Identification of Coenzyme Q10 and Skeletal Muscle Protein Biomarkers as Potential Factors to Assist in the Diagnosis of Sarcopenia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Study Design
2.2. Data Collection, Anthropometry, and Skeletal Muscle Function Measurements
2.3. Biochemical Analysis
2.4. Skeletal Muscle Protein Biomarkers Measurements
2.5. Coenzyme Q10 Measurement
2.6. Statistical Analyses
3. Results
3.1. Characteristics of Subjects
3.2. Skeletal Muscle Protein Biomarkers and Skeletal Muscle Function
3.3. Correlations between Coenzyme Q10 and the Skeletal Muscle Protein Biomarkers and Skeletal Muscle Functions
3.4. The ROC Curve Analysis of Coenzyme Q10 and the Skeletal Muscle Protein Biomarkers for Predicting Sarcopenia
3.5. Associations between Sarcopenia and Coenzyme Q10 and the Skeletal Muscle Protein Biomarkers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Dodds, R.M.; Sayer, A.A. Sarcopenia; frailty and mortality: The evidence is growing. Age Ageing 2016, 45, 570–571. [Google Scholar] [CrossRef] [Green Version]
- Keller, K.; Engelhardt, M. Strength and muscle mass loss with aging process. Age and strength loss. Muscles Ligaments Tendons J. 2014, 3, 346–350. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3940510/ (accessed on 8 March 2022). [CrossRef] [PubMed]
- Marzetti, E.; Calvani, R.; Tosato, M.; Cesari, M.; Di Bari, M.; Cherubini, A.; Collamati, A.; D’Angelo, E.; Pahor, M.; Bernabei, R.; et al. SPRINTT Consortium. Sarcopenia: An overview. Aging Clin. Exp. Res. 2017, 29, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.H.; Wang, T.F.; Liu, L.K.; Lee, W.J.; Peng, L.N.; Chen, L.K. Epidemiology of Sarcopenia and Factors Associated with It Among Community-Dwelling Older Adults in Taiwan. Am. J. Med. Sci. 2019, 357, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307. [Google Scholar] [CrossRef]
- Chianca, V.; Albano, D.; Messina, C.; Gitto, S.; Ruffo, G.; Guarino, S.; Del Grande, F.; Sconfienza, L.M. Sarcopenia: Imaging assessment and clinical application. Abdom. Radiol. 2021, 11, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Guglielmi, G.; Ponti, F.; Agostini, M.; Amadori, M.; Battista, G.; Bazzocchi, A. The role of DXA in sarcopenia. Aging Clin. Exp. Res. 2016, 28, 1047–1060. [Google Scholar] [CrossRef]
- Ceniccola, G.D.; Castro, M.G.; Piovacari, S.M.F.; Horie, L.M.; Corrêa, F.G.; Barrere, A.P.N.; Toledo, D.O. Current technologies in body composition assessment: Advantages and disadvantages. Nutrition 2019, 62, 25–31. [Google Scholar] [CrossRef]
- Coelho-Junior, H.J.; Picca, A.; Calvani, R.; Uchida, M.C.; Marzetti, E. If my muscle could talk: Myokines as a biomarker of frailty. Exp. Gerontol. 2019, 127, 110715. [Google Scholar] [CrossRef] [PubMed]
- Xin, C.; Liu, J.; Zhang, J.; Zhu, D.; Wang, H.; Xiong, L.; Lee, Y.; Ye, J.; Lian, K.; Xu, C.; et al. Irisin improves fatty acid oxidation and glucose utilization in type 2 diabetes by regulating the AMPK signaling pathway. Int. J. Obes. 2016, 40, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Kurdiova, T.; Balaz, M.; Vician, M.; Maderova, D.; Vlcek, M.; Valkovic, L.; Srbecky, M.; Imrich, R.; Kyselovicova, O.; Belan, V.; et al. Effects of obesity; diabetes and exercise on Fndc5 gene expression and irisin release in human skeletal muscle and adipose tissue: In vivo and in vitro studies. J. Physiol. 2014, 592, 1091–1107. [Google Scholar] [CrossRef] [PubMed]
- McPherron, A.C.; Lawler, A.M.; Lee, S.J. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 1997, 387, 83–90. [Google Scholar] [CrossRef]
- Trendelenburg, A.U.; Meyer, A.; Rohner, D.; Boyle, J.; Hatakeyama, S.; Glass, D.J. Myostatin reduces Akt/TORC1/p70S6K signaling; inhibiting myoblast differentiation and myotube size. Am. J. Physiol. Cell Physiol. 2009, 296, C1258–C1270. [Google Scholar] [CrossRef] [Green Version]
- Zimmers, T.A.; Davies, M.V.; Koniaris, L.G.; Haynes, P.; Esquela, A.F.; Tomkinson, K.N.; McPherron, A.C.; Wolfman, N.M.; Lee, S.J. Induction of cachexia in mice by systemically administered myostatin. Science 2002, 296, 1486–1488. [Google Scholar] [CrossRef] [Green Version]
- Marzetti, E.; Calvani, R.; Cesari, M.; Buford, T.W.; Lorenzi, M.; Behnke, B.J.; Leeuwenburgh, C. Mitochondrial dysfunction and sarcopenia of aging: From signaling pathways to clinical trials. Int. J. Biochem. Cell Biol. 2013, 45, 2288–2301. [Google Scholar] [CrossRef] [Green Version]
- Groneberg, D.A.; Kindermann, B.; Althammer, M.; Klapper, M.; Vormann, J.; Littarru, G.P.; Döring, F. Coenzyme Q10 affects expression of genes involved in cell signalling; metabolism and transport in human CaCo-2 cells. Int. J. Biochem. Cell Biol. 2005, 37, 1208–1218. [Google Scholar] [CrossRef]
- Del Pozo-Cruz, J.; Rodríguez-Bies, E.; Ballesteros-Simarro, M.; Navas-Enamorado, I.; Tung, B.T.; Navas, P.; López-Lluch, G. Physical activity affects plasma coenzyme Q10 levels differently in young and old humans. Biogerontology 2014, 15, 199–211. [Google Scholar] [CrossRef] [PubMed]
- Del Pozo-Cruz, J.; Rodríguez-Bies, E.; Navas-Enamorado, I.; Del Pozo-Cruz, B.; Navas, P.; López-Lluch, G. Relationship between functional capacity and body mass index with plasma coenzyme Q10 and oxidative damage in community-dwelling elderly-people. Exp. Gerontol. 2014, 52, 46–54. [Google Scholar] [CrossRef]
- Fischer, A.; Onur, S.; Niklowitz, P.; Menke, T.; Laudes, M.; Rimbach, G.; Döring, F. Coenzyme Q10 Status as a Determinant of Muscular Strength in Two Independent Cohorts. PLoS ONE 2016, 11, e0167124. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Camacho, J.D.; Bernier, M.; López-Lluch, G.; Navas, P. Coenzyme Q10 Supplementation in Aging and Disease. Front. Physiol. 2018, 9, 44. [Google Scholar] [CrossRef] [Green Version]
- Baumgartner, R.N.; Koehler, K.M.; Romero, L.; Garry, P.J. Serum albumin is associated with skeletal muscle in elderly men and women. Am. J. Clin. Nutr. 1996, 64, 552–558. [Google Scholar] [CrossRef] [PubMed]
- Visser, M.; Kritchevsky, S.B.; Newman, A.B.; Goodpaster, B.H.; Tylavsky, F.A.; Nevitt, M.C.; Harris, T.B. Lower serum albumin concentration and change in muscle mass: The Health; Aging and Body Composition Study. Am. J. Clin. Nutr. 2005, 82, 531–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swaminathan, R.; Ho, C.S.; Donnan, S.P. Body composition and plasma creatine kinase activity. Ann. Clin. Biochem. 1988, 25, 389–391. [Google Scholar] [CrossRef] [PubMed]
- Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Scherr, P.A.; Wallace, R.B. A short physical performance battery assessing lower extremity function: Association with self-reported disability and prediction of mortality and nursing home admission. J. Gerontol. 1994, 49, M85–M94. [Google Scholar] [CrossRef]
- Woo, J.; Leung, J.; Morley, J.E. Validating the SARC-F: A suitable community screening tool for sarcopenia? J. Am. Med. Dir. Assoc. 2014, 15, 630–634. [Google Scholar] [CrossRef]
- Littarru, G.P.; Mosca, F.; Fattorini, D.; Bompadre, S. Method to Assay Coenzyme Q10 in Blood Plasma or Blood Serum. U.S. Patent 7,303,921, 4 December 2007. Available online: https://patentimages.storage.googleapis.com/pdfs/6aadab0bc819eac3443b/US7303921.pdf (accessed on 8 March 2022).
- Molyneux, S.L.; Young, J.M.; Florkowski, C.M.; Lever, M.; George, P.M. Coenzyme Q10: Is there a clinical role and a case for measurement? Clin. Biochem. Rev. 2008, 29, 71–82. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2533152/ (accessed on 8 March 2022).
- Chen, H.C.; Huang, C.C.; Lin, T.J.; Hsu, M.C.; Hsu, Y.J. Ubiquinol Supplementation Alters Exercise Induced Fatigue by Increasing Lipid Utilization in Mice. Nutrients 2019, 11, 2550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, P.S.; Yen, C.H.; Huang, Y.Y.; Chiu, C.J.; Lin, P.T. Associations between Coenzyme Q10 Status; Oxidative Stress; and Muscle Strength and Endurance in Subjects with Osteoarthritis. Antioxidants 2020, 9, 1275. [Google Scholar] [CrossRef] [PubMed]
- de la Bella-Garzón, R.; Fernández-Portero, C.; Alarcón, D.; Amián, J.G.; López-Lluch, G. Levels of Plasma Coenzyme Q10 Are Associated with Physical Capacity and Cardiovascular Risk in the Elderly. Antioxidants 2022, 11, 279. [Google Scholar] [CrossRef] [PubMed]
- Mancinelli, R.; Checcaglini, F.; Coscia, F.; Gigliotti, P.; Fulle, S.; Fanò-Illic, G. Biological Aspects of Selected Myokines in Skeletal Muscle: Focus on Aging. Int. J. Mol. Sci. 2021, 22, 8520. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.S.; Kim, T.H.; Nguyen, T.T.; Park, K.S.; Kim, N.; Kong, I.D. Circulating irisin levels as a predictive biomarker for sarcopenia: A cross-sectional community-based study. Geriatr. Gerontol. Int. 2017, 17, 2266–2273. [Google Scholar] [CrossRef] [Green Version]
- Baird, M.F.; Graham, S.M.; Baker, J.S.; Bickerstaff, G.F. Creatine-kinase- and exercise-related muscle damage implications for muscle performance and recovery. J. Nutr. Metab. 2012, 2012, 960363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosalki, S.B. Low serum creatine kinase activity. Clin. Chem. 1998, 44, 905. Available online: https://academic.oup.com/clinchem/article/44/5/905/5642657 (accessed on 8 March 2022). [CrossRef] [PubMed] [Green Version]
- Flahault, A.; Metzger, M.; Chassé, J.F.; Haymann, J.P.; Boffa, J.J.; Flamant, M.; Vrtovsnik, F.; Houillier, P.; Stengel, B.; Thervet, E.; et al. NephroTest study group. Low Serum Creatine Kinase Level Predicts Mortality in Subjects with a Chronic Kidney Disease. PLoS ONE 2016, 11, e0156433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurita, N.; Kamitani, T.; Wada, O.; Shintani, A.; Mizuno, K. Disentangling Associations Between Serum Muscle Biomarkers and Sarcopenia in the Presence of Pain and Inflammation Among Subjects with Osteoarthritis: The SPSS-OK Study. J. Clin. Rheumatol. 2021, 27, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Schalk, B.W.; Deeg, D.J.; Penninx, B.W.; Bouter, L.M.; Visser, M. Serum albumin and muscle strength: A longitudinal study in older men and women. J. Am. Geriatr. Soc. 2005, 53, 1331–1338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snyder, C.K.; Lapidus, J.A.; Cawthon, P.M.; Dam, T.T.; Sakai, L.Y.; Marshall, L.M.; Osteoporotic Fractures in Men (MrOS) Research Group. Serum albumin in relation to change in muscle mass; muscle strength; and muscle power in older men. J. Am. Geriatr. Soc. 2012, 60, 1663–1672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uemura, K.; Doi, T.; Lee, S.; Shimada, H. Sarcopenia and Low Serum Albumin Level Synergistically Increase the Risk of Incident Disability in Older Adults. J. Am. Med. Dir. Assoc. 2019, 20, 90–93. [Google Scholar] [CrossRef]
- Pravst, I.; Zmitek, K.; Zmitek, J. Coenzyme Q10 contents in foods and fortification strategies. Crit. Rev. Food Sci. Nutr. 2010, 50, 269–280. [Google Scholar] [CrossRef]
Sarcopenia (n = 46) | Non-Sarcopenia (n = 53) | p Value | |
---|---|---|---|
Age (years) | 74.8 ± 7.4 (76.5) | 72.0 ± 8.4 (72.0) | 0.08 |
Males (n, %) | 19 (41.3%) | 7 (13.2%) | 0.003 |
Body mass index (kg/m2) | 19.8 ± 2.4 (20.1) | 23.1 ± 2.9 (22.5) | <0.001 |
Systolic pressure (mmHg) | 130.8 ± 19.5 (127.5) | 134.8 ± 19.2 (134.0) | 0.31 |
Diastolic pressure (mmHg) | 76.5 ± 13.9 (75.5) | 76.0 ± 10.6 (76.0) | 0.98 |
Waist (cm) | |||
Males | 81.5 ± 7.8 (83.5) | 89.6 ± 7.4 (88.5) | 0.03 |
Females | 76.5 ± 6.9 (76.5) | 84.9 ± 9.5 (84.8) | <0.001 |
Waist–hip ratio | 0.88 ± 0.07 (0.89) | 0.91 ± 0.08 (0.92) | 0.07 |
Calf circumference (cm) | |||
Males | 31.0 ± 2.2 (31.0) | 34.7 ± 1.9 (35.0) | <0.001 |
Females | 29.9 ± 2.6 (29.8) | 32.3 ± 2.5 (31.9) | <0.001 |
SARC-F (points) | 2.0 ± 2.3 (2.0) | 2.0 ± 2.3 (1.0) | 0.94 |
Tobacco use (n, %) 1 | 11 (23.9%) | 0 (0.0%) | <0.001 |
Alcohol use (n, %) 2 | 5 (10.9%) | 1 (1.9%) | 0.09 |
Physical activity (n, %) 3 | 27 (58.7%) | 32 (60.4%) | 0.97 |
Serum albumin (g/L) | 43.0 ± 4.0 (44.0) | 44.0 ± 4.0 (44.0) | 0.86 |
Fasting glucose (mmol/L) | 6.4 ± 1.4 (5.8) | 6.2 ± 1.2 (5.9) | 0.95 |
Total cholesterol (mmol/L) | 5.1 ± 1.3 (5.2) | 5.4 ± 1.2 (5.6) | 0.24 |
HDL-C (mmol/L) | |||
Males | 1.2 ± 0.4 (1.2) | 1.0 ± 0.2 (1.1) | 0.26 |
Females | 1.6 ± 0.4 (1.6) | 1.6 ± 0.4 (1.6) | 0.84 |
LDL-C (mmol/L) | 2.9 ± 1.0 (2.9) | 3.0 ± 0.8 (3.0) | 0.47 |
Triglycerides (mmol/L) | 1.1 ± 0.5 (0.9) | 1.1 ± 0.6 (0.8) | 0.63 |
Creatine kinase (U/L) | 85.5 ± 40.8 (84.0) | 105.7 ± 49.0 (100.0) | 0.05 |
Irisin (ng/mL) | 90.5 ± 105.3 (61.4) | 159.7 ± 146.2 (123.0) | 0.02 |
Myostatin (ng/mL) | 9.5 ± 4.7 (10.0) | 8.5 ± 3.9 (8.4) | 0.26 |
Coenzyme Q10 (µM) | 0.49 ± 0.16 (0.51) | 0.50 ± 0.19 (0.48) | 0.82 |
Muscle function | |||
WSMI (kg/m2) | |||
Males | 14.8 ± 1.2 (14.8) | 16.9 ± 1.3 (16.5) | <0.001 |
Females | 12.5 ± 1.0 (12.7) | 15.0 ± 1.3 (14.9) | <0.001 |
ASMI (kg/m2) | |||
Males | 6.1 ± 0.6 (6.4) | 7.5 ± 0.5 (7.2) | <0.001 |
Females | 4.9 ± 0.3 (4.9) | 6.1 ± 0.5 (6.0) | <0.001 |
Body fat (%) | |||
Males | 21.4 ± 5.6 (22.0) | 22.2 ± 3.3 (23.1) | 0.74 |
Females | 29.0 ± 4.8 (29.1) | 29.3 ± 5.9 (29.2) | 0.83 |
Handgrip strength (kg) | |||
Males | 24.9 ± 5.1 (26.5) | 27.0 ± 7.2 (25.7) | 0.42 |
Females | 15.6 ± 4.9 (16.8) | 18.1 ± 4.6 (18.6) | 0.03 |
Dumbbell curls (reps) | 14.9 ± 5.6 (16.0) | 19.6 ± 6.1 (19.0) | <0.001 |
Leg-back strength (kg) | 34.4 ± 15.2 (29.5) | 36.2 ± 14.4 (32.5) | 0.33 |
Chair-stand test (s) | 14.2 ± 4.7 (13.0) | 12.6 ± 5.3 (11.6) | 0.06 |
Gait speed (m/s) | 0.70 ± 0.24 (0.67) | 0.85 ± 0.29 (0.85) | 0.01 |
SPPB (points) | 9.3 ± 2.7 (10.0) | 9.8 ± 2.8 (11.0) | 0.13 |
Coenzyme Q10 (μM) | Serum Albumin (g/L) | Creatine Kinase (U/L) | Irisin (ng/mL) | Myostatin (ng/mL) | |
---|---|---|---|---|---|
r 1 (p Value) | |||||
WSMI (kg/m2) | |||||
Total | −0.13 (0.21) | −0.04 (0.67) | 0.20 (<0.05) | 0.10 (0.34) | −0.02 (0.86) |
Males | −0.06 (0.75) | 0.22 (0.27) | 0.20 (0.33) | 0.22 (0.29) | −0.01 (0.96) |
Females | −0.11 (0.38) | −0.10 (0.42) | 0.18 (0.12) | 0.30 (0.01) | −0.04 (0.74) |
ASMI (kg/m2) | |||||
Total | −0.09 (0.38) | 0.01 (0.91) | 0.31 (<0.01) | 0.00 (0.97) | −0.01 (0.91) |
Males | −0.06 (0.78) | 0.21 (0.30) | 0.34 (0.09) | 0.16 (0.44) | 0.03 (0.88) |
Females | −0.03 (0.78) | −0.06 (0.62) | 0.31 (<0.01) | 0.22 (0.07) | −0.06 (0.60) |
Handgrip strength (kg) | |||||
Males | 0.28 (0.17) | 0.08 (0.70) | 0.22 (0.28) | −0.25 (0.23) | 0.06 (0.77) |
Females | −0.03 (0.82) | 0.38 (<0.01) | 0.15 (0.20) | 0.10 (0.39) | 0.12 (0.32) |
Dumbbell curls (reps) | 0.09 (0.39) | 0.12 (0.22) | 0.00 (0.96) | 0.20 (0.05) | 0.03 (0.76) |
Leg-back strength (kg) | 0.00 (0.99) | 0.10 (0.35) | 0.11 (0.29) | −0.18 (0.08) | 0.04 (0.67) |
Chair-stand test (s) | −0.17 (0.10) | −0.20 (0.06) | 0.06 (0.57) | −0.13 (0.21) | −0.03 (0.78) |
Gait speed (m/s) | 0.12 (0.26) | 0.24 (0.02) | 0.09 (0.38) | 0.30 (<0.01) | 0.13 (0.20) |
SPPB (points) | 0.21 (0.04) | 0.29 (<0.01) | 0.03 (0.75) | 0.13 (0.19) | 0.11 (0.26) |
SARC-F (points) | −0.27 (0.01) | −0.25 (0.01) | −0.16 (0.10) | 0.13 (0.19) | −0.07 (0.48) |
Sarcopenia | ||
---|---|---|
Odds Ratio (95% Confidence Interval) | p Value | |
Model 1 | ||
Irisin <118.0 ng/mL | 4.85 (1.86–12.67) 1 | <0.01 |
Creatine kinase <69.5 U/L | 3.43 (1.30–9.05) 2 | 0.04 |
Model 2 | ||
Irisin <118.0 ng/mL | 5.26 (1.94–14.27) 1 | <0.01 |
Creatine kinase <69.5 U/L | 3.15 (1.18–8.41) 2 | 0.02 |
Myostatin >11.1 ng/mL | 2.60 (1.02–6.64) 3 | <0.05 |
Model 3 | ||
Irisin <118.0 ng/mL | 5.22 (1.85–14.75) 1 | <0.01 |
Creatine kinase <69.5 U/L | 3.13 (1.15–8.53) 2 | 0.03 |
Myostatin >11.1 ng/mL | 2.60 (1.02–6.65) 3 | <0.05 |
Albumin <40.0 g/L | 1.04 (0.22–5.03) 4 | 0.96 |
Model 4 | ||
Irisin <118.0 ng/mL | 6.56 (2.23–19.30) 1 | <0.01 |
Creatine kinase <69.5 U/L | 2.65 (0.95–7.45) 2 | 0.06 |
Myostatin >11.1 ng/mL | 2.58 (0.98–6.78) 3 | 0.05 |
Albumin <40.0 g/L | 1.09 (0.21–5.71) 4 | 0.92 |
Coenzyme Q10 <0.67 µM | 3.70 (1.06–12.88) 5 | 0.04 |
Model 5 (adjusted confounders 6) | ||
Irisin <118.0 ng/mL | 6.46 (1.86–22.38) 1 | <0.01 |
Creatine kinase <69.5 U/L | 3.31 (1.09–10.10) 2 | 0.04 |
Myostatin >11.1 ng/mL | 2.48 (0.83–7.40) 3 | 0.10 |
Albumin <40.0 g/L | 0.80 (0.12–5.27) 4 | 0.82 |
Coenzyme Q10 <0.67 µM | 9.79 (1.69–56.58) 5 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yen, C.-H.; Chang, P.-S.; Chang, Y.-H.; Lin, P.-T. Identification of Coenzyme Q10 and Skeletal Muscle Protein Biomarkers as Potential Factors to Assist in the Diagnosis of Sarcopenia. Antioxidants 2022, 11, 725. https://doi.org/10.3390/antiox11040725
Yen C-H, Chang P-S, Chang Y-H, Lin P-T. Identification of Coenzyme Q10 and Skeletal Muscle Protein Biomarkers as Potential Factors to Assist in the Diagnosis of Sarcopenia. Antioxidants. 2022; 11(4):725. https://doi.org/10.3390/antiox11040725
Chicago/Turabian StyleYen, Chi-Hua, Po-Sheng Chang, Yu-Hsun Chang, and Ping-Ting Lin. 2022. "Identification of Coenzyme Q10 and Skeletal Muscle Protein Biomarkers as Potential Factors to Assist in the Diagnosis of Sarcopenia" Antioxidants 11, no. 4: 725. https://doi.org/10.3390/antiox11040725
APA StyleYen, C. -H., Chang, P. -S., Chang, Y. -H., & Lin, P. -T. (2022). Identification of Coenzyme Q10 and Skeletal Muscle Protein Biomarkers as Potential Factors to Assist in the Diagnosis of Sarcopenia. Antioxidants, 11(4), 725. https://doi.org/10.3390/antiox11040725