Supplementation of Rumen-Protected Glucose Increased the Risk of Disturbance of Hepatic Metabolism in Early Postpartum Holstein Cows
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Insulin Resistance Estimate
2.3. Liver Samples Collection
2.4. Liver Antioxidant Capacity and Triglyceride Measurement
2.5. TMT-Based Quantitative Proteomics Analysis
2.5.1. Protein Pre-Treatment and TMT Labeling
2.5.2. HPLC Fractionation and LC-MS/MS Analysis
2.5.3. Data Processing and TMT Quantification
2.5.4. Protein and Gene Ontology Identification
2.5.5. Identification of Proteins Related to the Phenotype of Interest
2.5.6. KEGG Pathway Enrichment
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, X.P.; Tan, Z.L.; Jiao, J.Z.; Long, D.L.; Zhou, C.S.; Yi, K.L.; Liu, C.H.; Kang, J.H.; Wang, M.; Duan, F.H.; et al. Supplementation with fat-coated rumen-protected glucose during the transition period enhances milk production and influences blood biochemical parameters of liver function and inflammation in dairy cows. Anim. Feed Sci. Tech. 2019, 252, 92–102. [Google Scholar] [CrossRef]
- Ceciliani, F.; Lecchi, C.; Urh, C.; Sauerwein, H. Proteomics and metabolomics characterizing the pathophysiology of adaptive reactions to the metabolic challenges during the transition from late pregnancy to early lactation in dairy cows. J. Proteom. 2018, 178, 92–106. [Google Scholar] [CrossRef] [PubMed]
- Grummer, R.R.; Mashek, D.G.; Hayirli, A. Dry matter intake and energy balance in the transition period. Vet. Clin. N. Am. Food Anim. Pract. 2004, 20, 447–470. [Google Scholar] [CrossRef]
- Odens, L.J.; Burgos, R.; Innocenti, M.; VanBaale, M.J.; Baumgard, L.H. Effects of varying doses of supplemental conjugated linoleic acid on production and energetic variables during the transition period. J. Dairy Sci. 2007, 90, 293–305. [Google Scholar] [CrossRef]
- Selim, S.; Salin, S.; Taponen, J.; Vanhatalo, A.; Kokkonen, T.; Elo, K.T. Prepartal dietary energy alters transcriptional adaptations of the liver and subcutaneous adipose tissue of dairy cows during the transition period. Physiol. Genom. 2014, 46, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Pérez, C.; Ku-Vera, J.; Centurión-Castro, F.; Garnsworthy, P.C. Energy balance, milk production and reproduction in grazing crossbred cows in the tropics with and without cereal supplementation. Livest. Sci. 2009, 122, 227–233. [Google Scholar] [CrossRef]
- García, A.; Cardoso, F.C.; Campos, R.; Thedy, D.X.; González, F. Metabolic evaluation of dairy cows submitted to three different strategies to decrease the effects of negative energy balance in early postpartum. Pesqui. Veterinária Bras. 2011, 31, 11–17. [Google Scholar] [CrossRef]
- Rulquin, H.; Delaby, L. Effects of the energy balance of dairy cows on lactational responses to rumen-protected methionine. J. Dairy Sci. 1997, 80, 2513–2522. [Google Scholar] [CrossRef]
- Wang, Y.P.; Cai, M.; Hua, D.K.; Zhang, F.; Jiang, L.S.; Zhao, Y.G.; Wang, H.; Nan, X.M.; Xiong, B.H. Metabolomics reveals effects of rumen-protected glucose on metabolism of dairy cows in early lactation. Anim. Feed Sci. Tech. 2020, 269, 114620. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, J.; Han, X.; Tan, Z.; Jiao, J. Effects of rumen-protected glucose on ileal microbiota and genes involved in ileal epithelial metabolism and immune homeostasis in transition dairy cows. Anim. Feed Sci. Tech. 2019, 254, 114199. [Google Scholar] [CrossRef]
- Morris, D.G.; Waters, S.M.; McCarthy, S.D.; Patton, J.; Earley, B.; Fitzpatrick, R.; Murphy, J.J.; Diskin, M.G.; Kenny, D.A.; Brass, A.; et al. Pleiotropic effects of negative energy balance in the postpartum dairy cow on splenic gene expression: Repercussions for innate and adaptive immunity. Physiol. Genom. 2009, 39, 28–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turk, R.; Juretic, D.; Geres, D.; Svetina, A.; Turk, N.; Flegar-Mestric, Z. Influence of oxidative stress and metabolic adaptation on PON1 activity and MDA level in transition dairy cows. Anim. Reprod. Sci. 2008, 108, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Rui, L. Energy metabolism in the liver. Compr. Physiol. 2014, 4, 177–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lebovitz, H.E. Insulin resistance: Definition and consequences. Exp. Clin. Endocrinol. Diabetes 2001, 109, S135–S148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bendixen, E.; Danielsen, M.; Hollung, K.; Gianazza, E.; Miller, I. Farm animal proteomics—A review. J. Proteom. 2011, 74, 282–293. [Google Scholar] [CrossRef] [PubMed]
- Conrad, D.H.; Goyette, J.; Thomas, P.S. Proteomics as a method for early detection of cancer: A review of proteomics, exhaled breath condensate, and lung cancer screening. J. Gen. Intern. Med. 2008, 23, 78–84. [Google Scholar] [CrossRef] [Green Version]
- Norton, D.; Crow, B.; Bishop, M.; Kovalcik, K.; George, J.; Bralley, J.A. High performance liquid chromatography-tandem mass spectrometry (HPLC/MS/MS) assay for chiral separation of lactic acid enantiomers in urine using a teicoplanin based stationary phase. J. Chromatogr. B 2007, 850, 190–198. [Google Scholar] [CrossRef]
- Perseghin, G.; Caumo, A.; Caloni, M.; Testolin, G.; Luzi, L. Incorporation of the fasting plasma FFA concentration into QUICKI improves its association with insulin sensitivity in nonobese individuals. J. Clin. Endocrinol. Metab. 2001, 86, 4776–4781. [Google Scholar] [CrossRef]
- Miller, N.J.; Rice-Evans, C.; Davies, M.J.; Gopinathan, V.; Milner, A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. 1993, 84, 407–412. [Google Scholar] [CrossRef] [Green Version]
- Misra, H.P.; Fridovich, I. The role of superoxide anion in the autoxidation of epinephrine and simple assay for superoxide dismutase. J. Biol. Chem. 1972, 244, 6049–6055. [Google Scholar] [CrossRef]
- Roberts, C.K.; Barnard, R.J.; Sindhu, R.K.; Jurczak, M.; Ehdaie, A.; Vaziri, N.D. Oxidative stress and dysregulation of NAD(P)H oxidase and antioxidant enzymes in diet-induced metabolic syndrome. Metab.-Clin. Exp. 2006, 55, 928–934. [Google Scholar] [CrossRef] [PubMed]
- Albers, J.J.; Wahl, P.W.; Cabana, V.G.; Hazzard, W.R.; Hoover, J.J. Quantitation of apolipoprotein A-I of human plasma high density lipoprotein. Metab.-Clin. Exp. 1976, 25, 633–644. [Google Scholar] [CrossRef]
- Bradford, M.M. Bradford protein assay (Determination of protein concentrations). Anal. Biochem. 1976, 72, 248. [Google Scholar] [CrossRef]
- Kuhn, M. Caret: Classification and regression training. Astrophys. Source Code Libr. 2015, 10, 4426. [Google Scholar] [CrossRef]
- Bu, D.; Luo, H.; Huo, P.; Wang, Z.; Zhang, S.; He, Z.; Wu, Y.; Zhao, L.; Liu, J.; Guo, J.; et al. KOBAS-i: Intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res. 2021, 49, W317–W325. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 24 January 2020).
- KEGG. Available online: https://www.kegg.jp/pathway/bta01100 (accessed on 1 January 2022).
- FAO. FAOStat: Food and Agriculture Data. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 12 January 2021).
- Sauls-Hiesterman, J.A.; Banuelos, S.; Atanasov, B.; Bradford, B.J.; Stevenson, J.S. Physiologic responses to feeding rumen-protected glucose to lactating dairy cows. Anim. Reprod. Sci. 2020, 216, 106346. [Google Scholar] [CrossRef] [Green Version]
- Loncke, C.; Nozière, P.; Vernet, J.; Lapierre, H.; Bahloul, L.; Al-Jammas, M.; Sauvant, D.; Ortigues-Marty, I. Net hepatic release of glucose from precursor supply in ruminants: A meta-analysis. Animal 2020, 14, 1422–1437. [Google Scholar] [CrossRef] [Green Version]
- Greenbaum, A.L.; Salam, A. Regulation of mammary gland metabolism: Pathways of glucose utilization, metabolite profile and hormone response of a modified mammary gland cell preparation. Eur. J. Biochem. 1978, 87, 505–516. [Google Scholar] [CrossRef]
- Ingvartsen, K.L.; Andersen, J.B. Integration of metabolism and intake regulation: A review focusing on periparturient animals. J. Dairy Sci. 2000, 83, 1573–1597. [Google Scholar] [CrossRef]
- Weber, M.; Locher, L.; Huber, K.; Kenez, A.; Rehage, J.; Tienken, R.; Meyer, U.; Daenicke, S.; Sauerwein, H.; Mielenz, M. Longitudinal changes in adipose tissue of dairy cows from late pregnancy to lactation. Part 1: The adipokines apelin and resistin and their relationship to receptors linked with lipolysis. J. Dairy Sci. 2016, 99, 1549–1559. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.K. Hyperinsulinemic-euglycemic clamp to assess insulin sensitivity in vivo. Methods Mol. Biol. 2009, 560, 221–238. [Google Scholar] [CrossRef] [PubMed]
- Shingu, H.; Hodate, K.; Kushibiki, S.; Ueda, Y.; Watanabe, A.; Shinoda, M.; Matsumoto, M. Breed differences in growth hormone and insulin secretion between lactating Japanese Black cows (beef type) and Holstein cows (dairy type). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2002, 132, 493–504. [Google Scholar] [CrossRef]
- Prodanovic, R.; Kirovski, D.; Vujanac, I.; Djuric, M.; Koricanac, G.; Vranjes-Djuric, S.; Ignjatovic, M.; Samanc, H. Insulin responses to acute glucose infusions in Busa and Holstein-Friesian cattle breed during the peripartum period: Comparative study. Acta Vet. 2013, 63, 373–384. [Google Scholar] [CrossRef] [Green Version]
- Hammon, H.M.; Bellmann, O.; Voigt, J.; Schneider, F.; Kuehn, C. Glucose-dependent insulin response and milk production in heifers within a segregating resource family population. J. Dairy Sci. 2007, 90, 3247–3254. [Google Scholar] [CrossRef] [PubMed]
- Komaragiri, M.; Casper, D.P.; Erdman, R.A. Factors affecting body tissue mobilization in early lactation dairy cows. 2. Effect of dietary fat on mobilization of body fat and protein. J. Dairy Sci. 1998, 81, 169–175. [Google Scholar] [CrossRef]
- Grummer, R.R. Etiology of lipid-related metabolic disorders in periparturient dairy cows. J. Dairy Sci. 1993, 76, 3882. [Google Scholar] [CrossRef]
- Emery, R.S.; Liesman, J.S.; Herdt, T.H. Metabolism of long chain fatty acids by ruminant liver. J. Nutr. 1992, 122, 832. [Google Scholar] [CrossRef]
- Rutter, L.M.; Manns, J.G. Changes in metabolic and reproductive characteristics associated with lactation and glucose infusion in the postpartum ewe. J. Anim. Sci. 1986, 63, 538. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, B.; Wu, P.; Chu, Y.; Gui, S.; Zheng, Y.; Chen, X. Dietary selenium alleviated mouse liver oxidative stress and NAFLD Induced by obesity by regulating the KEAP1/NRF2 Pathway. Antioxidants 2022, 11, 349. [Google Scholar] [CrossRef]
- Ling, P.R.; Mueller, C.; Smith, R.J.; Bistrian, B.R. Hyperglycemia induced by glucose infusion causes hepatic oxidative stress and systemic inflammation, but not STAT3 or MAP kinase activation in liver in rats. Metab. Clin. Exp. 2003, 52, 868–874. [Google Scholar] [CrossRef]
- Ling, P.R.; Smith, R.J.; Bistrian, B.R. Acute effects of hyperglycemia and hyperinsulinemia on hepatic oxidative stress and the systemic inflammatory response in rats. Crit. Care Med. 2007, 35, 555–560. [Google Scholar] [CrossRef]
- Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. J. 2012, 5, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Marklund, S.L. Extracellular superoxide dismutase and other superoxide dismutase isoenzymes in tissues from nine mammalian species. Biochem. J. 1984, 222, 649–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halliwell, B.; Chirico, S. Lipid peroxidation: Its mechanism, measurement, and significance. Am. J. Clin. Nutr. 1993, 57, 724S–725S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, J.L.; Goldfine, I.D.; Maddux, B.A.; Grodsky, G.M. Are oxidative stress activated signaling pathways mediators of insulin resistance and β-cell dysfunction? Diabetes 2003, 52, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, S.; Iqbal, M.; Karam, J.; Salifu, M.; Mcfarlane, S.I. Oxidative stress, glucose metabolism, and the prevention of type 2 diabetes: Pathophysiological insights. Antioxid Redox Signal. 2007, 9, 911–929. [Google Scholar] [CrossRef] [PubMed]
- Kuhla, B.; Ingvartsen, K.L. Proteomics and the characterization of fatty liver metabolism in early lactation dairy cows. In Proteomics in Domestic Animals: From Farm to Systems Biology; Springer: Berlin/Heidelberg, Germany, 2018; pp. 219–231. [Google Scholar] [CrossRef]
- Swartz, T.H.; Moallem, U.; Kamer, H.; Kra, G.; Levin, Y.; Mamedova, L.K.; Bradford, B.J.; Zachut, M. Characterization of the liver proteome in dairy cows experiencing negative energy balance at early lactation. J. Proteom. 2021, 246, 104308. [Google Scholar] [CrossRef]
- Ryu, C.S.; Choi, Y.J.; Nam, H.S.; Jeon, J.S.; Jung, T.; Park, J.E.; Choi, S.J.; Lee, K.; Lee, M.Y.; Kim, S.K. Short-term regulation of the hepatic activities of cytochrome P450 and glutathione S-transferase by nose-only cigarette smoke exposure in mice. Food Chem. Toxicol. 2019, 125, 182–189. [Google Scholar] [CrossRef]
- Hayes, J.D.; Pulford, D.J. The glutathione s-transferase supergene family: Regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance part I. Crit. Rev. Biochem. Mol. Biol. 1995, 30, 521–600. [Google Scholar] [CrossRef]
- Oakley, A.J. Glutathione transferases: New functions. Curr. Opin. Struct. Biol. 2005, 15, 716–723. [Google Scholar] [CrossRef]
- Stumpf, D.A.; Mcafee, J.; Parks, J.K.; Eguren, L. Propionate inhibition of succinate:CoA ligase (GDP) and the citric acid cycle in mitochondria. Pediatric Res. 1980, 14, 1127–1131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abreu, I.A.; Cabelli, D.E. Superoxide dismutases—A review of the metal-associated mechanistic variations. Biochim. Biophys. Acta (BBA)—Proteins Proteom. 2010, 1804, 263–274. [Google Scholar] [CrossRef]
- Yen, T.C.; KING, K.; Lee, H.C.; Yeh, S.H.; Wei, Y.H. Age-dependent increase of mitochondrial DNA deletions together with lipid peroxides and superoxide dismutase in human liver mitochondria. Free Radic. Bio. Med. 1994, 16, 207–214. [Google Scholar] [CrossRef]
- Koch, O.R.; Deleo, M.E.; Borrello, S.; Palombini, G.; Galeotti, T. Ethanol treatment up regulates the expression of mitochondrial manganese superoxide dismutase in rat liver. Biochem. Biophys. Res. Commun. 1994, 201, 1356–1365. [Google Scholar] [CrossRef] [PubMed]
- Schmitz-Peiffer, C.; Biden, T.J. Protein kinase C function in muscle, liver, and beta-cells and its therapeutic implications for type 2 diabetes. Diabetes 2008, 57, 1774–1783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karasik, A.; Rothenberg, P.L.; Yamada, K.; White, M.F.; Kahn, C.R. Increased protein kinase C activity is linked to reduced insulin receptor autophosphorylation in liver of starved rats. J. Biol. Chem. 1990, 265, 10226–10231. [Google Scholar] [CrossRef]
Item 1 | Treatment 2 | SEM | p-Value | |
---|---|---|---|---|
CON | RPG | |||
Oxidative stress | ||||
MDA, μmol/mg protein | 0.68 | 1.09 | 0.116 | 0.02 |
Antioxidant | ||||
TAC, μmol/mg protein | 243 | 217 | 24.2 | 0.35 |
SOD, U/mg protein | 1.24 | 2.02 | 0.315 | 0.07 |
CAT, U/mg protein | 25.1 | 25.7 | 0.18 | 0.06 |
GPx, U/mg protein | 27.6 | 52 | 8.04 | 0.03 |
Triacylglycerol, μmol/g | 540 | 958 | 115.8 | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Z.; Fang, L.; Ungerfeld, E.; Li, X.; Zhou, C.; Tan, Z.; Jiang, L.; Han, X. Supplementation of Rumen-Protected Glucose Increased the Risk of Disturbance of Hepatic Metabolism in Early Postpartum Holstein Cows. Antioxidants 2022, 11, 469. https://doi.org/10.3390/antiox11030469
Ma Z, Fang L, Ungerfeld E, Li X, Zhou C, Tan Z, Jiang L, Han X. Supplementation of Rumen-Protected Glucose Increased the Risk of Disturbance of Hepatic Metabolism in Early Postpartum Holstein Cows. Antioxidants. 2022; 11(3):469. https://doi.org/10.3390/antiox11030469
Chicago/Turabian StyleMa, ZhiYuan, LuoYun Fang, Emilio Ungerfeld, XiaoPeng Li, ChuanShe Zhou, ZhiLiang Tan, LinShu Jiang, and XueFeng Han. 2022. "Supplementation of Rumen-Protected Glucose Increased the Risk of Disturbance of Hepatic Metabolism in Early Postpartum Holstein Cows" Antioxidants 11, no. 3: 469. https://doi.org/10.3390/antiox11030469
APA StyleMa, Z., Fang, L., Ungerfeld, E., Li, X., Zhou, C., Tan, Z., Jiang, L., & Han, X. (2022). Supplementation of Rumen-Protected Glucose Increased the Risk of Disturbance of Hepatic Metabolism in Early Postpartum Holstein Cows. Antioxidants, 11(3), 469. https://doi.org/10.3390/antiox11030469