Ultrasound-Assisted Extraction, LC–MS/MS Analysis, Anticholinesterase, and Antioxidant Activities of Valuable Natural Metabolites from Astragalus armatus Willd.: In Silico Molecular Docking and In Vitro Enzymatic Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Instruments
2.2. Chemical Identification and Measurement of Phenolic Compound
2.2.1. Plant Extract Preparation
2.2.2. Equipment and Chromatographic Parameters
2.2.3. MS Instrumentation
2.2.4. Method Validation Parameters for LC–MS/MS
2.3. Antioxidant Activity
2.4. Acetylcholinesterase Inhibitory Assay
2.5. Docking Molecular Analysis
2.6. Drug Likeness and ADMET Profiling
2.7. Statistical Analysis
3. Results and Discussion
3.1. Chemical Identification and Measurement of Phenolic Compounds
3.2. Antioxidant Activity
3.3. Acetylcholinesterase Inhibitory Assay
3.4. Binding Mode Analysis Using a Molecular Docking Approach
3.5. Drug-Likeness and ADMET Profiling
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarikurkcu, C.; Ozer, M.S.; Tlili, N. LC–ESI–MS/MS characterization of phytochemical and enzyme inhibitory effects of different solvent extract of Symphytum anatolicum. Ind. Crops Prod. 2019, 140, 111666. [Google Scholar] [CrossRef]
- Yang, C.S.; Ho, C.T.; Zhang, J.; Wan, X.; Zhang, K.; Lim, J. Antioxidants: Differing meanings in food science and health science. J. Agric. Food Chem. 2018, 66, 3063–3068. [Google Scholar] [CrossRef] [PubMed]
- Farhat, M.B.; Landoulsi, A.; Chaouch-Hamada, R.; Sotomayor, J.A.; Jordan, M.J. Characterization and quantification of phenolic compounds and antioxidant properties of Salvia species growing in different habitats. Ind. Crops Prod. 2013, 49, 904–914. [Google Scholar] [CrossRef]
- Bendjedid, S.; Djelloul, R.; Tadjine, A.; Bensouici, C.; Boukhari, A. In vitro Assessment of Total Bioactive Contents, Antioxidant, Anti-Alzheimer and Anti-diabetic Activities of Leaves Extracts and Fractions of Aloe vera. Chiang Mai Univ. J. Nat. Sci. 2020, 19, 469–485. [Google Scholar]
- Tlili, N.; Kirkan, B.; Sarikurkcu, C. LC–ESI–MS/MS characterization, antioxidant power and inhibitory effects on α-amylase and tyrosinase of bioactive compounds from hulls of Amygdalus communis: The influence of the extracting solvents. Ind. Crops Prod. 2019, 128, 147–152. [Google Scholar] [CrossRef]
- Yoon, J.-C.; Lee, S.-R.; Jung, I.-C. The Effects of Hyung Bang Sa Baek-San (Jing Fang Xie Bai San) on the Alzheimer’s Disease Model Induced by βA. J. Orient. Neuropsychiatry 2010, 21, 171–189. [Google Scholar]
- Mimori, Y.; Nakamura, S.; Yukawa, M. Abnormalities of acetylcholinesterase in Alzheimer’s disease with special reference to effect of acetylcholinesterase inhibitor. Behav. Brain Res. 1997, 83, 25–30. [Google Scholar] [CrossRef]
- Khattabi, L.; Boudiar, T.; Bouhenna, M.M.; Chettoum, A.; Chebrouk, F.; Chader, H.; Lozano-Sánchez, J.; Segura-Carretero, A.; Nieto, G.; Akkal, S. RP-HPLC-ESI-QTOF-MS Qualitative Profiling, Antioxidant, Anti-Enzymatic, Anti-Inflammatory and Non-Cytotoxic Properties of Ephedra alata Monjauzeana. Foods. 2022, 11, 145. [Google Scholar] [CrossRef] [PubMed]
- Magalhaes, S.C.; Taveira, M.; Cabrita, A.R.; Fonseca, A.J.; Valentão, P.; Andrade, P.B. European marketable grain legume seeds: Further insight into phenolic compounds profiles. Food Chem. 2017, 215, 177–184. [Google Scholar] [CrossRef]
- Mahmoudi, M.; Abdellaoui, R.; Boughalleb, F.; Yahia, B.; Mabrouk, M.; Nasria, N. Characterization of lipids, proteins, and bioactive compounds in the seeds of three Astragalus species. Food Chem. 2021, 339, 127824. [Google Scholar] [CrossRef]
- Agyemang, K.; Han, L.; Liu, E.; Zhang, Y.; Wang, T.; Gao, X. Recent Advances in Astragalus membranaceus Anti-Diabetic Research: Pharmacological Effects of Its Phytochemical Constituents. Evid.-Based Complement. Altern. Med. 2013, 2013, 654643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lekmine, S.; Boussekine, S.; Akkal, S.; Martín-García, A.I.; Boumegoura, A.; Kadi, K.; Djeghim, H.; Mekersi, N.; Bendjedid, S.; Bensouici, C.; et al. Investigation of Photoprotective, Anti-Inflammatory, Antioxidant Capacities and LC–ESI–MS Phenolic Profile of Astragalus gombiformis Pomel. Foods. 2021, 10, 1937. [Google Scholar] [CrossRef] [PubMed]
- Ertas, A.; Yener, I. A comprehensive study on chemical and biological profiles of three herbal teas in Anatolia; rosmarinic and chlorogenic acids. S. Afr. J. Bot. 2020, 130, 274–281. [Google Scholar] [CrossRef]
- Lekmine, S.; Boussekine, S.; Kadi, K.; Martín-García, A.I.; Kheddouma, A.; Nagaz, K.; Bensouici, C. A comparative study on chemical profile and biological activities of aerial parts (stems, flowers, leaves, pods and seeds) of Astragalus gombiformis. Biocatal. Agric. Biotechnol. 2020, 27, 101668. [Google Scholar] [CrossRef]
- Kunchandy, E.; Rao, M.N.A. Oxygen radical scavenging activity of curcumin. Int. J. Pharm. 1990, 58, 237–240. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. Diet. 1986, 44, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Marco, G.J. A rapid method for evaluation of antioxidants. J. Am. Oil Chem. Soc. 1968, 45, 594–598. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E. Novel Total Antioxidant Capacity Index for Dietary Polyphenols and Vitamins C and E, Using Their Cupric Ion Reducing Capability in the Presence of Neocuproine: CUPRAC Method. J. Agric. Food Chem. 2004, 52, 7970–7981. [Google Scholar] [CrossRef] [PubMed]
- Smirnoff, N.; Cumbes, Q.J. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 1989, 28, 1057–1060. [Google Scholar] [CrossRef]
- Szydlowskaczerniak, A.; Dianoczki, C.; Recseg, K.; Karlovits, G.; Szlyk, E. Determination of antioxidant capacities of vegetable oils by ferric-ion spectrophotometric methods. Talanta 2008, 76, 899–905. [Google Scholar] [CrossRef] [PubMed]
- Özyürek, M.; Güngör, N.; Baki, S.; Güçlü, K.; APAK, R. Development of a Silver Nanoparticle-Based Method for the Antioxidant Capacity Measurement of Polyphenols. Anal. Chem. 2012, 84, 8052–8059. [Google Scholar] [CrossRef] [PubMed]
- Milica, K.; Zlatković, B.; Miladinović, B.; Živanović, S.; Mihajilov-Krstev, T.; Pavlović, D.; Kitić, D. Rosmarinic Acid Levels, Phenolic Contents, Antioxidant and Antimicrobial Activities of the Extracts from Salvia verbenaca L. Obtained with Different Solvents and Procedures: Bioeffects of Extracts from Salvia verbenaca L. J. Food Biochem. 2015, 39, 199–208. [Google Scholar]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A. Lead- and Drug-like Compounds: The Rule-Of-Five Revolution. Drug Discov. Today Tech. 2004, 1, 337–341. [Google Scholar] [CrossRef]
- Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018, 46, 257–263. [Google Scholar] [CrossRef] [Green Version]
- Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Chen, X.; et al. ADMETlab2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021, 49, 5–14. [Google Scholar] [CrossRef]
- Gulcin, I.; Bursal, E.; Sehitoglu, H.M.; Goren, A.C. Polyphenol contents and antioxidant activity of lyophilized aqueous extract of propolis from Erzurum, Turkey. Food Chem. Toxicol. 2010, 48, 2227–2238. [Google Scholar] [CrossRef]
- Amarowicz, R.; Troszyńska, A.; Shahidi, F. Antioxidant activity of almond seed extract and its fractions. J. Food Lipids 2005, 12, 344–358. [Google Scholar] [CrossRef]
- Yilmaz, M.A. Simultaneous quantitative screening of 53 phytochemicals in 33 species of medicinal and aromatic plants: A detailed, robust and comprehensive LC–MS/MS method validation. Ind. Crops Prod. 2020, 149, 112347. [Google Scholar] [CrossRef]
- Dargel, R. Lipid peroxidation—A common pathogenetic mechanism. Exp. Toxicol. Pathol. 1992, 44, 169–181. [Google Scholar] [CrossRef]
- Phan, H.T.; Samarat, K.; Takamura, Y.; Azo-Oussou, A.F.; Nakazono, Y.; Vestergaard, M.C. Polyphenols modulate alzheimer’s amyloid beta aggregation in a structure-dependent manner. Nutrients 2019, 11, 756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bensaad, M.S.; Dassamiour, S.; Hambaba, L.; Bensouici, C.; Hambaba, L. In vitro assessment of antioxidant, anti-inflammatory, neuroprotective and antimicrobial activities of Centaurea tougourensis boiss. & reut. J. Pharm. Pharmacol. 2021, 9, 790–802. [Google Scholar]
- Mahfoudhi, A.; Prencipe, F.P.; Mighri, Z.; Pellati, F. Metabolite profiling of polyphenols in the tunisian plant Tamarix aphylla (L.) karst. J. Pharm. Biomed. Anal. 2014, 99, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Teyeb, H.; Zanina, N.; Neffati, M.; Douki, W.; Najjar, M.F. Cytotoxic and antibacterial activities of leaf extracts of Astragalus gombiformis Pomel (Fabaceae) growing wild in Tunisia. Turk. J. Biol. 2012, 36, 53–58. [Google Scholar] [CrossRef]
- Zengin, G.; Uba, A.I.; Ocal, M.; Sharifi-Rad, M.; Caprioli, G.; Angeloni, S.; Altunoglu, Y.C.; Baloglu, M.C.; Yıldıztugay, E. Integration of in vitro and in silico approaches to assess three Astragalus species from Turkey flora: A novel spotlight from lab bench to functional applications. Food Biosci. 2022, 49, 101858. [Google Scholar] [CrossRef]
- Kumar, A.; Mishra, D.C.; Angadi, U.B.; Yadav, R.; Rai, A.; Kumar, D. Inhibition Potencies of Phytochemicals Derived from Sesame Against SARSCoV-2 Main Protease: A Molecular Docking and Simulation Study. Front. Chem. 2021, 9, 744376. [Google Scholar] [CrossRef]
- Brus, B.; Košak, U.; Turk, S.; Pišlar, A.; Coquelle, N.; Kos, J.; Stojan, J.; Colletier, J.P.; Gobec, S. Discovery, Biological Evaluation, and Crystal Structure of a Novel Nanomolar Selective Butyrylcholinesterase Inhibitor. J. Med. Chem. 2014, 57, 8167–8179. [Google Scholar] [CrossRef]
- Li, S.; Li, A.J.; Travers, J.; Xu, T.; Sakamuru, S.; Klumpp-Thomas, C.; Huang, R.; Xia, M. Identification of Compounds for Butyrylcholinesterase Inhibition. SLAS Discov. 2021, 26, 1355–1364. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.M.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Cecchelli, R.; Berezowski, V.; Lundquist, S.; Culot, M.; Renftel, M.; Dehouck, M.P.; Fenart, L. Modelling of the blood-brain barrier in drug discovery and development. Nat. Rev. Drug Discov. 2007, 6, 650–661. [Google Scholar] [CrossRef] [PubMed]
- Benslama, O.; Benserradj, O.; Ghorri, S.; Mihoubi, I. Identification and virtual based screening of the bioinsecticidal potential of Metarhizium anisopliae destruxins as inhibitors of Culex quinquefasciatus chitinase activity. Biologia. 2022. [Google Scholar] [CrossRef]
Peak and Molecules | Rt Retention Time | MS2 (Collision Energy) | Quantification (µg Analyte/g Extract) | |
---|---|---|---|---|
A. armatus | ||||
1 | Quinic acid | 3.32 | 85 (22), 93 (22) | 963.12 ± 22.3 g |
2 | Malic acid | 3.54 | 115 (14), 71 (17) | 30.6 ± 2.3 i |
3 | tr-Aconitic acid | 4.13 | 85 (12), 129 (9) | / |
4 | Gallic acid | 4.29 | 125 (14), 79 (25) | / |
5 | Chlorogenic acid | 5.43 | 191 (17) | 76,635.0 ± 6.2 a |
6 | Protocatechuic acid | 5.63 | 109 (16), 108 (26) | 43,986.0 ± 1.2 b |
7 | Tannic acid | 6.46 | 124 (22), 78 (34) | / |
8 | tr-Caffeic acid | 7.37 | 135 (15), 134 (24), 89 (31) | 86.71 ± 1.3 i |
9 | Vanillin | 8.77 | 136 (17), 92 (21) | 456.7 ± 2.4 h |
10 | p-Coumaric acid | 9.53 | 119 (15), 93 (31) | / |
11 | Rosmarinic acid | 9.57 | 161 (17), 133 (42) | 80,695.32 ± 12.3 a |
12 | Rutin | 10.18 | 300 (37), 271 (51), 301 (38) | 856.5 ± 1.6 g |
13 | Hesperidin | 9.69 | 303, 465 | 19,676.0 ± 3.2 c |
14 | Hyperoside | 10.43 | 300, 301 | 23,976.0 ± 1.8 c |
15 | 4-OH Benzoic acid | 11.72 | 93, 65 | 59,986.0 ± 6.3 b |
16 | Salicylic acid | 11.72 | 93, 65, 75 | 433.71 ± 3.3 h |
17 | Myricetin | 11.94 | 179, 151, 137 | / |
18 | Fisetin | 12.61 | 135, 121 | / |
19 | Coumarin | 12.52 | 103, 91, 77 | / |
20 | Quercetin | 14.48 | 179, 151, 121 | 6253.3 ± 2.1 d |
21 | Naringenin | 14.66 | 151, 119, 107 | 4254.7 ± 3.1 de |
22 | Hesperetin | 15.29 | 164, 136, 108 | / |
23 | Luteolin | 15.43 | 175, 151, 133 | 3221.5 ± 6.3 e |
24 | Kaempferol | 15.43 | 217, 133, 151 | 2451.5 ± 1.8 ef |
25 | Apigenin | 17.31 | 151, 117 | / |
26 | Rhamnetin | 18.94 | 165, 121, 300 | / |
27 | Chrysin | 21.18 | 143, 119, 107 | / |
Products | CUPRAC (A0.5) | Reducing Power (A0.5) | Beta Carotene (IC50) | DMSO Alcalin (IC50) | SNP (IC50) | Phenanthroline (A0.5) | Hydroxyl Radical (IC50) |
---|---|---|---|---|---|---|---|
A. armatus | 14.58 ± 4.56 c | 25 ± 1.12 b | 5.12 ±1.2 a | 13 ± 1.25 b | 10.2 ± 1.7 b | 66 ± 1.14 d | 25 ± 1.2 b |
BHT * | 8.86 ± 2.8 b | / | 9.65 ± 1.1 b | / | / | 2.33 ± 1.7 b | / |
BHA * | 5.26 ± 1.6 a | / | 9.82 ± 2.1 b | / | / | 2.84 ± 2.7 b | / |
A-tocopherol * | / | 34.93 ± 2.38 c | 11.43 ± 0.23 c | 4.2 ± 0.95 a | / | / | / |
Ascorbic acid * | 8.31 ± 0.1 b | 6.77 ± 1.15 a | / | / | 7.14 ± 0.05 a | 3.08 ± 0.02 a | 12.33 ± 1.17 a |
Tannic acid * | / | 5.17 ± 1.2 a | / | 3.3 ± 0.91 a | / | / | / |
Trolox * | 8.69 ± 0.1 b | 5.23 ± 1.2 a | / | / | 33.26 ± 2.1 c | 5.21 ± 0.27 c | / |
Extract | IC50 Values (g/mL) for Inhibiting Acetylcholinesterase Activity |
---|---|
A. armatus | 40.25 ± 1.3 a |
Galantamine | 34.75 ± 1.1 b |
Binding Energy (Kcal/mol) | Hydrogen Interactions | Hydrophobic Interactions | Van der Waals Interactions | |
---|---|---|---|---|
Galantamine | −10.3 | Ser203, Glu202, Tyr124, Asp74, His447 | Tyr337, Gly121, Phe338, Phe295, Phe297, His447, Trp86 | Gly122, Ser125, Tyr341, Gly120, Tyr133, Gly448 |
Luteolin | −10.8 | Asn87, Tyr133, Gly448, Ser125 | Trp86 | Pro88, Gln71, Gly121, Gly120, Tyr199, Glu202, Ile451, His447, Tyr337, Tyr124, Asp74, Tyr72, Val73 |
Quercetin | −10.6 | Ser125, Asp74, Tyr72, Asn87 | Trp86, Tyr337 | Ile451, His447, Tyr449, Gly448, Glu202, Ser203, Tyr133, Gly120, Gly121, Tyr124, Gly126, Val73, Pro88, Gln71 |
Naringenin | −10.2 | Ser125, Asn87, Glu202 | Trp86, Tyr337 | Val73, Tyr124, Tyr449, His447, Gly448, Ser203, Ile451, Gly120, Tyr133, Gly121, Pro88, Gly121 |
Rosmarinic acid | −10.2 | Tyr124, Gly121, Gly122, His447, Ser203, Trp86, Tyr133, Val294 | Trp86, Trp286 | Ser293, Phe295, Phe297, Tyr337, Tyr119, Ala127, Gly126, Leu130, Ser125, Gly120, ALA204, Phe338, Tyr341 |
Kaempferol | −10.0 | Glu202, His447, Gly121 | Trp86, Tyr337 | Tyr124, Tyr72, Val73, Asn87, Pro88, Gly126, Gly120, Tyr133, Ile451, Ser203, Gly448, Tyr449 |
MW g/mol | LogP | LogS | HBA | HBD | TPSA (Å2) | AMR | nRB | Lipinski | Veber | |
---|---|---|---|---|---|---|---|---|---|---|
Galantamine | 287.35 | 1.91 | −2.93 | 1 | 4 | 41.93 | 84.05 | 1 | Yes | Yes |
Luteolin | 286.24 | 1.73 | −3.71 | 6 | 4 | 111.13 | 76.01 | 1 | Yes | Yes |
Quercetin | 302.24 | 1.23 | −3.16 | 7 | 5 | 131.36 | 78.03 | 1 | Yes | Yes |
Naringenin | 272.25 | 1.84 | −3.49 | 5 | 3 | 86.99 | 71.57 | 1 | Yes | Yes |
Rosmarinic acid | 360.31 | 1.52 | −3.44 | 8 | 5 | 144.52 | 91.40 | 7 | Yes | No |
Kaempferol | 286.24 | 1.58 | −3.31 | 6 | 4 | 111.13 | 76.01 | 1 | Yes | Yes |
Criteria | Galantamine | Luteolin | Quercetin | Naringenin | Chlorogenic Acid | Kaempferol | |
---|---|---|---|---|---|---|---|
Absorption-Distribution | BBB penetration | Yes | No | No | No | No | No |
Caco2 | High | High | Low | High | Low | High | |
HIA | High | High | High | High | Low | High | |
Metabolism | CYP1A2 inhibitor | No | yes | Yes | No | No | Yes |
CYP2C19 inhibitor | No | No | No | No | No | No | |
CYP2C9 inhibitor | No | No | No | No | No | No | |
CYP2D6 inhibitor | Yes | Yes | Yes | Yes | No | Yes | |
CYP3A4 inhibitor | No | Yes | Yes | Yes | No | Yes | |
Excretion | Cl | Low | Moderate | Moderate | High | Low | Moderate |
Toxicity | hERG Blockers | No | No | No | No | No | No |
AMES Toxicity | No | Yes | Yes | No | No | No | |
Carcinogenicity | No | No | Yes | No | No | No | |
Cytotoxicity | No | No | No | Yes | No | No | |
Immunotoxicity | Yes | No | No | No | Yes | No | |
H-HT | No | No | No | No | No | No | |
NR-AR | No | No | No | No | No | No | |
NR-ER | No | Yes | Yes | Yes | No | Yes | |
SR-p53 | No | No | No | Yes | No | No |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lekmine, S.; Bendjedid, S.; Benslama, O.; Martín-García, A.I.; Boussekine, S.; Kadi, K.; Akkal, S.; Nieto, G.; Sami, R.; Al-Mushhin, A.A.M.; et al. Ultrasound-Assisted Extraction, LC–MS/MS Analysis, Anticholinesterase, and Antioxidant Activities of Valuable Natural Metabolites from Astragalus armatus Willd.: In Silico Molecular Docking and In Vitro Enzymatic Studies. Antioxidants 2022, 11, 2000. https://doi.org/10.3390/antiox11102000
Lekmine S, Bendjedid S, Benslama O, Martín-García AI, Boussekine S, Kadi K, Akkal S, Nieto G, Sami R, Al-Mushhin AAM, et al. Ultrasound-Assisted Extraction, LC–MS/MS Analysis, Anticholinesterase, and Antioxidant Activities of Valuable Natural Metabolites from Astragalus armatus Willd.: In Silico Molecular Docking and In Vitro Enzymatic Studies. Antioxidants. 2022; 11(10):2000. https://doi.org/10.3390/antiox11102000
Chicago/Turabian StyleLekmine, Sabrina, Samira Bendjedid, Ouided Benslama, Antonio Ignacio Martín-García, Samira Boussekine, Kenza Kadi, Salah Akkal, Gema Nieto, Rokayya Sami, Amina A. M. Al-Mushhin, and et al. 2022. "Ultrasound-Assisted Extraction, LC–MS/MS Analysis, Anticholinesterase, and Antioxidant Activities of Valuable Natural Metabolites from Astragalus armatus Willd.: In Silico Molecular Docking and In Vitro Enzymatic Studies" Antioxidants 11, no. 10: 2000. https://doi.org/10.3390/antiox11102000
APA StyleLekmine, S., Bendjedid, S., Benslama, O., Martín-García, A. I., Boussekine, S., Kadi, K., Akkal, S., Nieto, G., Sami, R., Al-Mushhin, A. A. M., Baakdah, M. M., Aljaadi, A. M., & Alharthy, S. A. (2022). Ultrasound-Assisted Extraction, LC–MS/MS Analysis, Anticholinesterase, and Antioxidant Activities of Valuable Natural Metabolites from Astragalus armatus Willd.: In Silico Molecular Docking and In Vitro Enzymatic Studies. Antioxidants, 11(10), 2000. https://doi.org/10.3390/antiox11102000