kalia, R.K.; Rai, M.K.; Kalia, S.; Singh, R.; Dhawan, A.K. Microsatellite markers: An overview of the recent progress in plants. Euphytica 2011, 177, 309–334. [Google Scholar] [CrossRef]
- Muccillo, L.; Gambuti, A.; Frusciante, L.; Iorizzo, M.; Moio, L.; Raieta, K.; Rinaldi, A.; Colantuoni, V.; Aversano, R. Biochemical features of native red wines and genetic diversity of the corresponding grape varieties from Campania region. Food Chem. 2014, 143, 506–513. [Google Scholar] [CrossRef]
- Biswas, A.; Melmaiee, K.; Elavarthi, S.; Jones, J.; Reddy, U. Characterization of strawberry (Fragaria spp.) accessions by genotyping with SSR markers and phenotyping by leaf antioxidant and trichome analysis. Sci. Hortic. 2019, 256, 108561. [Google Scholar] [CrossRef]
- Ferreira, V.; Fernandes, F.; Pinto-Carnide, O.; Valentao, P.; Falco, V.; Martin, J.P.; Ortiz, J.M.; Arroyo-Garcia, R.; Andrade, P.B.; Castro, I. Identification of Vitis vinifera L. grape berry skin color mutants and polyphenolic profile. Food Chem. 2016, 194, 117–127. [Google Scholar] [CrossRef]
- Romano, A.; Masi, P.; Aversano, R.; Carucci, F.; Palomba, S.; Carputo, D. Microstructure and tuber properties of potato varieties with different genetic profiles. Food Chem. 2018, 239, 789–796. [Google Scholar] [CrossRef]
- Špika, M.J.; Liber, Z.; Montemurro, C.; Miazzi, M.M.; Ljubenkov, I.; Soldo, B.; Žanetic, M.; Vitanovic, E.; Politeo, O.; Škevin, D. Quantitatively unraveling hierarchy of factors impacting virgin olive oil phenolic profile and oxidative stability. Antioxidants 2022, 11, 594. [Google Scholar] [CrossRef] [PubMed]
- Debnath, S.C.; An, D. Antioxidant properties and structured biodiversity in a diverse set of wild cranberry clones. Heliyon 2019, 5, e01493. [Google Scholar] [CrossRef]
- Lebedev, V.G.; Subbotina, N.M.; Maluchenko, O.P.; Krutovsky, K.V.; Shestibratov, K.A. Assessment of genetic diversity in differently colored raspberry cultivars using SSR markers located in flavonoid biosynthesis genes. Agronomy 2019, 9, 518. [Google Scholar] [CrossRef]
- Lebedev, V.G.; Subbotina, N.M.; Maluchenko, O.P.; Lebedeva, T.N.; Krutovsky, K.V.; Shestibratov, K.A. Transferability and polymorphism of SSR markers located in flavonoid pathway genes in Fragaria and Rubus species. Genes 2020, 11, 11. [Google Scholar] [CrossRef] [PubMed]
- Vidyagina, E.O.; Lebedev, V.G.; Subbotina, N.M.; Treschevskaya, E.I.; Lebedeva, T.N.; Shestibratov, K.A. The development of the genic SSR markers for analysis of genetic diversity in gooseberry cultivars. Agronomy 2021, 11, 1050. [Google Scholar] [CrossRef]
- Schmid, K.; Höhn, H.; Graf, B.; Höpli, H. Phänologische Entwicklungsstadien der Himbeere (Rubus idaeus L.). Agrarforschung 2001, 8, 215–222. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Giusti, M.M.; Wrolstad, R.E. Characterization and measurement of anthocyanins by UV-visible spectroscopy. In Current Protocols in Food Analytical Chemistry; Wrolstad, R.E., Ed.; Wiley: New York, NY, USA, 2001. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.; Strain, J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Nunes, C.F.; Ferreira, J.L.; Nunes-Fernandes, M.C.; de Souza Breves, S.; Generoso, A.L.; Fontes-Soares, B.D.; Carvalho-Dias, M.S.; Pasqual, M.; Borem, A.; de Almeida Cancado, G.M. An improved method for genomic DNA extraction from strawberry leaves. Ciênc. Rural 2011, 41, 1383–1389. [Google Scholar] [CrossRef] [Green Version]
- Castillo, N.R.F.; Reed, B.M.; Graham, J.; Fernandez-Fernandez, F.; Bassil, N.V. Microsatellite markers for raspberry and blackberry. J. Am. Soc. Hortic. Sci. 2010, 135, 271–278. [Google Scholar] [CrossRef]
- Liu, K.; Muse, S.V. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics 2005, 21, 2128–2129. [Google Scholar] [CrossRef] [PubMed]
- Page, R.D.M. Tree View: An application to display phylogenetic trees on personal computers. Bioinformatics 1996, 12, 357–358. [Google Scholar] [CrossRef]
- Mantel, N.A. The detection of disease clustering and generalized regression approach. Cancer Res. 1967, 27, 209–220. [Google Scholar]
- Bobinaitè, R.; Viskelis, P.; Venskutonis, R. Variation of total phenolics, anthocyanins, ellagic acid and radical scavenging capacity in various raspberry (Rubus ssp) cultivars. Food Chem. 2012, 132, 1495–1501. [Google Scholar] [CrossRef]
- Mazur, S.P.; Nes, A.; Wold, A.-B.; Remberg, S.F.; Aaby, K. Quality and chemical composition of ten red raspberry (Rubus idaeus L.) genotypes during three harvest seasons. Food Chem. 2014, 160, 233–240. [Google Scholar] [CrossRef]
- Renai, L.; Scordo, C.V.A.; Chiuminatto, U.; Ulaszewska, M.; Giordani, E.; Petrucci, W.A.; Tozzi, F.; Nin, S.; del Bubba, M. Liquid chromatographic quadrupole time-of-flight mass spectrometric untargeted profiling of (poly)phenolic compounds in Rubus idaeus L. and Rubus occidentalis L. fruits and their comparative evaluation. Antioxidants 2021, 10, 704. [Google Scholar] [CrossRef]
- Valdés García, A.; Maestre Pérez, S.E.; Butsko, M.; Prats Moya, M.S.; Beltrán Sanahuja, A. Authentication of “Adelita” raspberry cultivar based on physical properties, antioxidant activity and volatile profile. Antioxidants 2020, 9, 593. [Google Scholar] [CrossRef]
- Garcia, G.; Pais, T.F.; Pinto, P.; Dobson, G.; McDougall, G.J.; Stewart, D.; Santos, C.N. Bioaccessible raspberry extracts enriched in ellagitannins and ellagic acid derivatives have anti-neuroinflammatory properties. Antioxidants 2020, 9, 970. [Google Scholar] [CrossRef]
- Huang, X.; Wu, Y.; Zhang, S.; Yang, H.; Wu, W.; Lyu, L.; Li, W. Variation in bioactive compounds and antioxidant activity of rubus fruits at different developmental stages. Foods 2022, 11, 1169. [Google Scholar] [CrossRef] [PubMed]
- de Camargo, A.C.; Biasoto, A.C.T.; Schwember, A.R.; Granato, D.; Rasera, G.B.; Franchin, M.; Rosalen, P.L.; Alencar, S.M.; Shahidi, F. Should we ban total phenolics and antioxidant screening methods? The link between antioxidant potential and activation of NF-κB using phenolic compounds from grape by-products. Food Chem. 2019, 290, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Ozgen, M.; Reese, R.N.; Tulio, A.Z., Jr.; Scheerens, J.C.; Miller, A.R. Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2c-diphenyl-1-picrylhydrazyl (DPPH) methods. J. Agric. Food Chem. 2006, 54, 1151–1157. [Google Scholar] [CrossRef] [PubMed]
- Deighton, N.; Brennan, R.; Finn, C.; Davies, H.V. Antioxidant properties of domesticated and wild Rubus species. J. Sci. Food Agric. 2000, 80, 1307–1313. [Google Scholar] [CrossRef]
- Kao, M.-W.S.; Woods, F.M.; Dozier, W.A., Jr.; Ebel, R.C.; Nesbitt, M.; Jee, J.; Fields, D. Phenolic content and antioxidant capacities of Alabama—grown thornless blackberries. Int. J. Fruit Sci. 2008, 7, 33–46. [Google Scholar] [CrossRef]
- Żebrowska, J.; Dyduch-Siemińska, M.; Gawroński, J.; Jackowska, I.; Pabich, M. Genetic estimates of antioxidant properties in the conventionally and in vitro propagated strawberry (Fragaria×ananassa Duch.). Food Chem. 2019, 299, 125110. [Google Scholar] [CrossRef]
- Gu, C.; Howell, K.; Frank, R.; Dunshea, F.R.; Suleria, H.A.R. LC-ESI-QTOF/MS characterisation of phenolic acids and flavonoids in polyphenol-rich fruits and vegetables and their potential antioxidant activities. Antioxidants 2019, 8, 405. [Google Scholar] [CrossRef]
- Ponder, A.; Hallmann, E. Phenolics and carotenoid contents in the leaves of different organic and conventional raspberry (Rubus idaeus L.) cultivars and their in vitro activity. Antioxidants 2019, 8, 458. [Google Scholar] [CrossRef]
- Buřičová, L.; Andjelkovic, M.; Čermáková, A.; Réblová, Z.; Jurček, O.; Kolehmainen, E.; Roland Verhé, R.; Kvasnička, F. Antioxidant capacity and antioxidants of strawberry, blackberry, and raspberry leaves. Czech J. Food Sci. 2011, 29, 181–189. [Google Scholar] [CrossRef]
- Oszmiański, J.; Wojdyło, A.; Nowicka, P.; Teleszko, M.; Cebulak, T.; Wolanin, M. Determination of phenolic compounds and antioxidant activity in leaves from wild Rubus L. species. Molecules 2015, 20, 4951–4966. [Google Scholar] [CrossRef]
- Tian, Y.; Puganen, A.; Alakomi, H.-L.; Uusitupa, A.; Saarela, M.; Yang, B. Antioxidative and antibacterial activities of aqueous ethanol extracts of berries, leaves, and branches of berry plants. Food Res. Int. 2018, 106, 291–303. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.-Y.; Wang, W.-W.; Ye, J.-F.; Li, S.-S.; Wu, Q.; Yin, D.-D.; Li, B.; Xu, Y.-J.; Wang, L.-S. Polyphenol profile and antioxidant activity of the fruit and leaf of Vaccinium glaucoalbum from the Tibetan Himalayas. Food Chem. 2017, 219, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Routray, W.; Orsat, V. Variation of phenolic profile and antioxidant activity of North American highbush blueberry leaves with variation of time of harvest and cultivar. Ind. Crops Prod. 2014, 62, 147–155. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, X.; Tan, J.; Wang, B. Influence of harvest season on antioxidant activity and constituents of rabbiteye blueberry (Vaccinium ashei) leaves. J. Agric. Food Chem. 2013, 61, 11477–11483. [Google Scholar] [CrossRef] [PubMed]
- Urbstaite, R.; Raudone, L.; Janulis, V. Phytogenotypic anthocyanin profiles and antioxidant activity variation in fruit samples of the american cranberry (Vaccinium macrocarpon Aiton). Antioxidants 2022, 11, 250. [Google Scholar] [CrossRef]
- Vilkickyte, G.; Raudone, L.; Petrikaite, V. Phenolic fractions from Vaccinium vitis-idaea L. and their antioxidant and anticancer activities assessment. Antioxidants 2020, 9, 1261. [Google Scholar] [CrossRef]
- Venskutonis, P.R.; Barnackas, S.; Kazernaviciute, R.; Mazdzieriene, R.; Pukalskas, A.; Sipailiene, A.; Labokas, J.; Loziene, K.; Abrutiene, G. Variations in antioxidant capacity and phenolics in leaf extracts isolated by different polarity solvents from seven blueberry (Vaccinium L.) genotypes at three phenological stages. Acta Physiol. Plant. 2016, 38, 33. [Google Scholar] [CrossRef]
- Alam, Z.; Morales, H.R.; Julissa Roncal, J. Environmental conditions affect phenolic content and antioxidant capacity of leaves and fruit in wild partridgeberry (Vaccinium vitis-idaea). Botany 2016, 94, 509–521. [Google Scholar] [CrossRef]
- Yang, J.; Shi, W.; Li, B.; Bai, Y.; Hou, Z. Preharvest and postharvest UV radiation affected flavonoid metabolism and antioxidant capacity differently in developing blueberries (Vaccinium corymbosum L.). Food Chem. 2019, 301, 125248. [Google Scholar] [CrossRef]
- Xu, W.; Dubos, C.; Lepiniec, L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci. 2015, 20, 176–185. [Google Scholar] [CrossRef]
- Rafique, M.Z. Fruit Pigment Biogenesis in Raspberry Cultivars: Characterisation of Anthocyanin and Carotenoid Biosynthesis. Ph.D. Thesis, University of Marburg, Marburg, Germany, 2019. [Google Scholar]
- Rotondi, A.; Beghe, D.; Fabbri, A.; Ganino, T. Olive oil traceability by means of chemical and sensory analyses: A comparison with SSR biomolecular profiles. Food Chem. 2011, 129, 1825–1831. [Google Scholar] [CrossRef]
Genotype | Fruit Color | Parentage |
---|---|---|
1-14-1 | Red | 19-101-20 (open pol.) |
1-14-2 | Red | 19-101-20 (open pol.) |
1-14-2(zh) | Yellow | 19-101-20 (open pol.) |
1-45-1 | Red | 4-16-1 (open pol.) |
1-45-2 | Red | 4-16-1 (open pol.) |
1-70-1 | Red | 18-183-1 (open pol.) |
2-66-1 | Red | 7-42-5 (open pol.) |
2-66-2 | Red | 7-42-5 (open pol.) |
2-66-3 | Red | 7-42-5 (open pol.) |
3-117-1 | Red | 1-220-1 (open pol.) |
9-121-2 | Red | 3-117-1 × Karamelka |
9-121-4 | Red | 3-117-1 × Karamelka |
9-121-5 | Yellow | 3-117-1 × Karamelka |
11-110-2 | Red | 2-55-10 × Zhar-Ptitsa |
Abrikosovaya | yellow-orange | 13-222-A (open pol.) |
Arbat | Red | 821081 × 7518E6 |
Gusar | Red | Canby × pollen mix |
Karamelka | Red | reseeding of seeds |
Himbo Top | Red | Autumn Bliss × Rafzeter |
Octavia | Red | Glen Ample × EM 5928/114 |
Polana | Red | Heritage × Zeva Herbsterne |
Polesie | Red | 86594 × 87432 |
Polka | red | P89141 (open pol.) |
Porana Rosa | yellow | 83291 × ORUS 1098-1 |
Silvan | black | ORUS 742 (Pacific × Boysen) × Marion |
Genotype | TPC (mg GAE/100 g FW) | TFC (mg RE/100 g FW) | TAC (mg cyan-3-G/100 g FW) |
---|---|---|---|
1-14-1 | 236.6 ± 16.3 def | 151.2 ± 16.6 fgh | 29.2 ± 2.7 def |
1-14-2 | 292.1 ± 20.2 bcd | 184.3 ± 12.1 def | 39.2 ± 2.7 cd |
1-14-2(zh) | 267.4 ± 27.9 cde | 159.3 ± 18.9 fgh | 0.5 ± 0.1 h |
1-45-1 | 305.5 ± 32.5 abc | 206.3 ± 25.7 cde | 30.2 ± 1.1 cdef |
1-45-2 | 349.5 ± 31.2 ab | 261.1 ± 24.4 b | 40.2 ± 5.0 c |
1-70-1 | 304.2 ± 14.3 abc | 235.5 ± 8.6 bc | 64.9 ± 5.9 b |
2-66-1 | 287.0 ± 11.1 cd | 194.4 ± 8.3 cdef | 39.9 ± 4.9 cd |
2-66-2 | 315.7 ± 40.8 abc | 210.4 ± 21.4 cd | 35.7 ± 4.8 cde |
2-66-3 | 224.6 ± 3.6 ef | 119.8 ± 11.0 hi | 31.0 ± 4.8 cdef |
3-117-1 | 224.4 ± 12.3 ef | 149.7 ± 10.8 fgh | 30.1 ± 0.9 cdef |
9-121-2 | 189.0 ± 14.1 fg | 123.7 ± 8.8 ghi | 20.9 ± 1.8 fg |
9-121-4 | 215.4 ± 4.1 ef | 124.4 ± 3.4 ghi | 30.3 ± 4.2 cdef |
9-121-5 | 315.9 ± 16.1 abc | 212.3 ± 11.8 cd | 1.1 ± 0.1 h |
11-110-2 | 255.4 ± 20.9 cde | 173.8 ± 14.2 def | 35.0 ± 3.8 cde |
Abrikosovaya | 225.6 ± 10.7 ef | 118.1 ± 7.1 hi | 0.7 ± 0.1 h |
Arbat | 232.5 ± 9.8 def | 182.1 ± 8.6 def | 39.3 ± 0.8 cd |
Gusar | 289.6 ± 8.5 cd | 189.6 ± 9.1 def | 28.3 ± 1.0 ef |
Karamelka | 274.0 ± 8.8 cde | 161.7 ± 4.3 efgh | 22.4 ± 3.0 fg |
Himbo Top | 227.4 ± 21.6 ef | 166.1 ± 9.4 defg | 31.4 ± 2.7 cdef |
Octavia | 307.8 ± 15.7 abc | 182.7 ± 7.0 def | 16.4 ± 1.6 g |
Polana | 224.2 ± 4.0 ef | 166.1 ± 14.2 defg | 31.2 ± 1.5 cdef |
Polesie | 273.9 ± 4.4 cde | 187.7 ± 6.3 def | 37.3 ± 0.7 cde |
Polka | 240.2 ± 9.4 def | 163.5 ± 3.6 efgh | 34.8 ± 1.1 cde |
Porana Rosa | 148.4 ± 6.0 g | 100.5 ± 5.9 i | 0.3 ± 0.1 h |
Silvan | 352.7 ± 17.1 a | 313.7 ± 17.2 a | 89.8 ± 2.4 a |
Genotype | FRAP | ABTS |
---|---|---|
1-14-1 | 22.9 ± 0.8 de | 27.5 ± 1.8 hijk |
1-14-2 | 27.6 ± 2.7 cd | 41.2 ± 3.4 bcde |
1-14-2(zh) | 23.0 ± 1.6 de | 33.6 ± 1.6 efghij |
1-45-1 | 30.3 ± 2.4 bc | 44.6 ± 4.6 bc |
1-45-2 | 35.9 ± 3.7 ab | 52.4 ± 5.4 a |
1-70-1 | 33.5 ± 1.8 ab | 35.7 ± 1.6 defgh |
2-66-1 | 26.1 ± 1.2 cde | 34.4 ± 1.4 defghi |
2-66-2 | 34.0 ± 4.5 ab | 41.1 ± 5.1 bcde |
2-66-3 | 22.8 ± 0.9 de | 33.5 ± 0.5 efghij |
3-117-1 | 20.9 ± 1.3 e | 26.0 ± 1.4 jkl |
9-121-2 | 14.1 ± 1.2 f | 22.7 ± 1.3 kl |
9-121-4 | 23.1 ± 1.1 de | 30.6 ± 1.2 fghijk |
9-121-5 | 25.3 ± 1.5 cde | 41.2 ± 1.5 bcde |
11-110-2 | 26.5 ± 1.8 cde | 38.2 ± 2.7 cdef |
Abrikosovaya | 22.4 ± 1.5 de | 34.8 ± 2.0 defghi |
Arbat | 23.4 ± 1.4 de | 36.5 ± 2.6 cdefg |
Gusar | 27.9 ± 1.8 cd | 34.6 ± 2.5 defghi |
Karamelka | 28.1 ± 0.7 cd | 42.0 ± 1.3 bcd |
Himbo Top | 22.5 ± 2.2 de | 26.9 ± 2.9 ijkl |
Octavia | 27.2 ± 1.2 cd | 36.7 ± 1.2 cdef |
Polana | 23.9 ± 0.6 de | 24.9 ± 0.7 kl |
Polesie | 25.5 ± 0.5 cde | 33.2 ± 1.6 efghij |
Polka | 22.5 ± 0.6 de | 28.4 ± 0.8 ghljk |
Porana Rosa | 11.7 ± 0.6 f | 19.2 ± 0.5 l |
Silvan | 38.3 ± 1.4 a | 47.6 ± 2.7 ab |
FRAP | ABTS | |
---|---|---|
TPC | 0.921 | 0.879 |
TFC | 0.882 | 0.755 |
TAC | 0.655 | 0.373 |
Phenophase | FRAP | ABTS | |
---|---|---|---|
TPC | Flowering | 0.712 | 0.714 |
Fruit development | 0.595 | 0.645 | |
Fruit ripening | 0.663 | 0.642 | |
TFC | Flowering | 0.968 | 0.935 |
Fruit development | 0.943 | 0.819 | |
Fruit ripening | 0.902 | 0.977 |
Locus | Number of Alleles | He | Ho | PIC |
---|---|---|---|---|
RcFH01 | 2 | 0.117 | 0.125 | 0.110 |
FaFH01 | 3 | 0.190 | 0.208 | 0.178 |
FaFS01 | 2 | 0.395 | 0.292 | 0.317 |
RiAS01 | 2 | 0.187 | 0.125 | 0.169 |
RhUF01 | 3 | 0.156 | 0.167 | 0.150 |
RiMY01 | 7 | 0.813 | 0.583 | 0.787 |
RiG001 | 2 | 0.153 | 0.167 | 0.141 |
Mean | 3.0 | 0.287 | 0.238 | 0.265 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lebedev, V.G.; Lebedeva, T.N.; Vidyagina, E.O.; Sorokopudov, V.N.; Popova, A.A.; Shestibratov, K.A. Relationship between Phenolic Compounds and Antioxidant Activity in Berries and Leaves of Raspberry Genotypes and Their Genotyping by SSR Markers. Antioxidants 2022, 11, 1961. https://doi.org/10.3390/antiox11101961
Lebedev VG, Lebedeva TN, Vidyagina EO, Sorokopudov VN, Popova AA, Shestibratov KA. Relationship between Phenolic Compounds and Antioxidant Activity in Berries and Leaves of Raspberry Genotypes and Their Genotyping by SSR Markers. Antioxidants. 2022; 11(10):1961. https://doi.org/10.3390/antiox11101961
Chicago/Turabian StyleLebedev, Vadim G., Tatyana N. Lebedeva, Elena O. Vidyagina, Vladimir N. Sorokopudov, Anna A. Popova, and Konstantin A. Shestibratov. 2022. "Relationship between Phenolic Compounds and Antioxidant Activity in Berries and Leaves of Raspberry Genotypes and Their Genotyping by SSR Markers" Antioxidants 11, no. 10: 1961. https://doi.org/10.3390/antiox11101961
APA StyleLebedev, V. G., Lebedeva, T. N., Vidyagina, E. O., Sorokopudov, V. N., Popova, A. A., & Shestibratov, K. A. (2022). Relationship between Phenolic Compounds and Antioxidant Activity in Berries and Leaves of Raspberry Genotypes and Their Genotyping by SSR Markers. Antioxidants, 11(10), 1961. https://doi.org/10.3390/antiox11101961