In Vitro and In Silico Evaluation of the Antimicrobial and Antioxidant Potential of Thymus pulegioides Essential Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material and Chemicals
2.2. Extraction of TPEO
2.3. Gas Chromatography-Mass Spectrometry Analysis
2.4. Antimicrobial Activity
2.4.1. Microbial Strains
2.4.2. Antibacterial Activity Assay
2.4.3. Minimum Inhibitory Concentration (MIC)
2.4.4. Minimum Bactericidal Concentration (MBC) and Minimum Fungicidal Concentration (MFC)
2.5. Antioxidant Activity
2.5.1. Sample Preparation
2.5.2. Peroxide Value (PV)
2.5.3. Thiobarbituric Acid Value (TBA)
2.5.4. Antioxidant Activity by 1,1-diphenyl-2-picrylhydrazyl (DPPH) Radical Scavenging Assay
2.5.5. Antioxidant Activity by [2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic Acid) diammonium] (ABTS) Radical Scavenging Assay
2.5.6. Beta-Carotene/Linoleic Acid Bleaching Assay
2.6. In Silico Prediction of Bioactivity and Molecular Docking Studies
2.7. Statistical Analysis
3. Results. Discussion
3.1. TPEO Chemical Composition
3.2. TPEO Antimicrobial Activity
3.3. TPEO Antioxidant Activity
3.4. In Silico Prediction of Bioactivity and Molecular Docking Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European_Commission. Regulation (EC) No 1333/2008 of the European Parliament and of the Council of 16 December 2008 on food additives. Off. J. Eur. Union 2008, 354, 16–33. [Google Scholar]
- Hugo, C.J.; Hugo, A. Current trends in natural preservatives for fresh sausage products. Trends Food Sci. Technol. 2015, 45, 12–23. [Google Scholar] [CrossRef]
- Christaki, S.; Moschakis, T.; Kyriakoudi, A.; Biliaderis, C.G.; Mourtzinos, I. Recent advances in plant essential oils and extracts: Delivery systems and potential uses as preservatives and antioxidants in cheese. Trends Food Sci. Technol. 2021, 116, 264–278. [Google Scholar] [CrossRef]
- Felter, S.P.; Zhang, X.; Thompson, C. Butylated hydroxyanisole: Carcinogenic food additive to be avoided or harmless antioxidant important to protect food supply? Regul. Toxicol. Pharmacol. 2021, 121, 104887. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Liu, A.; Hu, S.; Ares, I.; Martínez-Larrañaga, M.-R.; Wang, X.; Martínez, M.; Anadón, A.; Martínez, M.-A. Synthetic phenolic antioxidants: Metabolism, hazards and mechanism of action. Food Chem. 2021, 353, 129488. [Google Scholar] [CrossRef]
- Sahu, S.C.; Green, S. Food Antioxidants: Their Dual Role in Carcinogenesis. In Oxidants, Antioxidants, and Free Radicals; CRC Press: Boca Raton, FL, USA, 2017; pp. 327–340. [Google Scholar]
- Shanaida, M.; Hudz, N.; Białoń, M.; Kryvtsowa, M.; Svydenko, L.; Filipska, A.; Paweł Wieczorek, P. Chromatographic profiles and antimicrobial activity of the essential oils obtained from some species and cultivars of the Mentheae tribe (Lamiaceae). Saudi J. Biol. Sci. 2021, 28, 6145–6152. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, J.; Sureda, A.; Tenore, G.C.; Daglia, M.; Sharifi-Rad, M.; Valussi, M.; Tundis, R.; Sharifi-Rad, M.; Loizzo, M.R.; Ademiluyi, A.O. Biological activities of essential oils: From plant chemoecology to traditional healing systems. Molecules 2017, 22, 70. [Google Scholar] [CrossRef] [PubMed]
- Tariq, S.; Wani, S.; Rasool, W.; Shafi, K.; Bhat, M.A.; Prabhakar, A.; Shalla, A.H.; Rather, M.A. A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microb. Pathog. 2019, 134, 103580. [Google Scholar] [CrossRef]
- Nikmaram, N.; Budaraju, S.; Barba, F.J.; Lorenzo, J.M.; Cox, R.B.; Mallikarjunan, K.; Roohinejad, S. Application of plant extracts to improve the shelf-life, nutritional and health-related properties of ready-to-eat meat products. Meat Sci. 2018, 145, 245–255. [Google Scholar] [CrossRef]
- Morales, R. The History, Botany and Taxonomy of the Genus Thymus. In Thyme; CRC Press: Boca Raton, FL, USA, 2002; pp. 15–57. [Google Scholar]
- Lawrence, B.M.; Tucker, A.O. The Genus Thymus as a source of commercial products. In Thyme; CRC Press: Boca Raton, FL, USA, 2002; pp. 266–276. [Google Scholar]
- De Martino, L.; Bruno, M.; Formisano, C.; De Feo, V.; Napolitano, F.; Rosselli, S.; Senatore, F. Chemical Composition and Antimicrobial Activity of the Essential Oils from Two Species of Thymus Growing Wild in Southern Italy. Molecules 2009, 14, 4614–4624. [Google Scholar] [CrossRef] [Green Version]
- Pavel, M.; Ristić, M.; Stević, T. Essential oils of Thymus pulegioides and Thymus glabrescens from Romania: Chemical composition and antimicrobial activity. J. Serb. Chem. Soc. 2010, 75, 27–34. [Google Scholar] [CrossRef]
- Schött, G.; Liesegang, S.; Gaunitz, F.; Gleß, A.; Basche, S.; Hannig, C.; Speer, K. The chemical composition of the pharmacologically active Thymus species, its antibacterial activity against Streptococcus mutans and the antiadherent effects of T. vulgaris on the bacterial colonization of the in situ pellicle. Fitoterapia 2017, 121, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Wester, P.; Möseler, B.M.; Knöss, W. Intra-population terpene polymorphism of Thymus pulegioides L.: Evidence for seven chemotypes in a German limestone grassland. Biochem. Syst. Ecol. 2020, 93, 104173. [Google Scholar] [CrossRef]
- De Feo, V.; Senatore, F. Medicinal plants and phytotherapy in the Amalfitan Coast, Salerno Province, Campania, Southern Italy. J. Ethnopharmacol. 1993, 39, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, C.A.; Barroso, G.J.; Pedro, G.L.; Salgueiro, L.; Miguel, G.M.; Faleiro, L.M. Portuguese Thymbra and Thymus Species Volatiles: Chemical Composition and Biological Activities. Curr. Pharm. Des. 2008, 14, 3120–3140. [Google Scholar] [CrossRef] [PubMed]
- Beicu, R.; Neacșu, A.; Imbrea, I.-M. Considerations regarding the taxonomy of the genus Thymus in Romania. Res. J. Agric. Sci. 2019, 51, 3–8. [Google Scholar]
- Ciocârlan, V. Flora Ilustrată a României: Pteridophyta et Spermatophyta; Ed. Ceres: The Hague, The Netherlands, 2009. [Google Scholar]
- Ložienė, K.; Venskutonis, P.; Vaičiūnienė, J. Chemical diversity of essential oil of Thymus pulegioides L. and Thymus serpyllum L. growing in Lithuania. Biologija 2002, 48, 986. [Google Scholar]
- Sáez, F.; Stahl-Biskup, E. Essential Oil Polymorphism in the Genus Thymus. In Thyme; CRC Press: Boca Raton, FL, USA, 2002; pp. 139–157. [Google Scholar]
- Ložien, K.; Venskutonis, P.R. Chemical composition of the essential oil of different varieties of thyme (Thymus pulegioides) growing wild in Lithuania. Biochem. Syst. Ecol. 2003, 31, 249–259. [Google Scholar] [CrossRef]
- Mockute, D.; Bernotiene, G. The α-terpenyl acetate chemotype of essential oil of Thymus pulegioides L. Biochem. Syst. Ecol. 2001, 29, 69–76. [Google Scholar] [CrossRef]
- Yanishlieva, N.V.; Marinova, E.M.; Gordon, M.H.; Raneva, V.G. Antioxidant activity and mechanism of action of thymol and carvacrol in two lipid systems. Food Chem. 1999, 64, 59–66. [Google Scholar] [CrossRef]
- Ghasemi, P.A.; Barani, M.; Hamedi, B.; Ataei, K.M.; Karimi, A. Environment effect on diversity in quality and quantity of essential oil of different wild populations of Kerman thyme. Genetika 2013, 45, 441–450. [Google Scholar] [CrossRef]
- Pina-Vaz, C.; Gonçalves Rodrigues, A.; Pinto, E.; Costa-de-Oliveira, S.; Tavares, C.; Salgueiro, L.; Cavaleiro, C.; Gonçalves, M.; Martinez-de-Oliveira, J. Antifungal activity of Thymus oils and their major compounds. J. Eur. Acad. Derm. 2004, 18, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Mumcuoglu, K.Y.; Galun, R.; Bach, U.; Miller, J.; Magdassi, S. Repellency of essential oils and their components to the human body louse, Pediculus humanus humanus. Entomol. Exp. Et Appl. 1996, 78, 309–314. [Google Scholar] [CrossRef]
- Beier, R.C.; Byrd II, J.A.; Kubena, L.F.; Hume, M.E.; McReynolds, J.L.; Anderson, R.C.; Nisbet, D.J. Evaluation of linalool, a natural antimicrobial and insecticidal essential oil from basil: Effects on poultry. Poult. Sci. 2014, 93, 267–272. [Google Scholar] [CrossRef]
- Radonić, A.; Mastelić, J. Essential oil and glycosidically bound volatiles of Thymus pulegioides L. growing wild in Croatia. Croat. Chem. Acta 2008, 81, 599–606. [Google Scholar]
- Nafila, Z.; Cherifa, B.; Carlos, C.; Boubekeur, N.; Mohamed, Y. Identification of volatile compounds, antimicrobial properties and antioxidant activity from leaves, cones and stems of Cupressus sempervirens from Algeria. Afr. J. Microbiol. Res. 2015, 9, 83–90. [Google Scholar] [CrossRef]
- Craveiro, A.A. Óleos Essenciais de Plantas do Nordeste; Edições UFC: Fortaleza, Brazil, 1981; Volume 1. [Google Scholar]
- Jianu, C.; Stoin, D.; Cocan, I.; David, I.; Pop, G.; Lukinich-Gruia, A.T.; Mioc, M.; Mioc, A.; Șoica, C.; Muntean, D. In silico and in vitro evaluation of the antimicrobial and antioxidant potential of Mentha× smithiana R. GRAHAM Essential Oil from Western Romania. Foods 2021, 10, 815. [Google Scholar] [CrossRef]
- Stahl, E. Das ätherische Öl aus Thymus praecox ssp. arcticus isländischer Herkunft. Planta Med. 1984, 50, 157–160. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; Volume 456. [Google Scholar]
- European Food Safety Authority and European Centre for Disease Prevention and Control. The European Union one health 2020 zoonoses report. EFSA J. 2021, 19, e06971. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Disk Susceptibility Tests, 12th ed.; CLSI Document M02-A12; CLSI: Wayne, PA, USA, 2015. [Google Scholar]
- Corina, D.; Bojin, F.; Ambrus, R.; Muntean, D.; Soica, C.; Paunescu, V.; Cristea, M.; Pinzaru, I.; Dehelean, C. Physico-chemical and biological evaluation of flavonols: Fisetin, quercetin and kaempferol alone and incorporated in beta cyclodextrins. Anti-Cancer Agents Med. Chem. 2017, 17, 615–626. [Google Scholar] [CrossRef] [Green Version]
- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 10th ed.; CLSI Document M07-A10; CLSI: Wayne, PA, USA, 2015. [Google Scholar]
- Rodriguez-Tudela, J.L.; Arendrup, M.C.; Barchiesi, F.; Bille, J.; Chryssanthou, E.; Cuenca-Estrella, M.; Dannaoui, E.; Denning, D.W.; Donnelly, J.P.; Dromer, F.; et al. EUCAST Definitive Document EDef 7.1: Method for the determination of broth dilution MICs of antifungal agents for fermentative yeasts: Subcommittee on Antifungal Susceptibility Testing (AFST) of the ESCMID European Committee for Antimicrobial Susceptibility Testing (EUCAST)∗. Clin. Microbiol. Infect. 2008, 14, 398–405. [Google Scholar] [CrossRef]
- Jianu, C.; Moleriu, R.; Stoin, D.; Cocan, I.; Bujancă, G.; Pop, G.; Lukinich-Gruia, A.T.; Muntean, D.; Rusu, L.-C.; Horhat, D.I. Antioxidant and antibacterial activity of Nepeta× faassenii bergmans ex stearn essential oil. Appl. Sci. 2021, 11, 442. [Google Scholar] [CrossRef]
- Jianu, C.; Goleț, I.; Stoin, D.; Cocan, I.; Bujancă, G.; Mișcă, C.; Mioc, M.; Mioc, A.; Șoica, C.; Lukinich-Gruia, A.T. Chemical Profile of Ruta graveolens, Evaluation of the Antioxidant and Antibacterial Potential of Its Essential Oil, and Molecular Docking Simulations. Appl. Sci. 2021, 11, 11753. [Google Scholar] [CrossRef]
- Nikolić, M.; Marković, T.; Mojović, M.; Pejin, B.; Savić, A.; Perić, T.; Marković, D.; Stević, T.; Soković, M. Chemical composition and biological activity of Gaultheria procumbens L. essential oil. Ind. Crops Prod. 2013, 49, 561–567. [Google Scholar] [CrossRef]
- European_Commission. Directive 2006/52/EC of the European Parliament and of the Council of 5 July 2006 amending Directive 95/2/EC on food additives other than colours and sweeteners and Directive 94/35/EC on sweeteners for use in foodstuffs. O. J. Eur. Union 2006, 204, 10–22. [Google Scholar]
- ISO 27107:2008; Animal and Vegetable Fats and Oils-Determination of Peroxide Value-Potentiometric End-Point Determination. International Organization for Standardization: Geneva, Switzerland, 2008.
- Jianu, C.; Goleț, I.; Stoin, D.; Cocan, I.; Lukinich-Gruia, A.T. Antioxidant Activity of Pastinaca sativa L. ssp. sylvestris [Mill.] Rouy and Camus Essential Oil. Molecules 2020, 25, 869. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT—Food Sci Technol 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Rădulescu, M.; Jianu, C.; Lukinich-Gruia, A.T.; Mioc, M.; Mioc, A.; Șoica, C.; Stana, L.G. Chemical composition, in vitro and in silico antioxidant potential of Melissa officinalis subsp. officinalis essential oil. Antioxidants 2021, 10, 1081. [Google Scholar] [CrossRef]
- Xin, X.; Fan, R.; Gong, Y.; Yuan, F.; Gao, Y. On-line HPLC-ABTS•+ evaluation and HPLC-MS n identification of bioactive compounds in hot pepper peel residues. Eur. Food Res. Technol. 2014, 238, 837–844. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beicu, R.; Alexa, E.; Obiștioiu, D.; Cocan, I.; Imbrea, F.; Pop, G.; Circioban, D.; Moisa, C.; Lupitu, A.; Copolovici, L. Antimicrobial Potential and Phytochemical Profile of Wild and Cultivated Populations of Thyme (Thymus sp.) Growing in Western Romania. Plants 2021, 10, 1833. [Google Scholar] [CrossRef] [PubMed]
- Senatore, F. Influence of harvesting time on yield and composition of the essential oil of a thyme (Thymus pulegioides L.) growing wild in Campania (Southern Italy). J. Agric. Food Chem. 1996, 44, 1327–1332. [Google Scholar] [CrossRef]
- Vaičiulytė, V.; Ložienė, K.; Taraškevičius, R.; Butkienė, R. Variation of essential oil composition of Thymus pulegioides in relation to soil chemistry. Ind. Crops Prod. 2017, 95, 422–433. [Google Scholar] [CrossRef]
- COE. European Pharmacopoeia, 8th ed.; European Directorate for the Quality of Medicines & HealthCare (eDQM): Strassbourg, France, 2014; pp. 1403–1405. [Google Scholar]
- Węglarz, Z.; Osińska, E.; Buchwald, W.; Geszprych, A.; Przybył, J.; Pioro-Jabrucka, E.; Pelc, M. The diversity of wild-growing medicinal plants in Poland. In Proceedings of the Report of a Working Group on Medicinal and Aromatic Plants, Second Meeting, Biodiversity International, Strumica, North Macedonia, 16–18 December 2004; pp. 170–176. [Google Scholar]
- Pluhár, Z.; Kocsis, M.; Kuczmog, A.; Csete, S.; Simkó, H.; Sárosi, S.; Molnár, P.; Horváth, G. Essential oil composition and preliminary molecular study of four Hungarian Thymus species. Acta Biol. Hung. 2012, 63, 81–96. [Google Scholar] [CrossRef]
- Sárosi, S.; Bernáth, J.; Bertoli, A.; Pistelli, L.; Benvenuti, S. Essential oil polymorphism of Thymus pulegioides collected in Monti Pisani, Italy. In Proceedings of the I International Symposium on Medicinal, Aromatic and Nutraceutical Plants from Mountainous Areas (MAP-Mountain 2011), Saas-Fee, Switzerland, 6–9 July 2011; pp. 59–64. [Google Scholar]
- Ložienė, K.; Vaičiulytė, V.; Maždžierienė, R. Influence of meteorological conditions on essential oil composition in geraniol-bearing Thymus pulegioides and Thymus hybrid. Acta Physiol. Plant. 2021, 43, 27. [Google Scholar] [CrossRef]
- Toker, R.; Gölükcü, M.; Tokgöz, H. Effects of distillation times on essential oil compositions of Origanum minutiflorum O. Schwarz Et. and PH Davis. J. Essent. Oil Res. 2017, 29, 330–335. [Google Scholar] [CrossRef]
- Shalayel, M.H.F.; Asaad, A.M.; Qureshi, M.A.; Elhussein, A.B. Anti-bacterial activity of peppermint (Mentha piperita) extracts against some emerging multi-drug resistant human bacterial pathogens. J. Herb. Med. 2017, 7, 27–30. [Google Scholar] [CrossRef]
- Man, A.; Santacroce, L.; Iacob, R.; Mare, A.; Man, L. Antimicrobial activity of six essential oils against a group of human pathogens: A comparative study. Pathogens 2019, 8, 15. [Google Scholar] [CrossRef] [Green Version]
- Oliva, A.; Costantini, S.; De Angelis, M.; Garzoli, S.; Božović, M.; Mascellino, M.T.; Vullo, V.; Ragno, R. High potency of melaleuca alternifolia essential oil against multi-drug resistant gram-negative bacteria and methicillin-resistant Staphylococcus aureus. Molecules 2018, 23, 2584. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.-H.; Cai, M.; Liu, Y.-S.; Sun, P.-L.; Luo, S.-L. Antibacterial Activity and Mechanisms of Essential Oil from Citrus medica L. var. sarcodactylis. Molecules 2019, 24, 1577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cristani, M.; D’Arrigo, M.; Mandalari, G.; Castelli, F.; Sarpietro, M.G.; Micieli, D.; Venuti, V.; Bisignano, G.; Saija, A.; Trombetta, D. Interaction of four monoterpenes contained in essential oils with model membranes: Implications for their antibacterial activity. J. Agric. Food Chem. 2007, 55, 6300–6308. [Google Scholar] [CrossRef] [PubMed]
- Helander, I.M.; Alakomi, H.-L.; Latva-Kala, K.; Mattila-Sandholm, T.; Pol, I.; Smid, E.J.; Gorris, L.G.; von Wright, A. Characterization of the action of selected essential oil components on Gram-negative bacteria. J. Agric. Food Chem. 1998, 46, 3590–3595. [Google Scholar] [CrossRef]
- Yu, Z.; Tang, J.; Khare, T.; Kumar, V. The alarming antimicrobial resistance in ESKAPEE pathogens: Can essential oils come to the rescue? Fitoterapia 2020, 140, 104433. [Google Scholar] [CrossRef] [PubMed]
- Farahmandfar, R.; Asnaashari, M.; Pourshayegan, M.; Maghsoudi, S.; Moniri, H. Evaluation of antioxidant properties of lemon verbena (Lippia citriodora) essential oil and its capacity in sunflower oil stabilization during storage time. Food Sci. Nutr. 2018, 6, 983–990. [Google Scholar] [CrossRef] [PubMed]
- Varzaru, I.; Untea, A.E.; Saracila, M. In vitro antioxidant properties of berry leaves and their inhibitory effect on lipid peroxidation of thigh meat from broiler chickens. Eur. J. Lipid Sci. Technol. 2020, 122, 1900384. [Google Scholar] [CrossRef]
- Gentile, F.; Arcaro, A.; Pizzimenti, S.; Daga, M.; Cetrangolo, G.P.; Dianzani, C.; Lepore, A.; Graf, M.; Ames, P.R.; Barrera, G. DNA damage by lipid peroxidation products: Implications in cancer, inflammation and autoimmunity. AIMS Genet. 2017, 4, 103–137. [Google Scholar] [CrossRef]
- Bahadori, M.B.; Dinparast, L.; Zengin, G.; Sarikurkcu, C.; Bahadori, S.; Asghari, B.; Movahhedin, N. Functional components, antidiabetic, anti-Alzheimer’s disease, and antioxidant activities of Salvia syriaca L. Int. J. Food Prop. 2017, 20, 1761–1772. [Google Scholar] [CrossRef] [Green Version]
- Gülçın, İ.; Oktay, M.; Kıreçcı, E.; Küfrevıoǧlu, Ö.İ. Screening of antioxidant and antimicrobial activities of anise (Pimpinella anisum L.) seed extracts. Food Chem. 2003, 83, 371–382. [Google Scholar] [CrossRef]
- Fernandes, Â.S.; Barros, L.; Carvalho, A.M.; Ferreira, I.C.R. Lipophilic and hydrophilic antioxidants, lipid peroxidation inhibition and radical scavenging activity of two Lamiaceae food plants. Eur. J. Lipid Sci. Technol. 2010, 112, 1115–1121. [Google Scholar] [CrossRef]
- Afonso, A.F.; Pereira, O.R.; Válega, M.; Silva, A.M.; Cardoso, S.M. Metabolites and biological activities of Thymus zygis, Thymus pulegioides, and Thymus fragrantissimus grown under organic cultivation. Molecules 2018, 23, 1514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kindl, M.; Blažeković, B.; Bucar, F.; Vladimir-Knežević, S. Antioxidant and anticholinesterase potential of six thymus species. Evid. Based Complement. Altern. Med. 2015, 2015, 403950. [Google Scholar] [CrossRef] [Green Version]
- Tohidi, B.; Rahimmalek, M.; Arzani, A. Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran. Food Chem. 2017, 220, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.I.; Anwar, F.; Chatha, S.A.; Latif, S.; Sherazi, S.T.; Ahmad, A.; Worthington, J.; Sarker, S.D. Chemical composition and bioactivity studies of the essential oils from two Thymus species from the Pakistani flora. LWT-Food Sci. Technol. 2013, 50, 185–192. [Google Scholar] [CrossRef]
- Tepe, B.; Sokmen, M.; Akpulat, H.A.; Daferera, D.; Polissiou, M.; Sokmen, A. Antioxidative activity of the essential oils of Thymus sipyleus subsp. sipyleus var. sipyleus and Thymus sipyleus subsp. sipyleus var. rosulans. J. Food Eng. 2005, 66, 447–454. [Google Scholar] [CrossRef]
- Sarikurkcu, C.; Sabih Ozer, M.; Eskici, M.; Tepe, B.; Can, Ş.; Mete, E. Essential oil composition and antioxidant activity of Thymus longicaulis C. Presl subsp. longicaulis var. longicaulis. Food Chem. Toxicol. 2010, 48, 1801–1805. [Google Scholar] [CrossRef]
- Bendjabeur, S.; Benchabane, O.; Bensouici, C.; Hazzit, M.; Baaliouamer, A.; Bitam, A. Antioxidant and anticholinesterase activity of essential oils and ethanol extracts of Thymus algeriensis and Teucrium polium from Algeria. J. Food Meas. Charact. 2018, 12, 2278–2288. [Google Scholar] [CrossRef]
- Jianu, C.; Mihail, R.; Muntean, S.G.; Pop, G.; Daliborca, C.V.; Horhat, F.G.; Nitu, R. Composition and antioxidant capacity of essential oils obtained from Thymus vulgaris, Thymus pannonicus and Satureja montana grown in Western Romania. Rev. Chim. 2015, 66, 2157–2160. [Google Scholar]
- Huang, S.-S.; Huang, G.-J.; Ho, Y.-L.; Lin, Y.-H.; Hung, H.-J.; Chang, T.-N.; Chang, M.-J.; Chen, J.-J.; Chang, Y.-S. Antioxidant and antiproliferative activities of the four Hydrocotyle species from Taiwan. Bot. Stud. 2008, 49, 311–322. [Google Scholar]
- Katalinic, V.; Milos, M.; Kulisic, T.; Jukic, M. Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chem. 2006, 94, 550–557. [Google Scholar] [CrossRef]
- Ye, C.-L.; Dai, D.-H.; Hu, W.-L. Antimicrobial and antioxidant activities of the essential oil from onion (Allium cepa L.). Food Control 2013, 30, 48–53. [Google Scholar] [CrossRef]
- Taghouti, M.; Martins-Gomes, C.; Schäfer, J.; Félix, L.M.; Santos, J.A.; Bunzel, M.; Nunes, F.M.; Silva, A.M. Thymus pulegioides L. as a rich source of antioxidant, anti-proliferative and neuroprotective phenolic compounds. Food Funct. 2018, 9, 3617–3629. [Google Scholar] [CrossRef] [PubMed]
- Aprotosoaie, A.C.; Miron, A.; Ciocârlan, N.; Brebu, M.; Roşu, C.M.; Trifan, A.; Vochiţa, G.; Gherghel, D.; Luca, S.V.; Niţă, A. Essential oils of Moldavian Thymus species: Chemical composition, antioxidant, anti-Aspergillus and antigenotoxic activities. Flavour Fragr. J. 2019, 34, 175–186. [Google Scholar] [CrossRef]
- Labiad, M.H.; Belmaghraoui, W.; Ghanimi, A.; El-Guezzane, C.; Chahboun, N.; Harhar, H.; Egea-Gilabert, C.; Zarrouk, A.; Tabyaoui, M. Biological properties and chemical profiling of essential oils of Thymus (vulgaris, algeriensis and broussonettii) grown in Morocco. Chem. Data Collect. 2022, 37, 100797. [Google Scholar] [CrossRef]
- Benguedouar, K.; Betina, S.B.; Erenler, R.; Genç, N.; Gok, M.; Sebti, M.; Madi, N.; Mekdade, L.; Gali, L.; Barkat, M. Evaluation of the antioxidant properties and total phenolic content of a dairy product (yogurt) supplemented with Thymus willdenowii essential oil from Algeria. J. Food Meas. Charact. 2022, 16, 3568–3577. [Google Scholar] [CrossRef]
- Kamath, V.; Rajini, P. The efficacy of cashew nut (Anacardium occidentale L.) skin extract as a free radical scavenger. Food Chem. 2007, 103, 428–433. [Google Scholar] [CrossRef]
- Marchese, A.; Orhan, I.E.; Daglia, M.; Barbieri, R.; Di Lorenzo, A.; Nabavi, S.F.; Gortzi, O.; Izadi, M.; Nabavi, S.M. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem. 2016, 210, 402–414. [Google Scholar] [CrossRef]
- Yildiz, S.; Turan, S.; Kiralan, M.; Ramadan, M.F. Antioxidant properties of thymol, carvacrol, and thymoquinone and its efficiencies on the stabilization of refined and stripped corn oils. J. Food Meas. Charact. 2021, 15, 621–632. [Google Scholar] [CrossRef]
- Marchese, A.; Arciola, C.R.; Barbieri, R.; Silva, A.S.; Nabavi, S.F.; Tsetegho Sokeng, A.J.; Izadi, M.; Jafari, N.J.; Suntar, I.; Daglia, M. Update on monoterpenes as antimicrobial agents: A particular focus on p-cymene. Materials 2017, 10, 947. [Google Scholar] [CrossRef]
- Kazemi, M.; Rostami, H. Chemical composition, antimicrobial and antioxidant activities of the essential oil of Psammogeton canescens. Nat. Prod. Res. 2015, 29, 277–280. [Google Scholar] [CrossRef]
- Phi, K.-C.T.; Kim, G.-N.; Jang, H.-D. In vitro and intracellular antioxidant capacity of thymyl methyl ether as a major component in Blumea lanceolaria (Roxb.) Druce leaf oil. Food Chem. Toxicol. 2012, 50, 1583–1588. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T.; Li, Q.; Zhou, Z.; Wang, Y.; Bryant, S.H. Structure-based virtual screening for drug discovery: A problem-centric review. Aaps J. 2012, 14, 133–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batson, S.; de Chiara, C.; Majce, V.; Lloyd, A.J.; Gobec, S.; Rea, D.; Fülöp, V.; Thoroughgood, C.W.; Simmons, K.J.; Dowson, C.G.; et al. Inhibition of D-Ala:D-Ala ligase through a phosphorylated form of the antibiotic D-cycloserine. Nat. Commun. 2017, 8, 1939. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Chang, J.S.; Herberg, J.T.; Horng, M.-M.; Tomich, P.K.; Lin, A.H.; Marotti, K.R. Allosteric inhibition of Staphylococcus aureus d-alanine d-alanine ligase revealed by crystallographic studies. Proc. Natl. Acad. Sci. USA 2006, 103, 15178–15183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.-K.; Yusoff, K.; Ajat, M.; Yap, W.-S.; Lim, S.-H.E.; Lai, K.-S. Antimicrobial activity and mode of action of terpene linalyl anthranilate against carbapenemase-producing Klebsiella pneumoniae. J. Pharm. Anal. 2021, 11, 210–219. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Nascimento, A.M.A.; Brandão, M.G.L.; Oliveira, G.B.; Fortes, I.C.P.; Chartone-Souza, E. Synergistic bactericidal activity of Eremanthus erythropappus oil or β-bisabolene with ampicillin against Staphylococcus aureus. Antonie Van Leeuwenhoek 2007, 92, 95–100. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kim, T.-B.; Moon, K.-a.; Kim, T.J.; Shin, D.; Cho, Y.S.; Moon, H.-B.; Lee, K.-Y. Regulation of pro-inflammatory responses by lipoxygenases via intracellular reactive oxygen species in vitro and in vivo. Exp. Mol. Med. 2008, 40, 461–476. [Google Scholar] [CrossRef]
- Demirci, F.; Teralı, K.; Karadağ, A.E.; Biltekin, S.N.; Ak Sakallı, E.; Demirci, B.; Koşar, M.; Başer, K.H.C. In Vitro and In Silico Evaluation of ACE2 and LOX Inhibitory Activity of Origanum Essential Oils and Carvacrol. Planta Med. 2022. [Google Scholar] [CrossRef]
- Fatima, K.; Luqman, S.; Meena, A. Carvacrol Arrests the Proliferation of Hypopharyngeal Carcinoma Cells by Suppressing Ornithine Decarboxylase and Hyaluronidase Activities. Front. Nutr. 2022, 9, 857256. [Google Scholar] [CrossRef]
- Carrasco, A.; Martinez-Gutierrez, R.; Tomas, V.; Tudela, J. Erratum for: Lavandula angustifolia and Lavandula latifolia Essential Oils from Spain: Aromatic Profile and Bioactivities. Planta Med. 2016, 82, E4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cutillas, A.-B.; Carrasco, A.; Martinez-Gutierrez, R.; Tomas, V.; Tudela, J. Thyme essential oils from Spain: Aromatic profile ascertained by GC–MS, and their antioxidant, anti-lipoxygenase and antimicrobial activities. J. Food Drug Anal. 2018, 26, 529–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battelli, M.G.; Polito, L.; Bortolotti, M.; Bolognesi, A. Xanthine oxidoreductase-derived reactive species: Physiological and pathological effects. Oxidative Med. Cell. Longev. 2016, 2016, 3527579. [Google Scholar] [CrossRef] [Green Version]
- Alsaraf, S.; Hadi, Z.; Al-Lawati, W.M.; Al Lawati, A.A.; Khan, S.A. Chemical composition, in vitro antibacterial and antioxidant potential of Omani Thyme essential oil along with in silico studies of its major constituent. J. King Saud Univ. Sci. 2020, 32, 1021–1028. [Google Scholar] [CrossRef]
- Rezaeinasab, M.; Benvidi, A.; Gharaghani, S.; Abbasi, S.; Zare, H.R. Electrochemical investigation of the inhibition effect of carvacrol on xanthine oxidase activity merging with theoretical studies. Process Biochem. 2019, 83, 86–95. [Google Scholar] [CrossRef]
Protein | PDB ID | Grid Box Center Coordinates | Grid Box Size |
---|---|---|---|
Thermus thermophilus Isoleucyl-tRNA synthetase (IARS) | 1JZQ | center_x = −27.8360428341 | size_x = 17.8869815457 |
center_y = 7.50432038116 | size_y = 16.1154297919 | ||
center_z = −29.4845039408 | size_z = 11.3367245776 | ||
Escherichia coli DNA gyrase | 1KZN | center_x = 19.6401666952 | size_x = 17.2637959732 |
center_y = 31.1030232133 | size_y = 18.1500729831 | ||
center_z = 34.3100514872 | size_z = 16.6603783244 | ||
Staphylococcus aureus d-alanine: d-alanine ligase (DDl1) | 2I80 | center_x = 33.779502274 | size_x = 10.5389819299 |
center_y = 3.39522773577 | size_y = 15.5864990289 | ||
center_z = 25.2453856542 | size_z = 9.85959076355 | ||
Streptococcus pneumoniae Dihydropteroate synthase (DHPS) | 2VEG | center_x = 31.2676413349 | size_x = 11.5588489508 |
center_y = 48.9668812541 | size_y = 18.1500729831 | ||
center_z = −1.15410275954 | size_z = 16.6603783244 | ||
Streptococcus pneumoniae type IV topoisomerase | 3RAE | center_x = −33.7898737839 | size_x = 15.0539568797 |
center_y = 67.9013419953 | size_y = 13.0375997543 | ||
center_z = −23.60407688 | size_z = 10.109792847 | ||
Staphylococcus aureus Dihydrofolate reductase (DHFR) | 3SRW | center_x = −5.45640482801 | size_x = 11.8275449768 |
center_y = −31.6903217724 | size_y = 13.023083456 | ||
center_z = 6.17826267819 | size_z = 9.9565989264 | ||
Staphylococcus aureus DNA gyrase subunit B | 3TTZ | center_x = 17.0364358037 | size_x = 20.0369846269 |
center_y = −18.8857041496 | size_y = 13.0029608168 | ||
center_z = 6.75791376296 | size_z = 10.7626967724 | ||
Acinetobacter baumannii Penicillin-binding protein 1a (PBP1a) | 3UDI | center_x = 34.9732513158 | size_x = 9.90891076337 |
center_y = −0.0306900110435 | size_y = 14.1836672574 | ||
center_z = 12.3758077698 | size_z = 11.2203132474 | ||
Lipoxygenase | 1N8Q | center_x = 21.2593790904 | size_x = 12.6872398333 |
center_y = 1.76637901263 | size_y = 11.4545838995 | ||
center_z = 18.4081489959 | size_z = 11.6795535545 | ||
CYP2C9 | 1OG5 | center_x = −19.8764113706 | size_x = 12.0869750978 |
center_y = 87.4619136116 | size_y = 11.4545838995 | ||
center_z = 39.1269527463 | size_z = 12.4186825691 | ||
NADPH-oxidase | 2CDU | center_x = 19.720599136 | size_x = 14.1566335714 |
center_y = −6.31764559019 | size_y = 13.6787417937 | ||
center_z = −1.64253696973 | size_z = 14.2233138143 | ||
Xanthine oxidase | 3NRZ | center_x = 36.9278386062 | size_x = 9.25016590812 |
center_y = 20.1433878392 | size_y = 9.63005270761 | ||
center_z = 17.9487970315 | size_z = 8.24844724947 |
No | Common Name | RI a | Area % |
---|---|---|---|
1 | Bicyclo [3.1.0]hexane, 4-methyl-1-(1-methylethyl), didehydro deriv | 912 | 0.98 |
2 | alpha-Pinene | 918 | 0.57 |
3 | 2,4-Thujadiene | 927 | tr. |
4 | Camphene | 933 | 0.31 |
5 | beta-Pinene | 959 | 0.41 |
6 | 3-Octanone | 964 | 0.15 |
7 | beta-Myrcene | 970 | 0.88 |
8 | 3-Octanol | 976 | tr. |
9 | alpha-Phellandrene | 987 | 0.22 |
10 | 4-Carene | 990 | 0.08 |
11 | alpha-Terpinene | 998 | 1.60 |
12 | para-Cymene | 1006 | 14.57 |
13 | d-Limonene | 1011 | 0.26 |
14 | Eucalyptol | 1014 | 0.44 |
15 | beta-cis-Ocimene | 1029 | 0.07 |
16 | gamma-Terpinene | 1042 | 6.93 |
17 | Terpinolene | 1072 | 0.14 |
18 | Linalool | 1086 | 0.35 |
19 | Borneol | 1167 | 0.32 |
20 | Terpinen-4-ol | 1177 | 0.37 |
21 | Thymol methyl ether | 1233 | 11.19 |
22 | Isothymol methyl ether | 1244 | 10.44 |
23 | Thymoquinone | 1253 | 0.72 |
24 | Linalyl anthranilate | 1255 | 0.76 |
25 | Thymol | 1302 | 22.89 |
26 | Carvacrol | 1309 | 3.23 |
27 | alpha-Copaene | 1394 | 0.31 |
28 | beta-Bourbonene | 1402 | 0.47 |
29 | beta-Caryophyllene | 1440 | 4.80 |
30 | beta-Cubebene | 1450 | 0.29 |
31 | gamma-Muurolene | 1496 | 1.03 |
32 | alpha-Muurolene | 1520 | 0.26 |
33 | beta-Bisabolene | 1530 | 9.53 |
34 | gamma-Cadinene | 1534 | 0.76 |
35 | delta-Cadinene | 1540 | 1.66 |
36 | beta-Sesquiphellandrene | 1545 | 0.21 |
37 | alpha-Calacorene | 1561 | 0.26 |
38 | Spathulenol | 1595 | 0.27 |
39 | Caryophyllene oxide | 1600 | 0.73 |
Total | 98.46 |
Bacterial and Yeast Strains | Disk Diffusion (mm) | MIC Value (mg/mL) | MBC Value (mg/mL) | MFC Value (mg/mL) |
---|---|---|---|---|
Streptococcus pyogenes ATCC 19615 | 39.3(±0.58) ab | 1.25 | 1.25 | n.t. |
Staphylococcus aureus ATCC 25923 | 37.7(±1.53) b | 1.25 | 1.25 | n.t. |
Escherichia coli ATCC 25922 | 26.3(±1.16) cd | 5 | 10 | n.t. |
Salmonella typhimurium ATCC 14028 | 22.3(±0.58) c | 10 | 10 | n.t. |
Shigella flexneri ATCC 12022 | 27(±1.73) d | 10 | 10 | n.t. |
Pseudomonas aeruginosa ATCC 27853 | 15.3(±0.58) f | 20 | 20 | n.t. |
Candida albicans ATCC 10231 | 43(±2.65) a | 1.25 | n.t. | 1.25 |
Candida parapsilosis ATCC 22019 | 45.7(±2.52) e | 1.25 | n.t. | 1.25 |
Parameter | TPEO | BHA 1 | alpha-Tocopherol | delta-Tocopherol |
---|---|---|---|---|
Yield (%) | 0.71 | - | - | - |
DPPH, IC50 (μg/mL) | 19.13(±0.61) d | 8.11(±0.45) b | 23.93(±0.43) a | 22.77(±0.49) c |
ABTS, IC50 (μg/mL) | 1.66(±0.1) c | 0.71(±0.03) b | 2.08(±0.1) a | 1.99(±0.1) a |
beta-carotene/linoleic acid, RAA 2 (%) | 89.62(±0.14) | 100 | n.t.3 | n.t.3 |
Target PDB ID | 1JZQ | 1KZN | 2I80 | 3RAE | 3SRW | 3TTZ | 3UDI | 1N8Q | 1OG5 | 2CDU | 3NRZ |
---|---|---|---|---|---|---|---|---|---|---|---|
Docked Compound ID | Binding Free Energy ∆G (kcal/mol) | ||||||||||
Native ligand | −8 | −9.3 | −7.2 | −10 | −9.8 | −7.8 | −7.3 | −5.7 | −9.8 | −9.3 | −6.7 |
1 | −5.5 | −5.9 | −6.1 | −5.6 | −5.7 | −5.7 | −4.8 | −5.6 | −6.2 | −6 | −7.4 |
2 | −5 | −4.6 | −5.6 | −4.4 | −5.9 | −5.2 | −4.4 | −4.3 | −5.5 | −4.8 | −0.4 |
3 | −5.4 | −6 | −6 | −5.5 | −5.6 | −5.6 | −4.8 | −5.6 | −5.8 | −5.9 | −7.6 |
4 | −4.8 | −4.4 | −6.7 | −4.6 | −5.4 | −4.9 | −4.5 | −3.6 | −5.7 | −4.7 | 0.4 |
5 | −5.4 | −4.6 | −5.9 | −4.4 | −5.5 | −5 | −4.4 | −5 | −5.5 | −4.7 | −0.7 |
6 | −4.5 | −4.5 | −5.5 | −4.4 | −4.4 | −4.6 | −3.9 | −5.3 | −4.8 | −4.4 | −5.8 |
7 | −5.4 | −5.1 | −6.1 | −4.9 | −5.2 | −5.4 | −3.8 | −5.4 | −5.4 | −4.9 | −6 |
8 | −4.5 | −4.6 | −5.5 | −4.5 | −4.7 | −4.7 | −3.8 | −5.2 | −4.7 | −4.2 | −5.5 |
9 | −5.5 | −5.8 | −5.7 | −5.6 | −5.6 | −5.8 | −4.7 | −5.9 | −6.2 | −5.7 | −6.8 |
10 | −5.3 | −5.9 | −6.1 | −5.7 | −5.9 | −5.6 | −4.7 | −5.4 | −6.2 | −5.6 | −6.1 |
11 | −5.5 | −5.8 | −5.9 | −5.6 | −5.5 | −5.8 | −4.8 | −6 | −6.3 | −5.7 | −6.8 |
12 | −5.5 | −5.8 | −5.9 | −5.6 | −5.6 | −5.8 | −4.8 | −6.1 | −6.3 | −5.7 | −6.9 |
13 | −5.4 | −5.8 | −5.7 | −5.6 | −5.6 | −5.8 | −4.7 | −5.7 | −6.3 | −5.7 | −6.8 |
14 | −5.1 | −4.6 | −5.7 | −4.6 | −5.8 | −5 | −4.8 | −3.3 | −5.5 | −5 | 3.4 |
15 | −5.3 | −5.4 | −6.3 | −5.2 | −5.2 | −5.6 | −4.1 | −5 | −5.6 | −5.2 | −6.2 |
16 | −5.5 | −5.8 | −5.8 | −5.6 | −5.6 | −5.8 | −4.7 | −5.9 | −6.2 | −5.7 | −6.8 |
17 | −5.6 | −6.1 | −5.9 | −5.9 | −5.8 | −5.9 | −4.9 | −5.2 | −6.6 | −5.9 | −7.3 |
18 | −5.7 | −5.5 | −6.3 | −5.3 | −5.7 | −5.6 | −4.5 | −4.8 | −5.3 | −4.8 | −5 |
19 | −5.2 | −4.5 | −6.4 | −4.2 | −5.6 | −4.9 | −4.9 | −2.5 | −5.8 | −4.6 | 2.7 |
20 | −5.4 | −5.7 | −6.2 | −5.7 | −5.9 | −5.8 | −4.8 | −6.3 | −5.7 | −5.4 | −3.8 |
21 | −5.3 | −5.8 | −6 | −6.1 | −5.9 | −5.8 | −5.3 | −4.9 | −6 | −5.7 | −5.7 |
22 | −5.7 | −5.8 | −6.1 | −6 | −6 | −5.8 | −5.4 | −5 | −5.8 | −5.8 | −5.9 |
23 | −5.6 | −6.3 | −5.8 | −6.5 | −6.3 | −6.1 | −5.2 | −4.3 | −6.4 | −6 | −7.4 |
24 | −6 | −6.5 | −7 | −7.1 | −7 | −6.8 | −6.2 | −3.3 | −7 | −6.6 | −0.9 |
25 | −5.4 | −6 | −5.6 | −6.2 | −5.7 | −5.9 | −4.9 | −5.3 | −6.1 | −5.4 | −6.9 |
26 | −5.8 | −6 | −6.3 | −6.2 | −5.7 | −6.2 | −5 | −6.4 | −6.2 | −6.1 | −7.1 |
27 | −6.8 | −6.2 | −5.3 | −6.4 | −7.2 | −6.3 | −6 | −0.9 | −7.4 | −5.7 | 1.2 |
28 | −7.2 | −7 | −3.3 | −6.9 | −7.9 | −6.6 | −5.9 | −3.4 | −7.2 | −6.9 | −2.5 |
29 | −6.5 | −5.5 | −1.4 | −5.3 | −7.9 | −6.1 | −5.5 | −2.1 | −7.2 | −6.4 | 2.5 |
30 | −6.6 | −6.5 | −3.1 | −6.3 | −7.7 | −6.5 | −6 | −4.2 | −7.4 | −6 | 4.6 |
31 | −6.4 | −6.6 | −3.2 | −7.1 | −7.8 | −7.2 | −6 | −3.6 | −7.6 | −7.2 | 0.5 |
32 | −6.3 | −6.4 | −3.3 | −7.3 | −7.8 | −7.2 | −5.9 | −3.6 | −7.6 | −7.1 | 1.2 |
33 | −6.3 | −6.7 | −6.8 | −6.7 | −6.8 | −6.5 | −5.8 | −5.2 | −6.8 | −6 | −6 |
34 | −6.4 | −6.7 | −3.1 | −6.9 | −7.7 | −7.2 | −6.1 | −3.6 | −7.6 | −7.3 | 0.4 |
35 | −6.3 | −6.7 | −3.4 | −7.4 | −7.7 | −7.2 | −6.1 | −3.6 | −7.7 | −7.3 | 0.2 |
36 | −6.2 | −6.7 | −6.8 | −6.8 | −6.9 | −6.6 | −5.7 | −5.1 | −7.5 | −6.2 | −5.9 |
37 | −6.4 | −6.7 | −3.6 | −7.5 | −7.7 | −7.4 | −6.1 | −4.2 | −7.8 | −7.4 | −0.5 |
38 | −6.7 | −6.4 | −1.5 | −6 | −7.9 | −7.1 | −6.1 | −2.4 | −7.9 | −7.3 | 4 |
39 | −6.5 | −5.8 | −2 | −6.5 | −8.1 | −6 | −6.2 | 1.2 | −7.3 | −6.2 | 3.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jianu, C.; Rusu, L.-C.; Muntean, I.; Cocan, I.; Lukinich-Gruia, A.T.; Goleț, I.; Horhat, D.; Mioc, M.; Mioc, A.; Șoica, C.; et al. In Vitro and In Silico Evaluation of the Antimicrobial and Antioxidant Potential of Thymus pulegioides Essential Oil. Antioxidants 2022, 11, 2472. https://doi.org/10.3390/antiox11122472
Jianu C, Rusu L-C, Muntean I, Cocan I, Lukinich-Gruia AT, Goleț I, Horhat D, Mioc M, Mioc A, Șoica C, et al. In Vitro and In Silico Evaluation of the Antimicrobial and Antioxidant Potential of Thymus pulegioides Essential Oil. Antioxidants. 2022; 11(12):2472. https://doi.org/10.3390/antiox11122472
Chicago/Turabian StyleJianu, Călin, Laura-Cristina Rusu, Iulia Muntean, Ileana Cocan, Alexandra Teodora Lukinich-Gruia, Ionuț Goleț, Delia Horhat, Marius Mioc, Alexandra Mioc, Codruța Șoica, and et al. 2022. "In Vitro and In Silico Evaluation of the Antimicrobial and Antioxidant Potential of Thymus pulegioides Essential Oil" Antioxidants 11, no. 12: 2472. https://doi.org/10.3390/antiox11122472
APA StyleJianu, C., Rusu, L. -C., Muntean, I., Cocan, I., Lukinich-Gruia, A. T., Goleț, I., Horhat, D., Mioc, M., Mioc, A., Șoica, C., Bujancă, G., Ilie, A. C., & Muntean, D. (2022). In Vitro and In Silico Evaluation of the Antimicrobial and Antioxidant Potential of Thymus pulegioides Essential Oil. Antioxidants, 11(12), 2472. https://doi.org/10.3390/antiox11122472