Antioxidant Compound Adsorption in Polyvinylpolypyrrolidone from Chilean Carménère, Cabernet Sauvignon, and Merlot Grape Pomaces as Potential By-Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents, Solvents, and Standards
2.2. Plant Material
2.3. Extractions of Polyphenols
2.4. Determination of Total Phenolic Compounds (TPC) and Antioxidant Capacity
2.5. Adsorption of TPC from GP Extract in Polyvinylpolypyrrolidone (PVPP)
2.6. Identification of PCs before and after Adsorption in PVPP
2.7. Bacterial Strains, Culture Media, and Growth Conditions
2.8. Statistical Analysis
3. Results
3.1. Polyphenol Extraction
3.2. TPC and Antioxidant Capacity of GP Extract
3.3. PC Composition of GP Extract
3.4. Phenolic Compounds Quantification in GP Extracts
3.5. Adsorption of TPC on PVPP
3.6. Composition of PCs Absorbed in PVPP
3.7. Bacterial Inhibition Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peixoto, C.M.; Dias, M.I.; Alves, M.J.; Calhelha, R.C.; Barros, L.; Pinho, S.P.; Ferreira, I.C.F.R. Grape Pomace as a Source of Phenolic Compounds and Diverse Bioactive Properties. Food Chem. 2018, 253, 132–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beres, C.; Costa, G.N.S.; Cabezudo, I.; da Silva-James, N.K.; Teles, A.S.C.; Cruz, A.P.G.; Mellinger-Silva, C.; Tonon, R.V.; Cabral, L.M.C.; Freitas, S.P. Towards Integral Utilization of Grape Pomace from Winemaking Process: A Review. Waste Manag. 2017, 68, 581–594. [Google Scholar] [CrossRef] [PubMed]
- Antonic, B.; Jancikova, S.; Dordevic, D.; Tremlova, B. Grape Pomace Valorization: A Systematic Review and Meta-Analysis. Foods 2020, 9, 1627. [Google Scholar] [CrossRef] [PubMed]
- Ky, I.; Lorrain, B.; Kolbas, N.; Crozier, A.; Teissedre, P.-L. Wine By-Products: Phenolic Characterization and Antioxidant Activity Evaluation of Grapes and Grape Pomaces from Six Different French Grape Varieties. Molecules 2014, 19, 482–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilar, T.; De Bruijn, J.; Loyola, C.; Bustamante, L.; Vergara, C.; Von Baer, D.; Mardones, C.; Serra, I. Characterization of an Antioxidant-Enriched Beverage from Grape Musts and Extracts of Winery and Grapevine By-Products. Beverages 2018, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Flamini, R.; Mattivi, F.; De Rosso, M.; Arapitsas, P.; Bavaresco, L. Advanced Knowledge of Three Important Classes of Grape Phenolics: Anthocyanins, Stilbenes and Flavonols. Int. J. Mol. Sci. 2013, 14, 19651–19669. [Google Scholar] [CrossRef] [PubMed]
- Makris, D.P.; Kallithraka, S.; Kefalas, P. Flavonols in Grapes, Grape Products and Wines: Burden, Profile and Influential Parameters. J. Food Compos. Anal. 2006, 19, 396–404. [Google Scholar] [CrossRef]
- Gerardi, C.; Pinto, L.; Baruzzi, F.; Giovinazzo, G. Comparison of Antibacterial and Antioxidant Properties of Red (Cv. Negramaro) and White (Cv. Fiano) Skin Pomace Extracts. Molecules 2021, 26, 5918. [Google Scholar] [CrossRef]
- Ghendov-Mosanu, A.; Cojocari, D.; Balan, G.; Patras, A.; Lung, I.; Soran, M.-L.; Opriş, O.; Cristea, E.; Sturza, R. Chemometric Optimization of Biologically Active Compounds Extraction from Grape Marc: Composition and Antimicrobial Activity. Molecules 2022, 27, 1610. [Google Scholar] [CrossRef]
- Sagdic, O.; Ozturk, I.; Yilmaz, M.T.; Yetim, H. Effect of Grape Pomace Extracts Obtained from Different Grape Varieties on Microbial Quality of Beef Patty. J. Food Sci. 2011, 76, M515–M521. [Google Scholar] [CrossRef]
- Yu, J.; Ahmedna, M. Functional Components of Grape Pomace: Their Composition, Biological Properties and Potential Applications. Int. J. Food Sci. Technol. 2013, 48, 221–237. [Google Scholar] [CrossRef]
- Tseng, A.; Zhao, Y. Effect of Different Drying Methods and Storage Time on the Retention of Bioactive Compounds and Antibacterial Activity of Wine Grape Pomace (Pinot Noir and Merlot). J. Food Sci. 2012, 77, H192–H201. [Google Scholar] [CrossRef] [PubMed]
- Cushnie, T.P.T.; Lamb, A.J. Antimicrobial Activity of Flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Khoddami, A.; Wilkes, M.A.; Roberts, T.H. Techniques for Analysis of Plant Phenolic Compounds. Molecules 2013, 18, 2328–2375. [Google Scholar] [CrossRef]
- Veličkovska, S.K.; Mirhosseini, H. Isolation of Anthocyanins by High-Speed Countercurrent Chromatography and Application of the Color Activity Concept to Different Varieties of Red Grape Pomace from Macedonia. J. Nutr. Food Sci. 2013, 3, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Suwal, S.; Marciniak, A. Technologies for the Extraction, Separation and Purification of Polyphenols—A Review. Nepal J. Biotechnol. 2019, 6, 74–91. [Google Scholar] [CrossRef] [Green Version]
- Dong, Z.-B.; Liang, Y.-R.; Fan, F.-Y.; Ye, J.-H.; Zheng, X.-Q.; Lu, J.-L. Adsorption Behavior of the Catechins and Caffeine onto Polyvinylpolypyrrolidone. J. Agric. Food Chem. 2011, 59, 4238–4247. [Google Scholar] [CrossRef]
- Perez-Manriqucz, J.; Escalona, N.; Perez-Correa, J.R. Bioactive Compounds of the PVPP Brewery Waste Stream and Their Pharmacological Effects. Mini. Rev. Org. Chem. 2020, 17, 91–112. [Google Scholar] [CrossRef]
- Durán-Lara, E.F.; López-Cortés, X.A.; Castro, R.I.; Avila-Salas, F.; González-Nilo, F.D.; Laurie, V.F.; Santos, L.S. Experimental and Theoretical Binding Affinity between Polyvinylpolypyrrolidone and Selected Phenolic Compounds from Food Matrices. Food Chem. 2015, 168, 464–470. [Google Scholar] [CrossRef]
- Magalhães, P.J.; Vieira, J.S.; Gonçalves, L.M.; Pacheco, J.G.; Guido, L.F.; Barros, A.A. Isolation of Phenolic Compounds from Hop Extracts Using Polyvinylpolypyrrolidone: Characterization by High-Performance Liquid Chromatography–Diode Array Detection–Electrospray Tandem Mass Spectrometry. J. Chromatogr. A 2010, 1217, 3258–3268. [Google Scholar] [CrossRef]
- Folch-Cano, C.; Olea-Azar, C.; Speisky, H. Structural and Thermodynamic Factors on the Adsorption Process of Phenolic Compounds onto Polyvinylpolypyrrolidone. Colloids Surf. A Physicochem. Eng. Asp. 2013, 418, 105–111. [Google Scholar] [CrossRef]
- Jankowiak, L.; van Avermaete, I.; Boom, R.; van der Goot, A.J. Adsorption of Isoflavones onto PVPP in the Presence of a Soy Matrix. Sep. Purif. Technol. 2015, 149, 479–487. [Google Scholar] [CrossRef]
- Ferreira, S.S.; Alves, A.J.; Filipe-Ribeiro, L.; Cosme, F.; Nunes, F.M. Holistic and Sustainable Approach for Recycling and Valorization of Polyvinylpolypyrrolidone Used in Wine Fining. ACS Sustain. Chem. Eng. 2018, 6, 14599–14606. [Google Scholar] [CrossRef]
- Ribeiro, L.F.; Ribani, R.H.; Francisco, T.M.G.; Soares, A.A.; Pontarolo, R.; Haminiuk, C.W.I. Profile of Bioactive Compounds from Grape Pomace (Vitis vinifera and Vitis labrusca) by Spectrophotometric, Chromatographic and Spectral Analyses. J. Chromatogr. B 2015, 1007, 72–80. [Google Scholar] [CrossRef]
- Song, F.-L.; Gan, R.-Y.; Zhang, Y.; Xiao, Q.; Kuang, L.; Li, H.-B. Total Phenolic Contents and Antioxidant Capacities of Selected Chinese Medicinal Plants. Int. J. Mol. Sci. 2010, 11, 2362–2372. [Google Scholar] [CrossRef]
- Folch-Cano, C.; Jullian, C.; Speisky, H.; Olea-Azar, C. Antioxidant Activity of Inclusion Complexes of Tea Catechins with β-Cyclodextrins by ORAC Assays. Food Res. Int. 2010, 43, 2039–2044. [Google Scholar] [CrossRef]
- Ou, B.; Huang, D.; Hampsch-Woodill, M.; Flanagan, J.A.; Deemer, E.K. Analysis of Antioxidant Activities of Common Vegetables Employing Oxygen Radical Absorbance Capacity (ORAC) and Ferric Reducing Antioxidant Power (FRAP) Assays: A Comparative Study. J. Agric. Food Chem. 2002, 50, 3122–3128. [Google Scholar] [CrossRef]
- Xu, Y.; Burton, S.; Kim, C.; Sismour, E. Phenolic Compounds, Antioxidant, and Antibacterial Properties of Pomace Extracts from Four Virginia-Grown Grape Varieties. Food Sci. Nutr. 2016, 4, 125–133. [Google Scholar] [CrossRef]
- Bridi, R.; Troncoso, M.J.; Folch-Cano, C.; Fuentes, J.; Speisky, H.; López-Alarcón, C. A Polyvinylpolypyrrolidone (PVPP)-Assisted Folin–Ciocalteu Assay to Assess Total Phenol Content of Commercial Beverages. Food Anal. Methods 2014, 7, 2075–2083. [Google Scholar] [CrossRef]
- Rockenbach, I.I.; Gonzaga, L.V.; Rizelio, V.M.; de Souza Schmidt Gonçalves, A.E.; Genovese, M.I.; Fett, R. Phenolic Compounds and Antioxidant Activity of Seed and Skin Extracts of Red Grape (Vitis vinifera and Vitis labrusca) Pomace from Brazilian Winemaking. Food Res. Int. 2011, 44, 897–901. [Google Scholar] [CrossRef]
- Lorrain, B.; Chira, K.; Teissedre, P.-L. Phenolic Composition of Merlot and Cabernet-Sauvignon Grapes from Bordeaux Vineyard for the 2009-Vintage: Comparison to 2006, 2007 and 2008 Vintages. Food Chem. 2011, 126, 1991–1999. [Google Scholar] [CrossRef] [PubMed]
- Arboleda Mejia, J.A.; Ricci, A.; Figueiredo, A.S.; Versari, A.; Cassano, A.; Parpinello, G.P.; de Pinho, M.N. Recovery of Phenolic Compounds from Red Grape Pomace Extract through Nanofiltration Membranes. Foods 2020, 9, 1649. [Google Scholar] [CrossRef] [PubMed]
- Nayak, A.; Bhushan, B.; Rosales, A.; Turienzo, L.R.; Cortina, J.L. Valorisation Potential of Cabernet Grape Pomace for the Recovery of Polyphenols: Process Intensification, Optimisation and Study of Kinetics. Food Bioprod. Process. 2018, 109, 74–85. [Google Scholar] [CrossRef]
- Milinčić, D.D.; Stanisavljević, N.S.; Kostić, A.Ž.; Soković Bajić, S.; Kojić, M.O.; Gašić, U.M.; Barać, M.B.; Stanojević, S.P.; Lj Tešić, Ž.; Pešić, M.B. Phenolic Compounds and Biopotential of Grape Pomace Extracts from Prokupac Red Grape Variety. LWT 2021, 138, 110739. [Google Scholar] [CrossRef]
- Caldas, T.W.; Mazza, K.E.L.; Teles, A.S.C.; Mattos, G.N.; Brígida, A.I.S.; Conte-Junior, C.A.; Borguini, R.G.; Godoy, R.L.O.; Cabral, L.M.C.; Tonon, R.V. Phenolic Compounds Recovery from Grape Skin Using Conventional and Non-Conventional Extraction Methods. Ind. Crops Prod. 2018, 111, 86–91. [Google Scholar] [CrossRef]
- Huaman-Castilla, L.N.; Mariotti-Celis, S.M.; Perez-Correa, R.J. Polyphenols of Carménère Grapes. Mini. Rev. Org. Chem. 2017, 14, 176–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambert, M.; Meudec, E.; Verbaere, A.; Mazerolles, G.; Wirth, J.; Masson, G.; Cheynier, V.; Sommerer, N. A High-Throughput UHPLC-QqQ-MS Method for Polyphenol Profiling in Rosé Wines. Molecules 2015, 20, 7890–7914. [Google Scholar] [CrossRef] [PubMed]
- Rocha, L.; Neves, D.; Valentão, P.; Andrade, P.B.; Videira, R.A. Adding Value to Polyvinylpolypyrrolidone Winery Residue: A Resource of Polyphenols with Neuroprotective Effects and Ability to Modulate Type 2 Diabetes-Relevant Enzymes. Food Chem. 2020, 329, 127168. [Google Scholar] [CrossRef]
- Laborde, B.; Moine-Ledoux, V.; Richard, T.; Saucier, C.; Dubourdieu, D.; Monti, J.-P. PVPP−Polyphenol Complexes: A Molecular Approach. J. Agric. Food Chem. 2006, 54, 4383–4389. [Google Scholar] [CrossRef]
- Zúñiga, M.C.; Pérez-Roa, R.E.; Olea-Azar, C.; Laurie, V.F.; Agosin, E. Contribution of Metals, Sulfur-Dioxide and Phenolic Compounds to the Antioxidant Capacity of Carménère Wines. J. Food Compos. Anal. 2014, 35, 37–43. [Google Scholar] [CrossRef]
- Soto, M.L.; Moure, A.; Domínguez, H.; Parajó, J.C. Recovery, Concentration and Purification of Phenolic Compounds by Adsorption: A Review. J. Food Eng. 2011, 105, 1–27. [Google Scholar] [CrossRef]
- Kammerer, D.; Gajdos Kljusuric, J.; Carle, R.; Schieber, A. Recovery of Anthocyanins from Grape Pomace Extracts (Vitis vinifera L. Cv. Cabernet mitos) Using a Polymeric Adsorber Resin. Eur. Food Res. Technol. 2005, 220, 431–437. [Google Scholar] [CrossRef]
- Maier, T.; Fromm, M.; Schieber, A.; Kammerer, D.R.; Carle, R. Process and Storage Stability of Anthocyanins and Non-Anthocyanin Phenolics in Pectin and Gelatin Gels Enriched with Grape Pomace Extracts. Eur. Food Res. Technol. 2009, 229, 949–960. [Google Scholar] [CrossRef]
- Ferreira, A.S.; Nunes, C.; Castro, A.; Ferreira, P.; Coimbra, M.A. Influence of Grape Pomace Extract Incorporation on Chitosan Films Properties. Carbohydr. Polym. 2014, 113, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Monagas, M.; Gómez-Cordovés, C.; Bartolomé, B.; Laureano, O.; Ricardo da Silva, J.M. Monomeric, Oligomeric, and Polymeric Flavan-3-Ol Composition of Wines and Grapes from Vitis vinifera L. Cv. Graciano, Tempranillo, and Cabernet sauvignon. J. Agric. Food Chem. 2003, 51, 6475–6481. [Google Scholar] [CrossRef]
- Sales Oliveira, B.; Maria de Souza D’Anzicourt, C.; Mara Faria Soares, C.; Lucena de Souza, R.; Silva Lima, Á. Liquid-Liquid Extraction of Phenolic Compounds in Systems Based on Acetonitrile + Water + Polyvinylpyrrolidone at 298.15 K. Sep. Purif. Technol. 2019, 211, 117–123. [Google Scholar] [CrossRef]
- Baydar, N.G.; Özkan, G.; Sağdiç, O. Total Phenolic Contents and Antibacterial Activities of Grape (Vitis vinifera L.) Extracts. Food Control 2004, 15, 335–339. [Google Scholar] [CrossRef]
- Butkhup, L.; Chowtivannakul, S.; Gaensakoo, R.; Prathepha, P.; Samappito, S. Study of the Phenolic Composition of Shiraz Red Grape Cultivar (Vitis vinifera L.) Cultivated in Northeastern Thailand and Its Antioxidant and Antimicrobial Activity. South Afr. J. Enol. Vitic. 2010, 31, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Jayaprakasha, G.K.; Selvi, T.; Sakariah, K.K. Antibacterial and Antioxidant Activities of Grape (Vitis vinifera) Seed Extracts. Food Res. Int. 2003, 36, 117–122. [Google Scholar] [CrossRef]
- Vaquero, M.J.R.; Alberto, M.R.; de Nadra, M.C.M. Antibacterial Effect of Phenolic Compounds from Different Wines. Food Control 2007, 18, 93–101. [Google Scholar] [CrossRef]
- Dietrich, R.; Jessberger, N.; Ehling-Schulz, M.; Märtlbauer, E.; Granum, P.E. The Food Poisoning Toxins of Bacillus cereus. Toxins 2021, 13, 98. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo, D.; Rosell, C.M.; Martinez, A. Risk of Bacillus cereus in Relation to Rice and Derivatives. Foods 2021, 10, 302. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.; Costa, P.; Pinheiro, L.; Balcão, V.M.; Almeida, A. Kiwifruit Bacterial Canker: An Integrative View Focused on Biocontrol Strategies. Planta 2021, 253, 49. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Sauceda, E. Natural Antimicrobial Agent Use in the Preservation of Fruits and Vegetables. Ra Ximhai 2011, 7, 153–170. [Google Scholar]
Anthocyanins | tR (min) | Ion Mode | Precursor Ion (m/z) | Product Ion (m/z) | GP Origin |
---|---|---|---|---|---|
Malvidin-3-O-(6-acetyl)-glucoside | 16.52 | + | 535 | 331/315 | a,b,c |
Malvidin-3-O-glucoside | 9.00 | + | 493 | 331/315/287 | a,b,c |
Malvidin-3-O-(6-caffeoyl)-glucoside | 19.73 | + | 655 | 331 | a,b,c |
Malvidin-3-O-(6-coumaroyl)-glucoside | 23.52 | + | 639 | 331 | a,b,c |
Peonidin 3-O-glucoside | 8.36 | + | 463 | 301/286/258 | a,c |
Delphinidin-3-O-(6-caffeoyl)-glucoside | 15.25 | + | 627 | 303 | a,b |
Flavonols | |||||
Myricetin-3-O-glucuronide | 16.55 | + | 495 | 319/153/126/103 | c |
Myricetin-3-galactoside | 15.37 | + | 481 | 319/245/165 | a,b,c |
Myricetin-3-glucoside | 20.22 | + | 481 | 319/305/254 | a,b |
Quercetin-3-O-glucoside | 19.13 | + | 465 | 303/229/153 | a,b,c |
Quercetin | 34.30 | + | 303 | 137/121/109 | a,b,c |
Flavan-3-ols | |||||
Catechin | 7.99 | + | 291 | 123/139/161 | a,b,c |
Epicatechin | 11.48 | + | 291 | 123/139/161 | a,b,c |
Compound | GP Extract (µg Equivalent/g Extract) | ||
---|---|---|---|
Anthocyanin | Carménère | Merlot | Cabernet Sauvignon |
Malvidin-3-O-(6-acetyl)-glucoside | 4.24 ± 0.06 A | 2.47 ± 0.03 B | 2.54 ± 0.03 B |
Malvidin-3-O-glucoside | 11.24 ± 0.74 A | 5.05 ± 0.03 B | 3.38 ± 0.02 C |
Malvidin-3-O-(6-caffeoyl)-glucoside | 3.14 ± 0.01 A | 2.67 ± 0.02 B | 2.59 ± 0.15 B |
Malvidin-3-O-(6-coumaroyl)-glucoside | 13.95 ± 0.25 A | 11.91 ± 0.10 B | 2.43 ± 0.16 C |
Delphinidin-3-O-(caffeoyl)-glucoside | 2.56 ± 0.08 A | 2.00 ± 0.03 B | ND |
Total Anthocyanin | 35.13 ± 1.13 a | 24.10 ± 1.13 b | 10.94 ± 0.36 c |
Flavonols | |||
Myricetin-3-O-glucuronide | ND | ND | 0.56 ± 0.09 A |
Myricetin-3-O-galactoside | 0.91 ± 0.07 A | 0.55 ± 0.06 B | 0.58 ± 0.09 B |
Myricetin-3-O-glucoside | 0.80 ± 0.01 A | 0.75 ± 0.04 B | n/d |
Quercetin-3-O-glucoside | 0.68 ± 0.01 A | 0.58 ± 0.01 B | 0.54 ± 0.06 B |
Quercetin | 1.17 ± 0.05 A | n/d | 0.49 ± 0.04 B |
Total Flavonols | 3.56 ± 0.14 a | 1.88 ± 0.11 b | 2.17 ± 0.28 b |
Flavanols | |||
Catechin | 4.68 ± 0.10 A | 4.12 ± 0.03 B | ND |
Epicatechin | 2.64 ± 0.03 A | 2.58 ± 0.04 A | ND |
Total Flavanol | 7.32 ± 0.13 a | 6.70 ± 0.07 b | ND |
Grape Pomace Extract | Loaded Mass (µg Equivalent) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Carménère | Merlot | Cabernet Sauvignon | |||||||
Anthocyanins | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 |
Malvidin-3-O-(6-acetyl)-glucoside | 75.3 ± 4.5 a | 150.5 ± 9.1 a | 225.8 ± 13.6 a | 57.0 ± 4.1 b | 114.0 ± 8.2 b | 171.0 ± 12.4 b | 48.9 ± 2.4 c | 97.8 ± 4.8 c | 146.7 ± 7.2 b |
Malvidin-3-O-glucoside | 189.0 ± 5.1 a | 378.1 ± 10.2 a | 567.1 ± 15.4 a | 117.4 ± 4.9 b | 234.8 ± 9.8 b | 352.2 ± 14.7 b | 63.9 ± 3.1 c | 127.8 ± 6.4 c | 191.8 ± 9.4 c |
Malvidin-3-O-(6-caffeoyl)-glucoside | 56.4 ± 3.4 a | 112.8 ± 6.9 a | 169.3 ± 10.3 ab | 62.9 ± 4.3 a | 125.8 ± 8.7 a | 188.7 ± 13.0 a | 46.3 ± 4.3 b | 92.7 ± 8.5 b | 139.0 ± 12.8 b |
Malvidin-3-O-(6-coumaroyl)-glucoside | 246.5 ± 20.2 a | 493.0 ± 40.5 a | 739.6 ± 60.7a | 276.6 ± 18.1 a | 553.3 ± 36.2 a | 829.9 ± 54.3 a | 49.1 ± 5.2 b | 98.2 ± 10.3 b | 147.3 ± 15.5 b |
Delphinidin-3-O-(6-caffeoyl)-glucoside | 47.5 ± 3.1 a | 95.1 ± 6.2 a | 142.6 ± 9.3a | 46.0 ± 2.6 a | 92.0 ± 5.3 a | 137.9 ± 7.9 a | - | - | - |
Flavonols | |||||||||
Myricetin-3-O-glucuronide | - | - | - | - | - | - | 9.0 ± 0.1 | 17.9 ± 0.1 | 26.9 ± 0.2 |
Myricetin-3-O-galactoside | 15.1 ± 0.9 a | 30.2 ± 1.8 a | 45.2 ± 2.7 a | 11.6 ± 0.5 b | 23.2 ± 0.9 b | 34.8 ± 1.4 b | 9.44 ± 0.01 c | 18.89 ± 0.02 c | 28.33 ± 0.04 c |
Myricetin-3-O-glucoside | 14.6 ± 0.8 b | 29.2 ± 1.6 b | 43.7 ± 2.3 b | 18.3 ± 0.7 a | 36.7 ± 1.4 a | 55.0 ± 2.1 c | - | - | - |
Quercetin-3-O-glucoside | 12.2 ± 0.7 a | 24.3 ± 1.3 a | 36.5 ± 2.0 a | 13.2 ± 0.5 a | 26.3 ± 0.9 a | 39.5 ± 1.5 a | 9.09 ± 0.03 b | 18.2 ± 0.1 b | 27.3 ± 0.1 b |
Quercetin | 20.3 ± 1.0 a | 40.6 ± 1.9 a | 61.0 ± 2.9 a | - | - | - | 9.9 ± 0.1 b | 19.9 ± 0.1 b | 29.8 ± 0.1 b |
Flavan-3-ols | |||||||||
Catechin | 82.4 ± 3.9 b | 164.7 ± 7.8 b | 247.1 ± 11.7 b | 95.8 ± 4.0 a | 191.6 ± 8.0 a | 287.4 ± 12.0 a | - | - | - |
Epicatechin | 47.9 ± 2.7 b | 95.9 ± 5.3 b | 143.8 ± 8.0 b | 59.4 ± 3.7 a | 118.8 ± 7.5 a | 178.2 ± 11.2 a | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz, N.; Aqueveque, P.M.; Vallejos-Almirall, A.; Radrigán, R.; Zúñiga-López, M.C.; Folch-Cano, C. Antioxidant Compound Adsorption in Polyvinylpolypyrrolidone from Chilean Carménère, Cabernet Sauvignon, and Merlot Grape Pomaces as Potential By-Products. Antioxidants 2022, 11, 2017. https://doi.org/10.3390/antiox11102017
Díaz N, Aqueveque PM, Vallejos-Almirall A, Radrigán R, Zúñiga-López MC, Folch-Cano C. Antioxidant Compound Adsorption in Polyvinylpolypyrrolidone from Chilean Carménère, Cabernet Sauvignon, and Merlot Grape Pomaces as Potential By-Products. Antioxidants. 2022; 11(10):2017. https://doi.org/10.3390/antiox11102017
Chicago/Turabian StyleDíaz, Nelson, Pedro M. Aqueveque, Alejandro Vallejos-Almirall, Rudi Radrigán, María C. Zúñiga-López, and Christian Folch-Cano. 2022. "Antioxidant Compound Adsorption in Polyvinylpolypyrrolidone from Chilean Carménère, Cabernet Sauvignon, and Merlot Grape Pomaces as Potential By-Products" Antioxidants 11, no. 10: 2017. https://doi.org/10.3390/antiox11102017
APA StyleDíaz, N., Aqueveque, P. M., Vallejos-Almirall, A., Radrigán, R., Zúñiga-López, M. C., & Folch-Cano, C. (2022). Antioxidant Compound Adsorption in Polyvinylpolypyrrolidone from Chilean Carménère, Cabernet Sauvignon, and Merlot Grape Pomaces as Potential By-Products. Antioxidants, 11(10), 2017. https://doi.org/10.3390/antiox11102017