Does A Flavoured Extra Virgin Olive Oil Have Higher Antioxidant Properties?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Quality Parameters
2.3. Determination of Phenol Compounds
2.4. Statistical Analysis
3. Results and Discussion
3.1. Quality Parameters
3.2. Phenolic Compounds
3.3. Changes of Phenolic Profile during the Storage Experiment
3.4. Multivariate Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Visioli, F.; Franco, M.; Toledo, E.; Luchsinger, J.; Willett, W.C.; Hu, F.B.; Martínez-González, M.A. Olive oil and prevention of chronic diseases: Summary of an International conference. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 649–656. [Google Scholar] [CrossRef] [PubMed]
- García-González, D.L.; Aparicio-Ruiz, R.; Aparicio, R. Olive oil. In Gourmet and Health-Promoting Specialty Oils, 1st ed.; Kamal-Eldin, A., Moreau, R., Eds.; AOCS Press: Urbana, IL, USA, 2009; pp. 33–72. [Google Scholar]
- Tripoli, E.; Giammanco, M.; Tabacchi, G.; Di Majo, D.; Giammanco, S.; La Guardia, M. The phenolic compounds of olive oil: Structure, biological activity and beneficial effects on human health. Nutr. Res. Rev. 2005, 18, 98–112. [Google Scholar] [CrossRef] [PubMed]
- de Alzaa, A.F.; Guillaume, C.; Ravetti, L. Cooking with Extra Virgin Olive Oil. In Olive Oil—New Perspectives and Applications, 1st ed.; IntechOpen Online Book Series; IntechOpen: London, UK, 2021; pp. 1–13. Available online: https://www.intechopen.com/chapters/76086 (accessed on 21 December 2021).
- Morales, M.T.; Aparicio-Ruiz, R.; Aparicio, R. Chromatographic methodologies: Compounds for olive oil odor Issues. In Handbook of Olive Oil: Analysis and Properties, 2nd ed.; Aparicio, R., Harwood, J., Eds.; Springer: New York, NY, USA, 2013; pp. 261–309. [Google Scholar]
- Genovese, A.; Yang, N.; Linforth, R.; Sacchi, R.; Fisk, I. The role of phenolic compounds on olive oil release. Food Res. Int. 2018, 112, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Aparicio-Ruiz, R.; García-González, D.L.; Oliver-Pozo, C.; Tena, N.; Morales, M.T.; Aparicio, R. Phenolic profile of virgin olive oil with and without sensory defect: Oils with non-oxidative defects exhibit a considerable concentration of phenols. Eur. J. Lipid Sci. Technol. 2016, 118, 299–307. [Google Scholar] [CrossRef]
- Morales, M.T.; Tisimidou, M. Handbook of Olive Oil, 1st ed.; Aspen Publisher: Gaitesburg, MD, USA, 2000; pp. 393–438. [Google Scholar]
- Clodoveo, M.L.; Camposeo, S.; Amirante, R.; Dugo, G.; Cicero, N.; Boskou, D. Research and innovative approaches to obtain VOO with a higher level of bioactive constituents. In Olive and Olive Oil Bioactive Constituents, 1st ed.; Boskou, D., Ed.; AOCS Press: Urbana, IL, USA, 2015; pp. 179–215. [Google Scholar]
- Cinquanta, L.; Esti, M.; La Notte, E. Evolution of Phenolic Compounds in Virgin Olive Oil During Storage. J. Am. Oil Soc. 1997, 10, 1259–1264. [Google Scholar] [CrossRef]
- Lobo-Prieto, A.; Tena, N.; Aparicio-Ruiz, R.; Morales, M.T.; García-González, D.L. Tracking sensory characteristics of virgin olive oils during storage: Interpretation of their changes from a multiparametric perspective. Molecules 2020, 25, 1686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torre-Robles, A.; Monteagudo, C.; Mariscal-Arcas, M.; Lorenzo-Tovar, M.L.; Olea-Serrano, F.; Rivas, A. Effect of Light Exposure on the Quality and Phenol Content of Commercial Extra Virgin Olive Oil during 12-Month Storage. J. Am. Oil Soc. 2019, 96, 381–389. [Google Scholar] [CrossRef]
- Baiano, A.; Gambacorta, G.; Terracone, C.; Previtali, M.A.; Lamacchia, C.; La Notte, E. Changes in Phenolic Content and Antioxidant Activity of Italian EVOO during storage. J. Food Sci. 2009, 2, 177–183. [Google Scholar] [CrossRef]
- Kotsiou, K.; Tasioula-Margari, M. Monitoring the phenolic compounds of Greek extra-virgin olive oils during storage. Food Chem. 2016, 200, 255–262. [Google Scholar] [CrossRef]
- Sacchi, R.; Medaglia, D.D.; Paduano, A.; Caporaso, N.; Genovese, A. Characterization of lemon-flavoured olive oils. LWT-Food Sci. Technol. 2017, 79, 326–332. [Google Scholar] [CrossRef]
- Veillet, S.; Tomao, V.; Chemat, F. Ultrasound assisted maceration: An original procedure for direct aromatisation of olive oil with basil. Food Chem. 2010, 123, 905–911. [Google Scholar] [CrossRef]
- Baiano, A.; Previtali, M.A.; Viggiani, I.; Varva, G.; Squeo, G.; Paradiso, V.M.; Summo, C.; Gomes, T.; Caponio, F. As oil blending affects physical, chemical, and sensory characteristics of flavoured olive oils. Eur. Food Res. Technol. 2016, 242, 1693–1708. [Google Scholar] [CrossRef]
- European Commission. Commission regulation (EC) No 2016/2095 of 26 of September amending regulation (EEC) No 2568/91 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. Off. J. Eur. Union 2016, 640, 11–16. [Google Scholar]
- Kasimoglu, Z.; Tontul, I.; Soylu, A.; Gulen, K.; Topuz, A. The oxidative stability of flavoured virgin olive oil: The effect of the water activity of rosemary. J. Food Meas. Charact. 2018, 12, 2080–2086. [Google Scholar] [CrossRef]
- Mateos, R.; Espartero, J.L.; Trujillo, M.; Ríos, J.J.; León-Camacho, M.; Alcudia, F.; Cert, A. Determination of phenols, flavones, and lignans in virgin olive oils by solid-phase extraction and high-performance liquid chromatography with diode array ultraviolet detection. J. Agric. Food Chem. 2001, 49, 2185–2192. [Google Scholar] [CrossRef] [PubMed]
- Leung, K.S.; Leung, H.H.; Wu, C.Y.; Galano, J.M.; Durand, T.; Lee, J.C.Y. Limited Antioxidant Effect of Rosemary in Lipid Oxidation of Pan-Fried Salmon. Biomolecules 2019, 9, 313. [Google Scholar] [CrossRef] [Green Version]
- Bobiano, M.; Rodrigues, N.; Madureira, M.; Dias, L.G.; Veloso, A.C.A.; Pereira, J.A.; Peres, A.M. Unmasking Sensory Defects of Olive Oils Flavored with Basil and Oregano Using an Electronic Tongue-Chemometric Tool. J. Am. Oil Chem. Soc. 2019, 96, 751–760. [Google Scholar] [CrossRef] [Green Version]
- Monasterio, R.P.; Olmo-García, L.; Bajoub, A.; Fernaíndez-Gutiérrez, A.; Carrasco-Pancorbo, A. Phenolic Compounds Profiling of Virgin Olive Oils from Different Varieties Cultivated in Mendoza, Argentina, by Using Liquid Chromatography−Mass Spectrometry. J. Agric. Food Chem. 2017, 65, 8184–8195. [Google Scholar] [CrossRef]
- Cinelli, G.; Cofelice, M.; Venditti, F. Veiled Extra Virgin Olive Oils: Role of Emulsion, Water and Antioxidants. Colloids Interfaces 2020, 4, 38. [Google Scholar] [CrossRef]
- International Olive Council. Trade Standard Applying to Olive Oils and Olive-Pomace Oils. IOC Stand. Methods Guides 2015, 15, 1–17. [Google Scholar]
- Esposto, S.; Taticchi, A.; Servili, M.; Urbani, S.; Sordini, B.; Veneziani, G.L.; Daidone, L.; Selvaggini, R. Overall quality evolution of extra virgin olive oil exposed to light for 10 months in different containers. Food Chem. 2021, 351, 129297. [Google Scholar] [CrossRef]
- Ayadi, M.A.; Grati-Kamoun, N.; Attia, H. Physico-chemical change and heat stability of extra virgin olive oils flavoured by selected Tunisian aromatic plants. Food Chem. Toxicol. 2009, 47, 2613–2619. [Google Scholar] [CrossRef] [PubMed]
- Romero, I. Evaluación de Indicadores de la Calidad del Aceite de Oliva Virgen: Fortalezas, Debilidades y Oportunidades. Ph.D. Thesis, Universidad de Sevilla, Seville, Spain, 2015. [Google Scholar]
- Migliorini, M.; Cecchi, L.; Cherubini, C.; Trapani, S.; Cini, E.; Zanoni, B. Understanding degradation of phenolic compounds during olive oil processing by inhibitor addition. Eur. J. Lipid Sci. Tech. 2012, 114, 942–950. [Google Scholar] [CrossRef]
- Kietkwanboot, A.; Chaiprapat, S.; Müller, R.; Suttinun, O. Biodegradation of phenolic compounds present in palm oil mill effluent as single and mixed substrates by Trametes hirsuta AK04. J. Environ. Sci. Health 2020, 55, 989–1002. [Google Scholar] [CrossRef] [PubMed]
- Pedan, V.; Martin, P.; Rohn, S.; Nyfeler, M.; Bongartz, A. Characterization of Phenolic Compounds and Their Contribution to the Sensory Properties of Olive Oil. Molecules 2019, 24, 2041. [Google Scholar] [CrossRef] [Green Version]
- Berim, A.; Gang, D.R. Production of methoxylated flavonoids in yeast using ring A hydroxylases and flavonoid O-methyltransferases from sweet basil. Appl. Microbiol. Biotechnol. 2018, 102, 5585–5598. [Google Scholar] [CrossRef]
- Aziz, E.; Batool, R.; Akhtar, W.; Shahzad, T.; Malik, A. Rosemary species: A review of phytochemicals, bioactivities and industrial applications. S. Afr. J. Bot. 2021, in press.
- Esposto, S.; Selvaggini, R.; Taticchi, A.; Veneziani, G.; Sordini, B.; Servili, M. Quality evolution of extra-virgin olive oils according to their chemical composition during 22 months of storage under dark conditions. Food Chem. 2020, 311, 126044. [Google Scholar] [CrossRef]
- Koeduka, T.; Fridman, E.; Gang, D.R.; Vassão, D.G.; Jackson, B.L.; Kish, C.M.; Orlova, I.; Spassova, S.M.; Lewis, N.G.; Noel, J.P.; et al. Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester. Proc. Natl. Acad. Sci. USA 2006, 103, 10128–10133. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, I.; Fozia-Waheed, A.; Tahir, N.B.; Rais, A.K. Anti-inflammatory constituents from Perovskia atriplicifolia. Pharm. Biol. 2015, 2015, 1628–1631. [Google Scholar] [CrossRef]
Repeatability (RSD %) | Intermediate Precision (RSD %) | |
---|---|---|
p-hydroxyphenylacetic acid (IS1) | 1.95 | 3.38 |
o-coumaric acid (IS2) | 2.15 | 5.93 |
tR (min) | Phenolic Compound | Concentration (mg/kg ± SD) |
---|---|---|
8.353 | Hydroxytyrosol | 10.79 ± 1.07 |
12.087 | Tyrosol | 13.68 ± 0.88 |
15.893 | Vanillic acid | 0.29 ± 0.03 |
17.660 | Vanillin | 0.01 ± 0.00 |
19.180 | p-Coumaric acid | 0.10 ± 0.04 |
22.213 | Hydroxytyrosol acetate | 3.49 ± 0.06 |
30.213 | Dialdehydic decarboxymethyloleuropein aglycone (3,4-DHPEA-EDA) | 118.18 ± 4.52 |
31.100 | Tyrosol acetate | 8.21 ± 0.50 |
35.980 | Dialdehydic decarboxymethyligstroside aglycone (p-HPEA-EDA) | 145.02 ± 7.31 |
36.787 | Pinoresinol | 0.93 ± 0.10 |
37.733 | Cinnamic acid | 0.14 ± 0.01 |
42.187 | Luteolin | 2.99 ± 0.99 |
43.920 | Aldehydic decarboxymethyloleuropein aglycone (3,4-DHPEA-EA) | 256.18 ± 8.52 |
47.507 | Apigenine | 3.54 ± 0.71 |
49.927 | Aldehydic decarboxymethyligstroside aglycone (p-HPEA-EA) | 135.01 ± 0.75 |
VOO-1 | VOO-4 | VOO-5 | VOO-8 | |
---|---|---|---|---|
Hydroxytyrosol | 12.24 ± 1.57 a | 18.19 ± 0.71 b | 20.57 ± 0.42 b | 25.96 ± 0.71 c |
Hydroxytyrosol acetate | 1.73 ± 0.10 a | 1.71 ± 0.03 a | 1.42 ± 0.01 b | 1.39 ± 0.03 b |
3,4-DHPEA-EA | 2.72 ± 0.13 a | 8.77 ± 0.57 b | 11.69 ± 0.35 c | 18.83 ± 1.39 d |
3,4-DHPEA-EDA | 120.57 ± 1.93 a | 98.17 ± 1.27 b | 89.52 ± 9.56 b | 80.98 ± 1.80 c |
Tyrosol | 13.70 ± 0.60 a | 15.77 ± 0.62 a | 17.67 ± 0.27 b | 22.43 ± 0.87 c |
Tyrosol acetate | 8.21 ± 1.15 a | 3.56 ± 0.38 b | 2.77 ± 0.18 c | 2.12 ± 0.01 d |
p-HPEA-EA | 6.77 ± 0.26 a | 5.72 ± 0.49 a | 5.44 ± 0.98 a | 5.09 ± 0.04 b |
p-HPEA-EDA | 143.23 ± 9.04 a | 104.23 ± 4.03 b | 99.34 ± 10.46 b | 96.72 ± 7.86 b |
BOO-1 | BOO-4 | BOO-5 | BOO-8 | |
---|---|---|---|---|
Hydroxytyrosol | 10.79 ± 1.40 a | 11.26 ± 0.22 a | 14.08 ± 0.81 a | 14.19 ± 0.17 a |
Hydroxytyrosol acetate | 1.71 ± 0.01 a | 1.40 ± 0.03 b | 1.24 ± 0.03 c | 0.98 ± 0.11 c |
3,4-DHPEA-EA | 2.67 ± 0.02 a | 6.29 ± 0.38 b | 7.93 ± 1.04 b | 12.54 ± 0.64 c |
3,4-DHPEA-EDA | 108.85 ± 6.23 a | 77.70 ± 0.42 b | 70.65 ± 0.51 c | 67.57 ± 5.60 c |
Tyrosol | 11.55 ± 0.91 a | 12.46 ± 0.35 a | 14.71 ± 1.15 a | 16.26 ± 1.64 a |
Tyrosol acetate | 10.96 ± 0.67 a | 4.98 ± 0.91 b | 3.67 ± 0.18 b | 2.03 ± 0.01 c |
p-HPEA-EA | 5.93 ± 0.02 a | 5.31 ± 0.92 a | 4.71 ± 0.57 a | 4.09 ± 0.34 b |
p-HPEA-EDA | 119.96 ± 4.44 a | 89.38 ± 3.03 b | 76.24 ± 2.82 c | 72.53 ± 1.54 c |
ROO-1 | ROO-4 | ROO-5 | ROO-8 | |
Hydroxytyrosol | 10.38 ± 1.59 a | 12.23 ± 0.24 a | 12.90 ± 0.99 a | 15.37 ± 1.07 a |
Hydroxytyrosol acetate | 1.51 ± 0.06 a | 1.16 ± 0.05 b | 1.10 ± 0.03 b | 0.83 ± 0.06 c |
3,4-DHPEA-EA | 2.78 ± 0.15 a | 6.26 ± 0.07 b | 6.68 ± 0.74 b | 26.13 ± 1.55 c |
3,4-DHPEA-EDA | 86.68 ± 7.57 a | 72.60 ± 2.22 a | 65.78 ± 3.38 a | 21.52 ± 1.67 b |
Tyrosol | 10.21 ± 0.04 a | 13.20 ± 0.17 b | 13.44 ± 0.28 b | 28.76 ± 1.11 c |
Tyrosol acetate | 9.77 ± 0.32 a | 4.16 ± 0.66 b | 3.26 ± 0.15 b | 0.35 ± 0.17 c |
p-HPEA-EA | 7.02 ± 0.64 a | 6.13 ± 0.55 a | 5.20 ± 0.38 a | 2.54 ± 0.22 b |
p-HPEA-EDA | 105.49 ± 4.53 a | 92.92 ± 2.61 a | 83.66 ± 4.18 b | 18.49 ± 1.21 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz-Montaña, E.J.; Barbero-López, M.; Aparicio-Ruiz, R.; Morales, M.T. Does A Flavoured Extra Virgin Olive Oil Have Higher Antioxidant Properties? Antioxidants 2022, 11, 550. https://doi.org/10.3390/antiox11030550
Díaz-Montaña EJ, Barbero-López M, Aparicio-Ruiz R, Morales MT. Does A Flavoured Extra Virgin Olive Oil Have Higher Antioxidant Properties? Antioxidants. 2022; 11(3):550. https://doi.org/10.3390/antiox11030550
Chicago/Turabian StyleDíaz-Montaña, Enrique Jacobo, María Barbero-López, Ramón Aparicio-Ruiz, and María T. Morales. 2022. "Does A Flavoured Extra Virgin Olive Oil Have Higher Antioxidant Properties?" Antioxidants 11, no. 3: 550. https://doi.org/10.3390/antiox11030550
APA StyleDíaz-Montaña, E. J., Barbero-López, M., Aparicio-Ruiz, R., & Morales, M. T. (2022). Does A Flavoured Extra Virgin Olive Oil Have Higher Antioxidant Properties? Antioxidants, 11(3), 550. https://doi.org/10.3390/antiox11030550