Relationship of Thermal Treatment and Antioxidant Capacity in Cooked Foods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Foods and Cooking Conditions
2.3. Furosine, HMF and Furfural Assays
2.4. In Vitro Gastrointestinal Digestion and Fermentation and Antioxidant Capacity
2.5. Statistical Analysis
3. Results
3.1. Furosine Content of Cooked Foods
Furosine Content by Specific Foods and Cooking Methods
3.2. HMF Content of Cooked Foods
HMF Content by Specific Foods and Cooking Methods
3.3. Furfural Content of Cooked Foods
Furfural Content by Specific Foods and Cooking Methods
3.4. Correlation of Heat Damage Markers with Antioxidant Capacity of Cooking Foods after Digestion and Fermentation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Delgado-Andrade, C.; Seiquer, I.; Haro, A.; Castellano, R.; Navarro, M.P. Development of the Maillard reaction in foods cooked by different techniques. Intake of Maillard-derived compounds. Food Chem. 2010, 122, 145–153. [Google Scholar] [CrossRef]
- Del Ramírez-Anaya, J.P.; Samaniego-Sánchez, C.; Castañeda-Saucedo, M.C.; Villalón-Mir, M.; De La Serrana, H.L.-G. Phenols and the antioxidant capacity of Mediterranean vegetables prepared with extra virgin olive oil using different domestic cooking techniques. Food Chem. 2015, 188, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Rufian-Henares, J.A.; Guerra-Hernández, E.; García-Villanova, B. Maillard reaction in enteral formula processing: Furosine, loss of o-phthaldialdehyde reactivity, and fluorescence. Food Res. Int. 2002, 35, 527–533. [Google Scholar] [CrossRef]
- Rizzi, G.P. Chemical structure of colored maillard reaction products. Food Rev. Int. 1997, 13, 1–28. [Google Scholar] [CrossRef]
- Rufián-Henares, J.A.; Guerra-Hernández, E.J.; García-Villanova, B. Colour measurement as indicator for controlling the manufacture and storage of enteral formulas. Food Control 2006, 17, 489–493. [Google Scholar] [CrossRef]
- Baltes, W. Chemical changes in food by the maillard reaction. Food Chem. 1982, 9, 59–73. [Google Scholar] [CrossRef]
- Baxter, J.H. Free Amino Acid Stability in Reducing Sugar Systems. J. Food Sci. 1995, 60, 405–408. [Google Scholar] [CrossRef]
- Finot, P.A.; Magnenat, E. Metabolic transit of early and advanced Maillard products. Prog. Food Nutr. Sci. 1981, 5, 193–207. [Google Scholar]
- Pigman, W.; Johnson, K.C. Reactions of Carbohydrates with Nitrogenous Substances.1 III. The Tetraacetates of N-D-Glucosylaniline. J. Am. Chem. Soc. 1953, 75, 3464–3466. [Google Scholar] [CrossRef]
- Rufián-Henares, J.; García-Villanova, B.; Guerra-Hernández, E. Generation of Furosine and Color in Infant/Enteral Formula-Resembling Systems. J. Agric. Food Chem. 2004, 52, 5354–5358. [Google Scholar] [CrossRef]
- Finot, P.A.; Bricout, J.; Viani, R.; Mauron, J. Identification of a new lysine derivative obtained upon acid hydrolysis of heated milk. Experientia 1968, 24, 1097–1099. [Google Scholar] [CrossRef]
- Heyns, K.; Heukeshoven, J.; Brose, K.-H. Degradation of Fructose Amino Acids toN-(2-Furoylmethyl)amino Acids. Intermediates in Browning Reactions. Angew. Chem. Int. Ed. 1968, 7, 628–629. [Google Scholar] [CrossRef]
- Lee, H.; Nagy, S. Quality Changes and Nonenzymic Browning Intermediates in Grapefruit Juice During Storage. J. Food Sci. 1988, 53, 168–172. [Google Scholar] [CrossRef]
- Rufián-Henares, J.A.; García-Villanova, B.; Guerra-Hernández, E. Occurrence of furosine and hydroxymethylfurfural as markers of thermal damage in dehydrated vegetables. Eur. Food Res. Technol. 2008, 228, 249–256. [Google Scholar] [CrossRef]
- Rufián-Henares, J.Á.; Guerra-Hernández, E.J.; García-Villanova, B. Effect of red sweet pepper dehydration conditions on Maillard reaction, ascorbic acid and antioxidant activity. J. Food Eng. 2013, 118, 150–156. [Google Scholar] [CrossRef]
- Tressl, R.; Wondrak, G.T.; Garbe, L.-A.; Krüger, R.-P.; Rewicki, D. Pentoses and Hexoses as Sources of New Melanoidin-like Maillard Polymers. J. Agric. Food Chem. 1998, 46, 1765–1776. [Google Scholar] [CrossRef]
- Plaza, M.; Amigo-Benavent, M.; del Castillo, M.D.; Ibáñez, E.; Herrero, M. Facts about the formation of new antioxidants in natural samples after subcritical water extraction. Food Res. Int. 2010, 43, 2341–2348. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, Y.; Toledo, R. Antioxidant activity of water-soluble Maillard reaction products. Food Chem. 2005, 93, 273–278. [Google Scholar] [CrossRef]
- Chen, X.-M.; Kitts, D.D. Correlating Changes That Occur in Chemical Properties with the Generation of Antioxidant Capacity in Different Sugar-Amino Acid Maillard Reaction Models. J. Food Sci. 2011, 76, C831–C837. [Google Scholar] [CrossRef]
- Morales, F.J.; Babbel, M.-B. Antiradical Efficiency of Maillard Reaction Mixtures in a Hydrophilic Media. J. Agric. Food Chem. 2002, 50, 2788–2792. [Google Scholar] [CrossRef]
- Plengmuankhae, W.; Tantitadapitak, C. Low temperature and water dehydration increase the levels of asiaticoside and madecassoside in Centella asiatica (L.) Urban. S. Afr. J. Bot. 2015, 97, 196–203. [Google Scholar] [CrossRef]
- Navajas-Porras, B.; Pérez-Burillo, S.; Valverde-Moya, J.; Hinojosa-Nogueira, D.; Pastoriza, S.; Rufián-Henares, J. Effect of Cooking Methods on the Antioxidant Capacity of Plant Foods Submitted to in Vitro Digestion–Fermentation. Antioxidants 2020, 9, 1312. [Google Scholar] [CrossRef] [PubMed]
- Navajas-Porras, B.; Pérez-Burillo, S.; Valverde-Moya, J.; Hinojosa-Nogueira, D.; Pastoriza, S.; Rufián-Henares, J. Effect of Cooking Methods on the Antioxidant Capacity of Foods of Animal Origin Submitted to In Vitro Digestion-Fermentation. Antioxidants 2021, 10, 445. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Andrade, C.; Rufián-Henares, J.A.; Morales, F.J. Lysine availability is diminished in commercial fibre-enriched breakfast cereals. Food Chem. 2007, 100, 725–731. [Google Scholar] [CrossRef]
- Hinojosa-Nogueira, D.; Pérez-Burillo, S.; Navajas-Porras, B.; Ortiz-Viso, B.; de la Cueva, S.P.; Lauria, F.; Fatouros, A.; Priftis, K.N.; González-Vigil, V.; Rufián-Henares, J. Development of an Unified Food Composition Database for the European Project “Stance4Health”. Nutrients 2021, 13, 4206. [Google Scholar] [CrossRef]
- Pérez-Burillo, S.; Rufián-Henares, J.; Pastoriza, S. Towards an improved global antioxidant response method (GAR+): Physiological-resembling in vitro digestion-fermentation method. Food Chem. 2018, 239, 1253–1262. [Google Scholar] [CrossRef]
- Pérez-Burillo, S.; Molino, S.; Navajas-Porras, B.; Valverde-Moya, J.; Hinojosa-Nogueira, D.; López-Maldonado, A.; Pastoriza, S.; Rufián-Henares, J. An in vitro batch fermentation protocol for studying the contribution of food to gut microbiota composition and functionality. Nat. Protoc. 2021, 16, 3186–3209. [Google Scholar] [CrossRef]
- Pastoriza, S.; Delgado-Andrade, C.; Haro, A.; Rufián-Henares, J. A physiologic approach to test the global antioxidant response of foods. The GAR method. Food Chem. 2011, 129, 1926–1932. [Google Scholar] [CrossRef]
- Bedinghaus, A.J.; Ockerman, H.W. Antioxidative Maillard Reaction Products from Reducing Sugars and Free Amino Acids in Cooked Ground Pork Patties. J. Food Sci. 1995, 60, 992–995. [Google Scholar] [CrossRef]
- Somoza, V. Five Years of Research on Health Risks and Benefits of Maillard Reaction Products: An Update. Mol. Nutr. Food Res. 2005, 49, 663–672. [Google Scholar] [CrossRef]
- Friedman, M. Food Browning and Its Prevention: An Overview. J. Agric. Food Chem. 1996, 44, 631–653. [Google Scholar] [CrossRef]
- Förster, A.; Kühne, Y.; Henle, T. omas Studies on Absorption and Elimination of Dietary Maillard Reaction Products. Ann. N. Y. Acad. Sci. 2005, 1043, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Yamagishi, S.; Nakamura, K.; Inoue, H. Possible Participation of Advanced Glycation End Products in the Pathogenesis of Osteoporosis in Diabetic Patients. Med. Hypotheses 2005, 65, 1013–1015. [Google Scholar] [CrossRef] [PubMed]
- del Castillo, M.D.; Corzo, N.; Polo, M.C.; Pueyo, E.; Olano, A. Changes in the Amino Acid Composition of Dehydrated Orange Juice during Accelerated Nonenzymatic Browning. J. Agric. Food Chem. 1998, 46, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Rufían-Henares, J.A.; de la Cueva, S.P. Assessment of Hydroxymethylfurfural Intake in the Spanish Diet. Food Addit. Contam. Part Chem. Anal. Control Expo. Risk Assess. 2008, 25, 1306–1312. [Google Scholar] [CrossRef]
- Pérez-Burillo, S.; Pastoriza, S.; Jiménez-Hernández, N.; D’Auria, G.; Francino, M.P.; Rufián-Henares, J.A. Effect of Food Thermal Processing on the Composition of the Gut Microbiota. J. Agric. Food Chem. 2018, 66, 11500–11509. [Google Scholar] [CrossRef]
- Hidalgo, F.J.; Zamora, R. Characterization of the Products Formed during Microwave Irradiation of the Nonenzymatic Browning Lysine/CE)-4,5-Epoxy-(E)-2-Heptenal Model System. J. Agric. Food Chem. 1995, 43, 1023–1028. [Google Scholar] [CrossRef]
- Chao, P.; Hsu, C.; Yin, M. Analysis of Glycative Products in Sauces and Sauce-Treated Foods. Food Chem. 2009, 113, 262–266. [Google Scholar] [CrossRef]
- Foerster, A.; Henle, T. Glycation in Food and Metabolic Transit of Dietary AGEs (Advanced Glycation End-Products): Studies on the Urinary Excretion of Pyrraline. Biochem. Soc. Trans. 2003, 31, 1383–1385. [Google Scholar] [CrossRef]
- Carvalho, D.O.; Correia, E.; Lopes, L.; Guido, L.F. Further Insights into the Role of Melanoidins on the Antioxidant Potential of Barley Malt. Food Chem. 2014, 160, 127–133. [Google Scholar] [CrossRef]
- Martín, M.Á.; Ramos, S.; Mateos, R.; Rufián-Henares, J.A.; Morales, F.J.; Bravo, L.; Goya, L. Biscuit Melanoidins of Different Molecular Masses Protect Human HepG2 Cells against Oxidative Stress. J. Agric. Food Chem. 2009, 57, 7250–7258. [Google Scholar] [CrossRef] [PubMed]
- Seiquer, I.; Ruiz-Roca, B.; Mesías, M.; Muñoz-Hoyos, A.; Galdó, G.; Ochoa, J.J.; Navarro, M.P. The Antioxidant Effect of a Diet Rich in Maillard Reaction Products Is Attenuated after Consumption by Healthy Male Adolescents. In Vitro and in Vivo Comparative Study. J. Sci. Food Agric. 2008, 88, 1245–1252. [Google Scholar] [CrossRef]
- Manzocco, L.; Calligaris, S.; Mastrocola, D.; Nicoli, M.C.; Lerici, C.R. Review of Non-Enzymatic Browning and Antioxidant Capacity in Processed Foods. Trends Food Sci. Technol. 2000, 11, 340–346. [Google Scholar] [CrossRef]
- Samaras, T.S.; Camburn, P.A.; Chandra, S.X.; Gordon, M.H.; Ames, J.M. Antioxidant Properties of Kilned and Roasted Malts. J. Agric. Food Chem. 2005, 53, 8068–8074. [Google Scholar] [CrossRef]
- Papetti, A.; Daglia, M.; Aceti, C.; Quaglia, M.; Gregotti, C.; Gazzani, G. Isolation of an in Vitro and Ex Vivo Antiradical Melanoidin from Roasted Barley. J. Agric. Food Chem. 2006, 54, 1209–1216. [Google Scholar] [CrossRef]
Food Group | Food | Boiled | Fried | Grilled | Roasted | Toasted | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
μg/g Food | mg/100 g Protein | μg/g Food | mg/100 g Protein | μg/g Food | mg/100 g Protein | μg/g Food | mg/100 g Protein | μg/g Food | mg/100 g Protein | ||
Cereals | Bread | - | - | 138.9 | 163.4 | - | - | - | - | 95.4 | 127.2 |
Penne | 3.1 | 5.8 | - | - | - | - | - | - | - | - | |
Rice | 19.5 | 84.8 | - | - | - | - | - | - | - | - | |
Egg | Egg | 14.5 | 7.1 | n.d. | n.d. | 24.5 | 11.5 | 21.0 | 8.6 | - | - |
Fish | Cod fish | - | - | 23.5 | 8.9 | 4.7 | 2.6 | - | - | - | - |
Salmon | - | - | 34.6 | 8.9 | 17.6 | 7.9 | 18.6 | 7.2 | - | - | |
Fruits | Apple | - | - | 18.6 | 620.0 | n.d. | n.d. | 2.2 | 73.3 | - | - |
Banana | 42.0 | 323.1 | - | - | 26.0 | 123.8 | 3.9 | 32.5 | - | - | |
Legumes | Beans (Kidney) | 8.5 | 14.9 | - | - | - | - | 62.6 | 88.2 | - | - |
Lentils | 40.5 | 61.4 | - | - | 11.2 | 14.7 | 9.5 | 11.7 | - | - | |
Meat | Beef | 72.4 | 29.7 | 183.6 | 67.0 | 5.6 | 1.9 | 39.2 | 19.2 | - | - |
Chicken | 26.8 | 9.6 | 54.2 | 18.4 | 7.7 | 3.0 | 28.9 | 12.6 | - | - | |
Pork | 59.6 | 22.7 | 30.2 | 9.7 | 3.6 | 2.0 | 8.0 | 3.7 | - | - | |
Lamb | - | - | 45.4 | 18.5 | 5.4 | 3.6 | 19.0 | 11.7 | - | - | |
Tubers | Potatoe | 5.0 | 0.010 | 14.8 | 0.062 | 0.9 | 0.002 | - | - | - | - |
Vegetables | Capsicum | 3.4 | 37.8 | 53.2 | 110.8 | 0.5 | 10.0 | 1.4 | 15.6 | - | - |
Carrot | 14.6 | 162.2 | 99.4 | 764.6 | 4.1 | 41.0 | 0.9 | 5.6 | - | - | |
Cauliflower | 6.5 | 31.0 | 412.5 | 808.8 | 1.5 | 7.5 | 13.7 | 52.7 | - | - | |
Onion | 3.9 | 32.5 | 74.0 | 528.6 | 0.8 | 5.7 | 2.8 | 4.4 | - | - |
Food Group | Food | Boiled | Fried | Grilled | Roasted | Toasted |
---|---|---|---|---|---|---|
Cereals | Bread | - | 2057.0 | - | - | 10,304.9 |
Penne | 6.7 | - | - | - | - | |
Rice | 15.3 | - | - | - | - | |
Egg | Egg | 47.4 | 43.8 | 168.9 | 26.5 | - |
Fish | Cod fish | 30.8 | 429.5 | 336.0 | - | - |
Salmon | - | 275.2 | 613.2 | 115.3 | - | |
Fruits | Apple | - | 1505.6 | 114.1 | 444.0 | - |
Banana | - | n.d. | 1572.8 | 179.4 | - | |
Legumes | Beans (Kidney) | 175.8 | - | - | 154.1 | - |
Lentils | 5.0 | - | 178.5 | 134.5 | - | |
Meat | Beef | 13.3 | 1222.5 | 720.8 | 52.9 | - |
Chicken | 33.5 | 351.8 | 720.9 | 333.0 | - | |
Pork | 4.5 | 63.7 | 1286.9 | 423.3 | - | |
Lamb | 2.6 | 52.0 | 61.7 | 6.2 | - | |
Tubers | Potatoe | 708.0 | 550.4 | 737.4 | - | - |
Vegetables | Capsicum | 88.0 | 71.7 | 352.6 | 63.2 | - |
Carrot | 55.1 | 104.1 | 223.3 | 89.5 | - | |
Cauliflower | 48.9 | 1868.4 | 89.8 | 581.1 | - | |
Onion | 127.6 | 4065.5 | 237.0 | 1832.1 | - |
Figure | Food | Boiled | Fried | Grilled | Roasted | Toasted |
---|---|---|---|---|---|---|
Cereals | Bread | - | 1191.6 | - | - | 7858.6 |
Penne | 47.3 | - | - | - | - | |
Rice | 98.2 | - | - | - | - | |
Egg | Egg | 42.9 | n.d. | 13.1 | 351.8 | - |
Fish | Cod fish | 268.0 | 55.5 | n.d. | - | - |
Salmon | - | 494.3 | 544.5 | 191.1 | - | |
Fruits | Apple | - | 14,028.8 | 1.8 | 810.3 | - |
Banana | - | 425.4 | 338.3 | - | ||
Legumes | Beans (Kidney) | n.d. | - | 449.0 | - | |
Lentils | n.d. | 61.5 | 27.4 | - | ||
Meat | Beef | n.d. | 613.6 | 131.5 | 90.3 | - |
Chicken | n.d. | 514.7 | 1168.0 | 533.9 | - | |
Pork | n.d. | 54.6 | 1821.1 | 41.7 | - | |
Lamb | n.d. | n.d. | 18.5 | 20.0 | - | |
Tubers | Potatoe | 864.2 | 19,164.0 | 1386.5 | - | - |
Vegetables | Capsicum | 3.8 | 232.7 | 1748.4 | 1844.1 | - |
Carrot | 83.7 | 76.2 | 844.3 | 139.7 | - | |
Cauliflower | 3.3 | 3496.7 | 1199.2 | 851.8 | - | |
Onion | 396.4 | 17,596.9 | 524.5 | 3672.6 | - |
AOX Method | In Vitro Pre-Treatment | Boiled | Fried | Grilled | Roasted | Toasted |
---|---|---|---|---|---|---|
Folin-Ciocalteu | Digestion | 1259 ± 1144 | 1368 ± 1018 | 1409 ± 1374 | 2262 ± 1609 | 3536 ± 268 |
Fermentation | 33,396 ± 12,455 | 38,221 ± 19,990 | 43,498 ± 21,926 | 43,837 ± 18,024 | 16,573 ± 5625 | |
FRAP | Digestion | 2.3 ± 2.0 | 6.8 ± 5.7 | 4.1 ± 2.4 | 4.6 ± 3.0 | 4.9 ± 1.0 |
Fermentation | 179 ± 66.9 | 202 ± 115 | 239 ± 118 | 243 ± 98.4 | 97.4 ± 26.0 | |
DPPH | Digestion | 13.2 ± 9.6 | 22.3 ± 24.1 | 12.1 ± 8.7 | 18.0 ± 13.8 | 1.1 ± 0.8 |
Fermentation | 213 ± 219 | 222 ± 206.9 | 253 ± 199 | 290 ± 215 | 108 ± 21.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navajas-Porras, B.; Pérez-Burillo, S.; Hinojosa-Nogueira, D.; Pastoriza, S.; Rufián-Henares, J.Á. Relationship of Thermal Treatment and Antioxidant Capacity in Cooked Foods. Antioxidants 2022, 11, 2324. https://doi.org/10.3390/antiox11122324
Navajas-Porras B, Pérez-Burillo S, Hinojosa-Nogueira D, Pastoriza S, Rufián-Henares JÁ. Relationship of Thermal Treatment and Antioxidant Capacity in Cooked Foods. Antioxidants. 2022; 11(12):2324. https://doi.org/10.3390/antiox11122324
Chicago/Turabian StyleNavajas-Porras, Beatriz, Sergio Pérez-Burillo, Daniel Hinojosa-Nogueira, Silvia Pastoriza, and José Ángel Rufián-Henares. 2022. "Relationship of Thermal Treatment and Antioxidant Capacity in Cooked Foods" Antioxidants 11, no. 12: 2324. https://doi.org/10.3390/antiox11122324
APA StyleNavajas-Porras, B., Pérez-Burillo, S., Hinojosa-Nogueira, D., Pastoriza, S., & Rufián-Henares, J. Á. (2022). Relationship of Thermal Treatment and Antioxidant Capacity in Cooked Foods. Antioxidants, 11(12), 2324. https://doi.org/10.3390/antiox11122324