Role of Lung P450 Oxidoreductase in Paraquat-Induced Collagen Deposition in the Lung
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Animal Experiments
2.3. PQ Detection
2.4. Quantification of Lung Fibrosis with Polarized Light Microscopy
2.5. Spectrophotometric Detection of Collagen in Lung Homogenate
2.6. Statistical Analysis
3. Results
3.1. Pharmacokinetics of Plasma PQ in WT and Lung-Cpr-Null Mice
3.2. Histological Examination of PQ-Induced Lung Fibrosis in WT and Lung-Cpr-Null Mice
3.3. Biochemical Analysis of Collagen Levels in Lung Homogenate of WT and Lung-Cpr-Null Mice
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fortenberry, G.Z.; Beckman, J.; Schwartz, A.; Prado, J.B.; Graham, L.S.; Higgins, S.; Lackovic, M.; Mulay, P.; Bojes, H.; Waltz, J.; et al. Magnitude and characteristics of acute paraquat- and diquat-related illnesses in the US: 1998–2013. Environ. Res. 2016, 146, 191–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- US-EPA. Office of Chemical and Pollution Prevention. In Paraquat Dichloride: Draft Human Health Risk Assessment in Support of Registration Review; 2019; pp. 1–103. Available online: https://www.regulations.gov/document/EPA-HQ-OPP-2011-0855-0121 (accessed on 16 November 2021).
- Crampon, M.; Copard, Y.; Favreau, G.; Raux, J.; Merlet-Machour, N.; Le Coz, M.; Ibrahim, M.; Peulon-Agasse, V.; Portet-Koltalo, F. Occurrence of 1,1′-dimethyl-4,4′-bipyridinium (Paraquat) in irrigated soil of the Lake Chad Basin, Niger. Environ. Sci. Pollut. Res. Int. 2014, 21, 10601–10613. [Google Scholar] [CrossRef] [PubMed]
- Morteza, Z.; Mousavi, S.B.; Baghestani, M.A.; Aitio, A. An assessment of agricultural pesticide use in Iran, 2012–2014. J. Environ. Health Sci. Eng. 2017, 15, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pouokam, G.B.; Lemnyuy Album, W.; Ndikontar, A.S.; Sidatt, M.E.H. A Pilot Study in Cameroon to Understand Safe Uses of Pesticides in Agriculture, Risk Factors for Farmers’ Exposure and Management of Accidental Cases. Toxics 2017, 5, 30. [Google Scholar] [CrossRef] [Green Version]
- Sookhtanlou, M.; Allahyari, M.S. Farmers’ health risk and the use of personal protective equipment (PPE) during pesticide application. Environ. Sci. Pollut. Res. Int. 2021, 28, 28168–28178. [Google Scholar] [CrossRef] [PubMed]
- Dinis-Oliveira, R.J.; Duarte, J.A.; Sanchez-Navarro, A.; Remiao, F.; Bastos, M.L.; Carvalho, F. Paraquat poisonings: Mechanisms of lung toxicity, clinical features, and treatment. Crit. Rev. Toxicol. 2008, 38, 13–71. [Google Scholar] [CrossRef]
- Wang, S.; Guo, W.; Ren, J. Stress signaling in paraquat-induced target organ toxicity. React. Oxyg. Species 2016, 1, 131–140. [Google Scholar] [CrossRef]
- Pond, S.M. Manifestations and management of paraquat poisoning. Med. J. Aust. 1990, 152, 256–259. [Google Scholar] [CrossRef]
- Giulivi, C.; Lavagno, C.C.; Lucesoli, F.; Bermudez, M.J.; Boveris, A. Lung damage in paraquat poisoning and hyperbaric oxygen exposure: Superoxide-mediated inhibition of phospholipase A2. Free Radic. Biol. Med. 1995, 18, 203–213. [Google Scholar] [CrossRef]
- Kanno, S.; Hirano, S.; Mukai, T.; Ro, A.; Kato, H.; Fukuta, M.; Aoki, Y. Cellular uptake of paraquat determines subsequent toxicity including mitochondrial damage in lung epithelial cells. Leg. Med. 2019, 37, 7–14. [Google Scholar] [CrossRef]
- Higuchi, A.; Yonemitsu, K.; Koreeda, A.; Tsunenari, S. Inhibitory activity of epigallocatechin gallate (EGCg) in paraquat-induced microsomal lipid peroxidation--a mechanism of protective effects of EGCg against paraquat toxicity. Toxicology 2003, 183, 143–149. [Google Scholar] [CrossRef]
- Kobayashi, S.; Kuwata, K.; Sugimoto, T.; Igarashi, K.; Osaki, M.; Okada, F.; Fujii, J.; Bannai, S.; Sato, H. Enhanced expression of cystine/glutamate transporter in the lung caused by the oxidative-stress-inducing agent paraquat. Free Radic. Biol. Med. 2012, 53, 2197–2203. [Google Scholar] [CrossRef] [PubMed]
- Tomita, M.; Okuyama, T.; Katsuyama, H.; Miura, Y.; Nishimura, Y.; Hidaka, K.; Otsuki, T.; Ishikawa, T. Mouse model of paraquat-poisoned lungs and its gene expression profile. Toxicology 2007, 231, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Yu, X.; Porter, D.W.; Battelli, L.A.; Kashon, M.L.; Ma, Q. Common and distinct mechanisms of induced pulmonary fibrosis by particulate and soluble chemical fibrogenic agents. Arch. Toxicol. 2016, 90, 385–402. [Google Scholar] [CrossRef] [Green Version]
- Gray, J.P.; Heck, D.E.; Mishin, V.; Smith, P.J.; Hong, J.Y.; Thiruchelvam, M.; Cory-Slechta, D.A.; Laskin, D.L.; Laskin, J.D. Paraquat increases cyanide-insensitive respiration in murine lung epithelial cells by activating an NAD(P)H:paraquat oxidoreductase: Identification of the enzyme as thioredoxin reductase. J. Biol. Chem. 2007, 282, 7939–7949. [Google Scholar] [CrossRef] [Green Version]
- Reczek, C.R.; Birsoy, K.; Kong, H.; Martinez-Reyes, I.; Wang, T.; Gao, P.; Sabatini, D.M.; Chandel, N.S. A CRISPR screen identifies a pathway required for paraquat-induced cell death. Nat. Chem. Biol. 2017, 13, 1274–1279. [Google Scholar] [CrossRef]
- Cocheme, H.M.; Murphy, M.P. Complex I is the major site of mitochondrial superoxide production by paraquat. J. Biol. Chem. 2008, 283, 1786–1798. [Google Scholar] [CrossRef] [Green Version]
- Weng, Y.; Fang, C.; Turesky, R.J.; Behr, M.; Kaminsky, L.S.; Ding, X. Determination of the role of target tissue metabolism in lung carcinogenesis using conditional cytochrome P450 reductase-null mice. Cancer Res. 2007, 67, 7825–7832. [Google Scholar] [CrossRef] [Green Version]
- Kovalchuk, N.; Zhang, Q.Y.; Van Winkle, L.; Ding, X. Contribution of Pulmonary CYP-mediated Bioactivation of Naphthalene to Airway Epithelial Injury in the Lung. Toxicol. Sci. 2020, 177, 334–346. [Google Scholar] [CrossRef]
- Drew, R.; Gram, T.E. Vehicle alteration of paraquat lethality in mice. Toxicol. Appl. Pharmacol. 1979, 48, 479–487. [Google Scholar] [CrossRef]
- Paixao, P.; Costa, P.; Bugalho, T.; Fidalgo, C.; Pereira, L.M. Simple method for determination of paraquat in plasma and serum of human patients by high-performance liquid chromatography. J. Chromatogr. B 2002, 775, 109–113. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Z.; Xing, J. The quantitative analysis of paraquat in biological samples by liquid chromatography-electrospray ionization-mass spectrometry. J. Anal. Toxicol. 2011, 35, 23–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wunnapuk, K.; Medley, G.A.; Liu, X.; Grice, J.E.; Jayasinghe, S.; Gawarammana, I.; Buckley, N.A.; Roberts, M.S. Simple and sensitive liquid chromatography-tandem mass spectrometry methods for quantification of paraquat in plasma and urine: Application to experimental and clinical toxicological studies. J. Chromatogr. B 2011, 879, 3047–3052. [Google Scholar] [CrossRef] [PubMed]
- Junqueira, L.C.; Bignolas, G.; Brentani, R.R. Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem. J. 1979, 11, 447–455. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Walsh, B.J.; Thornton, S.C.; Penny, R.; Breit, S.N. Microplate reader-based quantitation of collagens. Anal. Biochem. 1992, 203, 187–190. [Google Scholar] [CrossRef]
- Kliment, C.R.; Englert, J.M.; Crum, L.P.; Oury, T.D. A novel method for accurate collagen and biochemical assessment of pulmonary tissue utilizing one animal. Int. J. Clin. Exp. Pathol. 2011, 4, 349–355. [Google Scholar]
- Ortiz, M.S.; Forti, K.M.; Suarez Martinez, E.B.; Munoz, L.G.; Husain, K.; Muniz, W.H. Effects of Antioxidant N-acetylcysteine Against Paraquat-Induced Oxidative Stress in Vital Tissues of Mice. Int. J. Sci. Basic Appl. Res. 2016, 26, 26–46. [Google Scholar]
- Pourgholamhossein, F.; Rasooli, R.; Pournamdari, M.; Pourgholi, L.; Samareh-Fekri, M.; Ghazi-Khansari, M.; Iranpour, M.; Poursalehi, H.R.; Heidari, M.R.; Mandegary, A. Pirfenidone protects against paraquat-induced lung injury and fibrosis in mice by modulation of inflammation, oxidative stress, and gene expression. Food Chem. Toxicol. 2018, 112, 39–46. [Google Scholar] [CrossRef]
- Tsukui, T.; Sun, K.H.; Wetter, J.B.; Wilson-Kanamori, J.R.; Hazelwood, L.A.; Henderson, N.C.; Adams, T.S.; Schupp, J.C.; Poli, S.D.; Rosas, I.O.; et al. Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis. Nat. Commun. 2020, 11, 1920. [Google Scholar] [CrossRef] [Green Version]
- Riddick, D.S.; Ding, X.; Wolf, C.R.; Porter, T.D.; Pandey, A.V.; Zhang, Q.Y.; Gu, J.; Finn, R.D.; Ronseaux, S.; McLaughlin, L.A.; et al. NADPH-cytochrome P450 oxidoreductase: Roles in physiology, pharmacology, and toxicology. Drug Metab. Dispos. 2013, 41, 12–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burk, R.F.; Lawrence, R.A.; Lane, J.M. Liver necrosis and lipid peroxidation in the rat as the result of paraquat and diquat administration. Effect of selenium deficiency. J. Clin. Investig. 1980, 65, 1024–1031. [Google Scholar] [CrossRef]
- Nagata, T.; Kono, I.; Masaoka, T.; Akahori, F. Acute toxicological studies on paraquat: Pathological findings in beagle dogs following single subcutaneous injections. Vet. Hum. Toxicol. 1992, 34, 105–112. [Google Scholar] [PubMed]
- Molck, A.M.; Friis, C. The cytotoxic effect of paraquat to isolated renal proximal tubular segments from rabbits. Toxicology 1997, 122, 123–132. [Google Scholar] [CrossRef]
- Awadalla, E.A. Efficacy of vitamin C against liver and kidney damage induced by paraquat toxicity. Exp. Toxicol. Pathol. 2012, 64, 431–434. [Google Scholar] [CrossRef] [PubMed]
- Tokunaga, I.; Kubo, S.; Mikasa, H.; Suzuki, Y.; Morita, K. Determination of 8-hydroxy-deoxyguanosine formation in rat organs: Assessment of paraquat-evoked oxidative DNA damage. IUBMB Life 1997, 43, 73–77. [Google Scholar] [CrossRef]
- Tawara, T.; Fukushima, T.; Hojo, N.; Isobe, A.; Shiwaku, K.; Setogawa, T.; Yamane, Y. Effects of paraquat on mitochondrial electron transport system and catecholamine contents in rat brain. Arch. Toxicol. 1996, 70, 585–589. [Google Scholar] [CrossRef]
- Hughes, J.T. Brain damage due to paraquat poisoning: A fatal case with neuropathological examination of the brain. Neurotoxicology 1988, 9, 243–248. [Google Scholar]
- Srikrishna, V.; Riviere, J.E.; Monteiro-Riviere, N.A. Cutaneous toxicity and absorption of paraquat in porcine skin. Toxicol. Appl. Pharmacol. 1992, 115, 89–97. [Google Scholar] [CrossRef]
- Gu, J.; Weng, Y.; Zhang, Q.Y.; Cui, H.; Behr, M.; Wu, L.; Yang, W.; Zhang, L.; Ding, X. Liver-specific deletion of the NADPH-cytochrome P450 reductase gene: Impact on plasma cholesterol homeostasis and the function and regulation of microsomal cytochrome P450 and heme oxygenase. J. Biol. Chem. 2003, 278, 25895–25901. [Google Scholar] [CrossRef] [Green Version]
- Conroy, J.L.; Fang, C.; Gu, J.; Zeitlin, S.O.; Yang, W.; Yang, J.; VanAlstine, M.A.; Nalwalk, J.W.; Albrecht, P.J.; Mazurkiewicz, J.E.; et al. Opioids activate brain analgesic circuits through cytochrome P450/epoxygenase signaling. Nat. Neurosci. 2010, 13, 284–286. [Google Scholar] [CrossRef]
- Wu, L.; Gu, J.; Weng, Y.; Kluetzman, K.; Swiatek, P.; Behr, M.; Zhang, Q.Y.; Zhuo, X.; Xie, Q.; Ding, X. Conditional knockout of the mouse NADPH-cytochrome p450 reductase gene. Genesis 2003, 36, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Lacher, S.E.; Gremaud, J.N.; Skagen, K.; Steed, E.; Dalton, R.; Sugden, K.D.; Cardozo-Pelaez, F.; Sherwin, C.M.; Woodahl, E.L. Absence of P-glycoprotein transport in the pharmacokinetics and toxicity of the herbicide paraquat. J. Pharmacol. Exp. Ther. 2014, 348, 336–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, K.; Winnik, B.; Thiruchelvam, M.J.; Buckley, B.; Mirochnitchenko, O.; Richfield, E.K. Prolonged toxicokinetics and toxicodynamics of paraquat in mouse brain. Environ. Health Perspect. 2007, 115, 1448–1453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, K.; Tarasewicz, E.; Mathew, J.; Strickland, P.A.; Buckley, B.; Richardson, J.R.; Richfield, E.K. Toxicokinetics and toxicodynamics of paraquat accumulation in mouse brain. Exp. Neurol. 2009, 215, 358–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Mouse Genotype | Sex | Cmax, µg/mL | t1/2, h | AUC, µg/mL × h | CL/F, L/kg/h |
---|---|---|---|---|---|
Lung-Cpr-null | Male | 2.42 ± 0.30 | 0.83 ± 0.05 & | 1.38 ± 0.21 | 14.8 ± 2.1 |
Female | 2.41 ± 0.52 | 0.59 ± 0.10 | 1.71 ± 0.34 | 12.0 ± 2.2 | |
WT (littermates) | Male | 2.32 ± 0.48 | 0.85 ± 0.07 | 1.20 ± 0.25 & | 17.1 ± 3.4 & |
Female | 2.15 ± 0.27 | 0.72 ± 0.12 | 1.88 ± 0.29 | 10.8 ± 1.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovalchuk, N.; Jilek, J.L.; Van Winkle, L.S.; Cherrington, N.J.; Ding, X. Role of Lung P450 Oxidoreductase in Paraquat-Induced Collagen Deposition in the Lung. Antioxidants 2022, 11, 219. https://doi.org/10.3390/antiox11020219
Kovalchuk N, Jilek JL, Van Winkle LS, Cherrington NJ, Ding X. Role of Lung P450 Oxidoreductase in Paraquat-Induced Collagen Deposition in the Lung. Antioxidants. 2022; 11(2):219. https://doi.org/10.3390/antiox11020219
Chicago/Turabian StyleKovalchuk, Nataliia, Joseph L. Jilek, Laura S. Van Winkle, Nathan J. Cherrington, and Xinxin Ding. 2022. "Role of Lung P450 Oxidoreductase in Paraquat-Induced Collagen Deposition in the Lung" Antioxidants 11, no. 2: 219. https://doi.org/10.3390/antiox11020219
APA StyleKovalchuk, N., Jilek, J. L., Van Winkle, L. S., Cherrington, N. J., & Ding, X. (2022). Role of Lung P450 Oxidoreductase in Paraquat-Induced Collagen Deposition in the Lung. Antioxidants, 11(2), 219. https://doi.org/10.3390/antiox11020219