Chemical, Antioxidant, and Antimicrobial Properties of the Peel and Male Flower By-Products of Four Varieties of Punica granatum L. Cultivated in the Marche Region for Their Use in Cosmetic Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Pomegranate Samples
2.3. Extraction of the Phenol Compounds from Pomegranate Peel and Male Flowers
2.4. Ultra-Performance Liquid Chromatography Mass Spectrometry Analysis
2.5. Determination of the Total Phenol Content
2.6. Antioxidant Capacity (AC) Evaluation
2.7. In Vitro Antimicrobial Activity Assay
Effect of Pomegranate Extracts on Bacterial Growth
2.8. Cell Viability Evaluation of Pomegranate Extracts in Keratinocyte Cells
2.9. Statistical Analysis
3. Results and Discussion
3.1. Qualitative Polyphenols Identification
3.2. Quantitative Analysis Using UPLC-ESI-MS/MS
3.3. The Total Phenol Content (TPC) and Antioxidant Capacity (AC) of Pomegranate Extracts
3.4. Antimicrobial Activity Evaluation
3.5. Cytocompatibility of Pomegranate Extract in Human Keratinocytes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Commission, Legislation. Available online: http://ec.europa.eu/growth/sectors/cosmetics/legislation/index_en.htm (accessed on 10 March 2022).
- Fournière, M.; Latire, T.; Souak, D.; Feuilloley, M.G.J.; Bedoux, G. Staphylococcus epidermidis and Cutibacterium acnes: Two Major Sentinels of Skin Microbiota and the Influence of Cosmetics. Microorganisms 2020, 8, 1752. [Google Scholar] [CrossRef]
- Pinto, D.; Ciardiello, T.; Franzoni, M.; Pasini, F.; Giuliani, G.; Rinaldi, F. Effect of commonly used cosmetic preservatives on skin resident microflora dynamics. Sci. Rep. 2021, 11, 8695. [Google Scholar] [CrossRef]
- Halla, N.; Fernandes, I.P.; Heleno, S.A.; Costa, P.; Boucherit-Otmani, Z.; Boucherit, K.; Rodrigues, A.E.; Ferreira, I.C.F.R.; Barreiro, M.F. Cosmetics Preservation: A Review on Present Strategies. Molecules 2018, 23, 1571. [Google Scholar] [CrossRef] [Green Version]
- Rosas-Burgos, E.C.; Burgos-Hernández, A.; Noguera-Artiaga, L.; Kačániová, M.; Hernández-García, F.; Cárdenas-López, J.L.; Carbonell-Barrachina, Á.A. Antimicrobial activity of pomegranate peel extracts as affected by cultivar. J. Sci. Food Agric. 2017, 97, 802–810. [Google Scholar] [CrossRef]
- Morganti, P.; Morganti, G.; Gagliardini, A.; Lohani, A. From Cosmetics to Innovative Cosmeceuticals—Non-Woven Tissues as New Biodegradable Carriers. Cosmetics 2021, 8, 65. [Google Scholar] [CrossRef]
- Barbulova, A.; Colucci, G.; Apone, F. New Trends in Cosmetics: By-Products of Plant Origin and Their Potential Use as Cosmetic Active Ingredients. Cosmetics 2015, 2, 82–92. [Google Scholar] [CrossRef]
- Bolaji, I.; Nejad, B.; Billham, M.; Mehta, N.; Smyth, B.; Cunningham, E. Multi-criteria decision analysis of agri-food waste as a feedstock for biopolymer production. Resour. Conserv. Recycl. 2021, 172, 105671. [Google Scholar] [CrossRef]
- Herman, A.; Herman, A.P.; Domagalska, B.W.; Młynarczyk, A. Essential Oils and Herbal Extracts as Antimicrobial Agents in Cosmetic Emulsion. Indian J. Microbiol. 2013, 53, 232–237. [Google Scholar] [CrossRef] [Green Version]
- Kalouta, K.; Eleni, P.; Boukouvalas, C.; Vassilatou, K.; Krokida, M. Dynamic mechanical analysis of novel cosmeceutical facial creams containing nano-encapsulated natural plant and fruit extracts. J. Cosmet. Dermatol. 2020, 19, 1146–1154. [Google Scholar] [CrossRef]
- Fayeulle, A.; Trudel, E.; Damiens, A.; Josse, A.; Ben Hadj Youssef, N.; Vigneron, P.; Vayssade, M.; Rossi, C.; Ceballos, C. Antimicrobial and antioxidant activities of amines derived from vanillin as potential preservatives: Impact of the substituent chain length and polarity. Sustain. Chem. Pharm. 2021, 22, 100471. [Google Scholar] [CrossRef]
- Akhtar, S.; Ismail, T.; Fraternale, D.; Sestili, P. Pomegranate peel and peel extracts: Chemistry and food features. Food Chem. 2015, 174, 417–425. [Google Scholar] [CrossRef]
- Ding, W.; Wang, H.; Zhou, Q.; Wu, C.; Gao, X.; Cheng, X.; Tian, L.; Wang, C. Simultaneous determination of polyphenols and triterpenes in pomegranate peel based on high-performance liquid chromatography fingerprint by solvent extraction and ratio blending method in tandem with wavelength switching. Biomed. Chromatogr. 2019, 33, e4690. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Fernández-López, J.; Pérez-Álvarez, J.A. Pomegranate and its Many Functional Components as Related to Human Health: A Review. Compr. Rev. Food Sci. Food Saf. 2010, 9, 635–654. [Google Scholar] [CrossRef]
- Young, J.E.; Pan, Z.; Teh, H.E.; Menon, V.; Modereger, B.; Pesek, J.J.; Matyska, M.T.; Dao, L.; Takeoka, G. Phenolic composition of pomegranate peel extracts using an liquid chromatography-mass spectrometry approach with silica hydride columns. J. Sep. Sci. 2017, 40, 1449–1456. [Google Scholar] [CrossRef]
- Boggia, R.; Turrini, F.; Villa, C.; Lacapra, C.; Zunin, P.; Parodi, B. Green Extraction from Pomegranate Marcs for the Production of Functional Foods and Cosmetics. Pharmaceuticals 2016, 9, 63. [Google Scholar] [CrossRef]
- Tehranifar, A.; Zarei, M.; Nemati, Z.; Esfandiyari, B.; Vazifeshenas, M.R. Investigation of physico-chemical properties and antioxidant activity of twenty Iranian pomegranate (Punica granatum L.) cultivars. Sci. Hortic. 2010, 126, 180–185. [Google Scholar] [CrossRef]
- El-Hadary, A.E.; Ramadan, M.F. Phenolic profiles, antihyperglycemic, antihyperlipidemic, and antioxidant properties of pomegranate (Punica granatum) peel extract. J. Food Biochem. 2019, 43, e12803. [Google Scholar] [CrossRef]
- Kowalska, H.; Czajkowska, K.; Cichowska, J.; Lenart, A. What’s new in biopotential of fruit and vegetable by-products applied in the food processing industry. Trends Food Sci. Technol. 2017, 67, 150–159. [Google Scholar] [CrossRef]
- Das, A.K.; Nanda, P.K.; Chowdhury, N.R.; Dandapat, P.; Gagaoua, M.; Chauhan, P.; Pateiro, M.; Lorenzo, J.M. Application of Pomegranate by-Products in Muscle Foods: Oxidative Indices, Colour Stability, Shelf Life and Health Benefits. Molecules 2021, 26, 467. [Google Scholar] [CrossRef]
- Tabaraki, R.; Heidarizadi, E.; Benvidi, A. Optimization of ultrasonic-assisted extraction of pomegranate (Punica granatum L.) peel antioxidants by response surface methodology. Sep. Purif. Technol. 2012, 98, 16–23. [Google Scholar] [CrossRef]
- Kaderides, K.; Papaoikonomou, L.; Serafim, M.; Goula, A.M. Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction. Chem. Eng. Processing-Process Intensif. 2019, 137, 1–11. [Google Scholar] [CrossRef]
- Zarfeshany, A.; Asgary, S.; Javanmard, S.H. Potent health effects of pomegranate. Adv. Biomed. Res. 2014, 3, 100. [Google Scholar] [PubMed]
- Hayrapetyan, H.; Hazeleger, W.C.; Beumer, R.R. Inhibition of Listeria monocytogenes by pomegranate (Punica granatum) peel extract in meat paté at different temperatures. Food Control 2012, 23, 66–72. [Google Scholar] [CrossRef]
- Martínez, L.; Castillo, J.; Ros, G.; Nieto, G. Antioxidant and Antimicrobial Activity of Rosemary, Pomegranate and Olive Extracts in Fish Patties. Antioxidants 2019, 8, 86. [Google Scholar] [CrossRef] [Green Version]
- Pagliarulo, C.; De Vito, V.; Picariello, G.; Colicchio, R.; Pastore, G.; Salvatore, P.; Volpe, M.G. Inhibitory effect of pomegranate (Punica granatum L.) polyphenol extracts on the bacterial growth and survival of clinical isolates of pathogenic Staphylococcus aureus and Escherichia coli. Food Chem. 2016, 190, 824–831. [Google Scholar] [CrossRef]
- Kaur, G.; Jabbar, Z.; Athar, M.; Alam, M.S. Punica granatum (pomegranate) flower extract possesses potent antioxidant activity and abrogates Fe-NTA induced hepatotoxicity in mice. Food Chem. Toxicol. 2006, 44, 984–993. [Google Scholar] [CrossRef]
- Jun, X.; Lang, H.; Liang-gong, Y. Continuous extraction of phenolic compounds from pomegranate peel using high voltage electrical discharge. Food Chem. 2017, 230, 354–361. [Google Scholar]
- Mitsagga, C.; Petrotos, K.; Giavasis, I. Antimicrobial Properties of Lyophilized Extracts of Olive Fruit, Pomegranate and Orange Peel Extracts against Foodborne Pathogenic and Spoilage Bacteria and Fungi In Vitro and in Food Matrices. Molecules 2021, 26, 7038. [Google Scholar] [CrossRef]
- Gigliobianco, M.R.; Cortese, M.; Peregrina, D.V.; Villa, C.; Lupidi, G.; Pruccoli, L.; Angeloni, C.; Tarozzi, A.; Censi, R.; Di Martino, P. Development of New Extracts of Crocus sativus L. By-Product from Two Different Italian Regions as New Potential Active Ingredient in Cosmetic Formulations. Cosmetics 2021, 8, 51. [Google Scholar] [CrossRef]
- Cortese, M.; Gigliobianco, M.R.; Peregrina, D.V.; Sagratini, G.; Censi, R.; Di Martino, P. Quantification of phenolic compounds in different types of crafts beers, worts, starting and spent ingredients by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2020, 1612, 460622. [Google Scholar] [CrossRef]
- Zorzetto, C.; Sánchez-Mateo, C.C.; Rabanal, R.M.; Lupidi, G.; Petrelli, D.; Vitali, L.A.; Bramucci, M.; Quassinti, L.; Caprioli, G.; Papa, F.; et al. Phytochemical analysis and in vitro biological activity of three Hypericum species from the Canary Islands (Hypericum reflexum, Hypericum canariense and Hypericum grandifolium). Fitoterapia 2015, 100, 95–109. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi Joseph, A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Venditti, A.; Bianco, A.; Quassinti, L.; Bramucci, M.; Lupidi, G.; Damiano, S.; Papa, F.; Vittori, S.; Maleci Bini, L.; Giuliani, C.; et al. Phytochemical Analysis, Biological Activity, and Secretory Structures of Stachys annua (L.) L. subsp annua (Lamiaceae) from Central Italy. Chem. Biodivers. 2015, 12, 1172–1183. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Ornano, L.; Venditti, A.; Ballero, M.; Sanna, C.; Quassinti, L.; Bramucci, M.; Lupidi, G.; Papa, F.; Vittori, S.; Maggi, F.; et al. Chemopreventive and antioxidant activity of the chamazulene-rich essential oil obtained from Artemisia arborescens L. growing on the Isle of La Maddalena, Sardinia, Italy. Chem. Biodivers. 2013, 10, 1464–1474. [Google Scholar] [CrossRef]
- Rahima, A.; Sanawar, M.; Haizhong, L.; Ablikim, U.; Guangying, S.; Guozheng, H.; Akber, A.H. Qualitative Analysis of Polyphenols in Macroporous Resin Pretreated Pomegranate Husk Extract by HPLC-QTOF-MS. Phytochem. Anal. 2017, 28, 465–473. [Google Scholar]
- Fischer Ulrike, A.; Reinhold, C.; Kammerer Dietmar, R. Identification and quantification of phenolic compounds from pomegranate (Punica granatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD–ESI/MSn. Food Chem. 2011, 127, 807–821. [Google Scholar] [CrossRef]
- García-Villalba, R.; Espín, J.C.; Aaby, K.; Alasalvar, C.; Heinonen, M.; Jacobs, G.; Voorspoels, S.; Koivumäki, T.; Kroon, P.A.; Pelvan, E.; et al. Validated Method for the Characterization and Quantification of Extractable and Nonextractable Ellagitannins after Acid Hydrolysis in Pomegranate Fruits, Juices, and Extracts. J. Agric. Food Chem. 2015, 63, 6555–6566. [Google Scholar] [CrossRef]
- Clarisse, G.; Minjie, Z.; Sonia, L.; Saïd, E. Identification of punicalagin as the bioactive compound behind the antimicrobial activity of pomegranate (Punica granatum L.) peels. Food Chem. 2021, 352, 129396. [Google Scholar]
- Hernández-Corroto, E.; Marina, M.L.; García, M.C. Extraction and identification by high resolution mass spectrometry of bioactive substances in different extracts obtained from pomegranate peel. J. Chromatogr. A 2019, 1594, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Valeria, S.; Lucia, R.C.; Cinzia, C.; Gabriele, B.; Valeria, R.F.; Simona, F.; Nicolina, T.; Marco, R.; Luca, V. Beneficial Effects of Pomegranate Peel Extract and Probiotics on Pre-adipocyte Differentiation. Front. Microbiol. 2019, 10, 660. [Google Scholar]
- Li, J.; He, X.; Li, M.; Zhao, W.; Liu, L.; Kong, X. Chemical fingerprint and quantitative analysis for quality control of polyphenols extracted from pomegranate peel by HPLC. Food Chem. 2015, 176, 7–11. [Google Scholar] [CrossRef]
- Talal, S.; Taleb, K.; Boubker, N.; Rabiaa, E.; Abderrahman, M.; Maryam, B.; Abdelkhalid, E. Determination of Punicalagins Content, Metal Chelating, and Antioxidant Properties of Edible Pomegranate (Punica granatum L.) Peels and Seeds Grown in Morocco. Int. J. Food Sci. 2020, 2020, 8885889. [Google Scholar]
- Kazemi, M.; Karim, R.; Mirhosseini, H.; Abdul Hamid, A. Optimization of pulsed ultrasound-assisted technique for extraction of phenolics from pomegranate peel of Malas variety: Punicalagin and hydroxybenzoic acids. Food Chem. 2016, 206, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Faizan, A.; Amardeep, K. Optimization of The Ultrasonic Assisted Extraction Process to Obtain Phenolic Compounds from Pomegranate (Punica granatum) Peels Using Response Surface Methodology. Int. J. Agric. Sci. 2018, 10, 7581–7585. [Google Scholar]
- Jelena, Ž.; Katarina, Š.; Teodora, J.; Nada, Ć.; Nebojša, M. Optimization of ultrasound-assisted extraction of polyphenolic compounds from pomegranate peel using response surface methodology. Sep. Purif. Technol. 2018, 194, 40–47. [Google Scholar]
- Farid, C.; Natacha, R.; Alice, M.; Mohammad, T.; Sandrine, P.; Anne-Sylvie, F.; Maryline, A. Review of Green Food Processing techniques. Preservation, transformation, and extraction. Innov. Food Sci. Emerg. Technol. 2017, 41, 357–377. [Google Scholar]
- Parvin, S.; Elham, A.; Shahin, Z.; Ramaswamy Hosahalli, S. Ultrasound assisted extraction of bioactive compounds from pomegranate (Punica granatum L.) peel. LWT 2019, 101, 342–350. [Google Scholar]
- Rajha, H.N.; Mhanna, T.; Kantar, S.; Khoury, A.; Louka, N.; Maroun, R.G. Innovative process of polyphenol recovery from pomegranate peels by combining green deep eutectic solvents and a new infrared technology. LWT 2019, 111, 138–146. [Google Scholar] [CrossRef]
- Santos Mariana, P.; Souza Mariana, C.; Sumere Beatriz, R.; da Silva Laise, C.; Cunha Diogo, T.; Bezerra Rosangela Maria, N.; Rostagno Mauricio, A. Extraction of bioactive compounds from pomegranate peel (Punica granatum L.) with pressurized liquids assisted by ultrasound combined with an expansion gas. Ultrason. Sonochemistry 2019, 54, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Hulya, O.H.; Hulya, Y.; Selen, I.S. Comparison of antioxidant activities of juice, peel, and the seed of pomegranate (Punica granatum L.) and inter-relationships with total phenolic, Tannin, anthocyanin, and flavonoid contents. Food Sci. Biotechnol. 2012, 21, 373–387. [Google Scholar]
- Zahra, D.; Margherita, F.; Marzieh, T.; Farnoosh, A.; Ali, H.; Sadat, H.M.; Oliveri, C.G.; Khalili, S.E. Antioxidant activity and total phenolic content of ethanolic extract of pomegranate peels, juice and seeds. Food Chem. Toxicol. 2018, 114, 108–111. [Google Scholar]
- Sadiye, G.; Onur, S.; Ebru, O.; Mustafa, O. Total phenolic distribution of juice, peel, and seed extracts of four pomegranate cultivars. Pharmacogn. Mag. 2011, 7, 161–164. [Google Scholar]
- Mouna, A.; Héla, Y.; Salma, C.; Ibtihel, K.; Mohamed, B.; Hamadi, A.; Ayadi, M.A. Antioxidant properties and phenolic profile characterization by LC-MS/MS of selected Tunisian pomegranate peels. J. Food Sci. Technol. 2017, 54, 2890–2901. [Google Scholar]
- Shirin, S.; Ali, K.; Brecht Jeffrey, K.; Ali, S. Chemical and physical attributes of fruit juice and peel of pomegranate genotypes grown in Florida, USA. Food Chem. 2021, 342, 128302. [Google Scholar]
- Dong, H.; Zheng, L.; Yu, P.; Jiang, Q.; Wu, Y.; Huang, C.; Yin, B. Characterization and Application of Lignin−Carbohydrate Complexes from Lignocellulosic Materials as Antioxidants for Scavenging In Vitro and In Vivo Reactive Oxygen Species. ACS Sustain. Chem. Eng. 2020, 8, 256–266. [Google Scholar] [CrossRef]
- Mounyr, B.; Moulay, S.; Koraichi, I.S. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar]
- Khan, J.A.; Hanee, S. Antibacterial properties of Punica granatum peels. Int. J. Appl. Biol. Pharm. Technol. 2011, 2, 23–27. [Google Scholar]
- Kupnik, K.; Primožič, M.; Vasić, K.; Knez, Ž.; Leitgeb, M. A Comprehensive Study of the Antibacterial Activity of Bioactive Juice and Extracts from Pomegranate (Punica granatum L.) Peels and Seeds. Plants 2021, 10, 1554. [Google Scholar] [CrossRef] [PubMed]
- Jing, C.; Chunling, L.; Xiaolu, O.; Ibrahim, K.; Yudi, G.; Mingxi, L. Antimicrobial Activity of Pomegranate Peel and Its Applications on Food Preservation. J. Food Qual. 2020, 2020, 8850339. [Google Scholar]
- Subramaniam, P.; Dwivedi, S.; Uma, E.; Girish Babu, K. Effect of pomegranate and aloe vera extract on streptococcus mutans: An in vitro study. Dent. Hypotheses 2012, 3, 99–105. [Google Scholar] [CrossRef]
- Yepes-Molina, L.; Hernández, J.A.; Carvajal, M. Nanoencapsulation of Pomegranate Extract to Increase Stability and Potential Dermatological Protection. Pharmaceutics 2021, 13, 271. [Google Scholar] [CrossRef]
- Liu, C.; Guo, H.; DaSilva, N.A.; Li, D.; Zhang, K.; Wan, Y.; Gao, X.-H.; Chen, H.-D.; Seeram, N.P.; Ma, H. Pomegranate (Punica granatum) Phenolics Ameliorate Hydrogen Peroxide-Induced Oxidative Stress and Cytotoxicity in Human Keratinocytes. J. Funct. Foods 2019, 54, 559–567. [Google Scholar] [CrossRef]
Analytes | RT (min.) | Linearity a | Sensibility | Accuracy d | Precision e | ||
---|---|---|---|---|---|---|---|
Regression Curves | r2 | LOD b | LOQ c | ||||
Gallic acid | 3.83 | y = 109,036x | 0.973 | 0.07 | 0.24 | 14.7 | 0.4–16.8 |
Punicalin | 3.75 | y = 115,291x | 0.992 | 0.04 | 0.14 | 11.9 | 0.5–18.8 |
Punicalagin A | 9.25 | y = 139,898x | 0.997 | 0.04 | 0.14 | 6.8 | 0.4–6.7 |
Punicalagin B | 11.71 | y = 149,562x | 0.998 | 0.04 | 0.14 | 4.7 | 0.4–3.8 |
Ellagic Acid | 21.84 | y = 233,729x + 84,858 | 0.994 | 0.03 | 0.11 | 7.8 | 0.2–19.7 |
Cyanidin 3,5-diglucoside | 6.2 | y = 491,074x | 0.998 | 0.08 | 0.24 | 3.0 | 3.6–14.4 |
Pelargonidin 3,5-diglucoside | 8.4 | y = 557,447x | 0.999 | 0.05 | 0.14 | 1.6 | 0.5–13.2 |
Cyanidin 3-glucoside | 10.3 | y = 1,073,535.261 | 0.998 | 0.03 | 0.11 | 2.8 | 9.4–15.7 |
Pelargonidin 3-glucoside | 12.0 | y = 1,095,405x | 0.993 | 0.01 | 0.03 | 1.7 | 0.2–18.6 |
Analyte | Wonderful Peel | Mollar de Elche Peel | G1 Peel | Wonderful Male Flowers | Mollar de Elche Male Flowers | Wonderful Peel | Mollar de Elche Peel | G1 Peel | Parfianka Peel | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2019 | 2019 | 2019 | 2020 | 2020 | 2020 | 2020 | 2020 | 2020 | ||||||||||
Conc. 1 | DS% | Conc. 1 | DS% | Conc. 1 | DS% | Conc. 1 | DS% | Conc. 1 | DS% | Conc. 1 | DS% | Conc. 1 | DS% | Conc. 1 | DS% | Conc. 1 | DS% | |
Gallic acid | 9.7 | 12.6 | 33.6 | 2.2 | 17.2 | 1.7 | 925.2 | 5.2 | 789.5 | 1.4 | 28.5 | 1.9 | 47.8 | 13.1 | 53.3 | 16.8 | 58.5 | 0.4 |
Punicalin | 7.7 | 0.5 | 34.1 | 18.8 | <LOQ | <LOQ | 5948.2 | 1.0 | 2143.8 | 3.3 | 638.7 | 1.2 | 946.4 | 3.7 | 670.1 | 8.1 | 67.6 | 3.1 |
Punicalagin A | 478.9 | 6.5 | 2176.7 | 4.9 | 325.3 | 9.5 | 3562.2 | 0.4 | 430.4 | 1.32 | 2754.8 | 7.9 | 7206.4 | 4.6 | 3622.3 | 4.2 | 3767.3 | 6.7 |
Punicalagin B | 947.8 | 1.9 | 3343.6 | 0.6 | 540.7 | 3.8 | 4757.8 | 0.5 | 667.5 | 3.3 | 3320.1 | 1.3 | 5812.9 | 1.3 | 2805.7 | 3.1 | 5367.8 | 0.4 |
Ellagic acid | 48.9 | 12.8 | 231.2 | 0.4 | 19.7 | 6.6 | 42.4 | 2.4 | 87.1 | 3.5 | 418.9 | 0.2 | 289.7 | 2.7 | 337.3 | 1.5 | 123.2 | 3.0 |
Cyanidin 3,5-diglucoside | 25.2 | 3.6 | <LOQ | <LOQ | 3.4 | 14.1 | 6.1 | 14.4 | <LOQ | <LOQ | 4.7 | 9.7 | <LOQ | <LOQ | <LOQ | <LOQ | 5.7 | 4.2 |
Cyanidin 3-glucoside | 23.9 | 13.2 | 8.3 | 32.5 | 0.5 | 9.2 | <LOQ | <LOQ | <LOQ | <LOQ | 7.1 | 14.1 | <LOQ | <LOQ | <LOQ | <LOQ | 8.3 | 13.7 |
Pelargonidin 3,5-diglucoside | 8.4 | 9.8 | 9.4 | 9.4 | 20.6 | 13.4 | 2.4 | 14.5 | 8.1 | 14.9 | 3.5 | 15.7 | <LOQ | <LOQ | <LOQ | <LOQ | 3.9 | 12.1 |
Pelargonidin 3-glucoside | 13.1 | 18.6 | 7.2 | 18.6 | 1.8 | 0.2 | 1.1 | 14.4 | <LOQ | <LOQ | 7.0 | 10.1 | <LOQ | <LOQ | <LOQ | <LOQ | 8.1 | 13.2 |
Samples | Folin–Ciocalteu | ABTS | FRAP | DPPH | ||
---|---|---|---|---|---|---|
(µmol GAE/g) | (µmol TEA/g) | IC50(mg/mL) | (µmol TEA/g) | (µmol TEA/g) | IC50(mg/mL) | |
Wonderful 2019 Peel | 0.500 ± 0.004 | 0.076 ± 0.002 | 0.016 ± 0.001 | 2.170 ± 0.003 | 0.242 ± 0.056 | 0.065 ± 0.056 |
Mollar de Elche 2019 Peel | 2.304 ± 0.006 | 3.290 ± 0.001 | 0.001 ± 0.001 | 3.299 ± 0.028 | 0.455 ± 0.007 | 0.035 ± 0.007 |
G1 2019 Peel | 1.872 ± 0.002 | 2.121 ± 0.001 | 0.001 ± 0.001 | 3.730 ± 0.001 | 1.524 ± 0.012 | 0.011 ± 0.012 |
Wonderful 2020 male flowers | 0.778 ± 0.003 | 6.808 ± 0.002 | 0.002 ± 0.001 | 0.615 ± 0.022 | 1.149 ± 0.014 | 0.014 ± 0.013 |
Mollar de Elche 2020 male flowers | 0.746 ± 0.003 | 3.168 ± 0.002 | 0.001 ± 0.001 | 0.458 ± 0.013 | 0.444 ± 0.020 | 0.036 ± 0.023 |
Wonderful 2020 Peel | 6.346 ± 0.001 | 29.301 ± 0.001 | 0.001 ± 0.002 | 7.015 ± 0.024 | 34.361 ± 0.001 | 0.001 ± 0.001 |
Mollar de Elche 2020 Peel | 12.341 ± 0.002 | 18.862 ± 0.004 | 0.001 ± 0.001 | 12.435 ± 0.801 | 3.230 ± 0.003 | 0.003 ± 0.001 |
G1 2020 Peel | 9.283 ± 0.015 | 21.754 ± 0.001 | 0.002 ± 0.001 | 12.407 ± 0.739 | 5.029 ± 0.010 | 0.002 ± 0.003 |
Parfianka 2020 Peel | 6.098 ± 0.001 | 15.875 ± 0.001 | 0.001 ± 0.001 | 4.860 ± 0.237 | 4.393 ± 0.002 | 0.003 ± 0.001 |
Samples | Diameter of | Evaluation a |
---|---|---|
Inhibition | ||
(mm) | ||
S. aureus | ||
Wonderful 2019 Peel | 8 | ++ |
Wonderful 2020 Peel | 12 | +++ |
Mollar de Elche 2019 Peel | <8 | ++ |
Mollar de Elche 2020 Peel | 8 | ++ |
G1 2019 Peel | 8 | ++ |
G1 2020 Peel | 8 | + |
Parfianka 2020 Peel | 8 | + |
Mollar de Elche Male flower | - | + |
Wonderful Male flower | - | + |
E. coli | ||
Wonderful 2019 Peel | 10 | |
Wonderful 2020 Peel | 10 | + |
Mollar de Elche 2019 Peel | 10 | |
Mollar de Elche 2020 Peel | 10 | + |
G1 2019 Peel | 8 | ++ |
G1 2020 Peel | 10 | + |
C. albicans | ||
Wonderful 2019 Peel | 10 | ++ |
Wonderful 2020 Peel | 10 | ++ |
Mollar de Elche 2019 Peel | 10 | ++ |
Mollar de Elche 2020 Peel | 12 | ++ |
G1 2019 Peel | 12 | +++ |
G1 2020 Peel | 14 | +++ |
Sample % a | OD/mL | Rid. % |
---|---|---|
S. aureus | ||
0 | 0.4467 | - |
5 | 0.2733 | 23 |
10 | 0.2232 | 34 |
18 | 0.2932 | 20 |
20 | 0.2398 | 30 |
25 | 0.2318 | 32 |
30 | 0.1520 | 52 |
50 | 0.0052 | 97 |
P. aeruginosa | ||
0 | 0.7013 | - |
35 | 0.4600 | 34 |
40 | 0.3837 | 45 |
45 | 0.4630 | 34 |
50 | 0.4500 | 35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gigliobianco, M.R.; Cortese, M.; Nannini, S.; Di Nicolantonio, L.; Peregrina, D.V.; Lupidi, G.; Vitali, L.A.; Bocchietto, E.; Di Martino, P.; Censi, R. Chemical, Antioxidant, and Antimicrobial Properties of the Peel and Male Flower By-Products of Four Varieties of Punica granatum L. Cultivated in the Marche Region for Their Use in Cosmetic Products. Antioxidants 2022, 11, 768. https://doi.org/10.3390/antiox11040768
Gigliobianco MR, Cortese M, Nannini S, Di Nicolantonio L, Peregrina DV, Lupidi G, Vitali LA, Bocchietto E, Di Martino P, Censi R. Chemical, Antioxidant, and Antimicrobial Properties of the Peel and Male Flower By-Products of Four Varieties of Punica granatum L. Cultivated in the Marche Region for Their Use in Cosmetic Products. Antioxidants. 2022; 11(4):768. https://doi.org/10.3390/antiox11040768
Chicago/Turabian StyleGigliobianco, Maria Rosa, Manuela Cortese, Samanta Nannini, Lucrezia Di Nicolantonio, Dolores Vargas Peregrina, Giulio Lupidi, Luca Agostino Vitali, Elena Bocchietto, Piera Di Martino, and Roberta Censi. 2022. "Chemical, Antioxidant, and Antimicrobial Properties of the Peel and Male Flower By-Products of Four Varieties of Punica granatum L. Cultivated in the Marche Region for Their Use in Cosmetic Products" Antioxidants 11, no. 4: 768. https://doi.org/10.3390/antiox11040768
APA StyleGigliobianco, M. R., Cortese, M., Nannini, S., Di Nicolantonio, L., Peregrina, D. V., Lupidi, G., Vitali, L. A., Bocchietto, E., Di Martino, P., & Censi, R. (2022). Chemical, Antioxidant, and Antimicrobial Properties of the Peel and Male Flower By-Products of Four Varieties of Punica granatum L. Cultivated in the Marche Region for Their Use in Cosmetic Products. Antioxidants, 11(4), 768. https://doi.org/10.3390/antiox11040768