Antioxidants in Pregnancy: Do We Really Need More Trials?
Abstract
:1. Introduction
2. Oxidative Stress in Pregnancy
- -
- Free radicals (superoxide, the hydroxyl radicals, lipid peroxy-radicals, and alkoxy radicals);
- -
- Non-radical products (including hydrogen peroxide, peroxynitrite, and hypochlorous acid).
- -
- Enzymatic antioxidants are the first line of defence against ROS. The superoxide dismutase family is composed of manganese superoxide dismutase (MnSOD) located in the mitochondrial matrix, as well as Cu,Zn superoxide dismutase (SOD1) located in the mitochondrial intermembrane space, cytosol, and extracellular space. They catalyse the dismutation of superoxide anion radical to hydrogen peroxide and molecular oxygen, thus metabolizing ROS to innocuous products [17].
- -
- Non-enzymatic or free radical scavengers can reduce and inactivate existing free radicals. They include vitamins C and E, carotenoids, and glutathione, and also represent the most-studied antioxidant supplements in pregnancy.
2.1. Oxidative Stress in Normal Pregnancies
2.2. Oxidative Stress in Pregnancy Pathologies and Its Biomarkers
2.2.1. Oxidative Stress in Preeclampsia
2.2.2. Oxidative Stress in Foetal Growth Restriction (FGR)
2.2.3. Oxidative Stress in Gestational Diabetes Mellitus (GDM)
2.3. Oxidative Stress in Common Risk Factors for Complicated Pregnancies
2.3.1. Endothelial Dysfunction
2.3.2. Obesity
2.3.3. Advanced Maternal Age (AMA)
3. Biomarkers for Prediction of Pregnancy Complications
3.1. Mitochondrial DNA
3.2. Endothelial Activation
3.3. First-Trimester Preeclampsia Prediction
4. Antioxidants for Preventing Pregnancy Complications
4.1. Vitamins
Author | Year and Country | Participants | GA at Entry (Weeks) | Outcomes |
---|---|---|---|---|
Chappell [80] | 1999, UK | 283 high-risk pregnant women | 16–22 | Lower rate of PE in the vitamin group (17% vs. 8%; OR 0·39 [95% CI 0.17–0.90]). |
Beazley [13] | 2005, USA | 100 high-risk pregnant women | 14–20 | Similar rate of PE in both groups (17.3% vs. 18.8%. RR = 0.92; 95% CI [0.4–2.13]). |
Poston [12] | 2006, UK | 2395 high-risk pregnant women | 14–21 | Similar incidence of PE in both groups (15% vs. 16%, RR 0.97 [95% CI 0.80–1.17]). In the intervention group, higher incidence of low birthweight babies (28% vs. 24%, 1.15 [1.02–1.30]), but no difference in SGA (21% vs. 19%, 1.12 [0.96–1.31]). |
Rumbold [91] | 2009, Australia | 1877 nulliparous women | 14–22 | No difference in the risk of PE between groups (6% vs. 5%, RR: 1.20; 95% CI [0.82–1.75]), adverse neonatal outcomes (9.5% vs. 12.1%; RR 0.79; 95% CI [0.61–1.02), or SGA (8.7% vs. 9.9%; RR 0.87, 95% CI [0.66–1.16). |
Spinnato [92] | Brazil | 707 women with chronic hypertension or history of preeclampsia | 12–19 | No reduction in the rate of PE (13.8% vs. 15.6%, RR 0.87, 95% CI [0.61–1.25]). No differences in the mean GA at delivery or adverse outcomes. Previous normotensive patients showed a slightly higher rate of severe PE in the study group (6.5% vs. 2.4%, p: 0.11, OR 2.78, 95% CI [0.79–12.62]). |
Villar [93] WHO | 2009, India, Peru, Vietnam, and South Africa | 1355 high-risk pregnant women (previous PE or its complications) | 14–22 | No association between vitamin supplementation and the rate of PE (RR: 1.0; 95% CI: 0.9–1.3), eclampsia (RR: 1.5; 95% CI: 0.3–8.9), GH (RR: 1.2; 95% CI: 0.9–1.7), low birthweight (RR: 0.9; 95% CI: 0.8–1.1), SGA (RR: 0.9; 95% CI: 0.8–1.1), or perinatal death (RR: 0.8; 95% CI: 0.6–1.2). |
Xu [94] | 2010, Canada and Mexico | 2363 unselected women (later stratified by risk factors for PE) | 12–18 | No difference in the risk of GH and its adverse outcomes between the groups (RR: 0.99; 95% CI [0.78–1.26]). Vitamin supplements increased the risk of foetal loss, perinatal death, and PPROM. |
Roberts [95] | 2010, USA | 9969 low-risk nulliparous women | 9–16 | No significant difference between the groups in the rates of GH (6.1% vs. 5.7%; RR 1.07; 95% CI [0.91–1.25]), preeclampsia (7.2% vs. 6.7%, RR 1.07; 95% CI, [0.93–1.24]), or adverse perinatal outcomes. |
McCance [96] | 2010, UK | 761 women with type 1 diabetes | 8–22 | Similar rates of PE between the groups (15% vs. 19%; RR 0.81, 95% CI [0.59–1.12]). |
4.2. Melatonin
4.3. Lycopene
4.4. Selenium (Se)
Author | Country/Year | Participants | Intervention Drug and Daily Doses | Outcome |
---|---|---|---|---|
Sheikhi [104] | Iran, 2017 | 148 pregnant women | Antioxidants in daily nutrition | No association between intake of antioxidant and risk of PE. |
Mesdaghinia [101] | Iran, 2017 | 60 primigravida women at risk for IUGR | Selenium: 100 μg | Beneficial effects on UtA PI, markers of insulin metabolism, and HDL-C levels. No effect on MDA, NO, and lipid profiles. |
Wang [83] | China, 2018 | 10,228 pregnant women | Vitamin C, vitamin E, Cu, Zn, Se, Mn | Vit C, Vit E, Cu, Mn: No association with hypertensive disorders. Zn and Se: Lower risk of HDP. |
Hobson [97] | Australia and Canada, 2018 | 68 women with PE between 24 and 35.6 weeks | Melatonin: 30 mg | Melatonin group: Higher risk of SGA and proteinuria. Higher interval (6 days) from diagnosis to delivery. Lower need of antihypertensive drugs. No difference on MAP; maternal serum levels of 8-isoprostane, sFlt1, activin A, PlGF, or TAC. No changes in UtA IP. |
N. Lorzadeh [85] | Iran, 2020 | 160 nulliparous women | Vitamin C: 1000 mg + vitamin E: 400 μg. | Intervention group: Lowe incidence of PE. Lower MAP before and after intervention. |
4.5. Aspirin
5. Future Directions from Experimental Evidence
- -
- MITO TEMPO: Mitochondria-targeted superoxide dismutase antioxidant mimetic. It improved endothelial function and reduced mROS production in an in vivo model of hypertension [109], and modified the inflammatory profile of endothelial cells treated with preeclampsia plasma.
- -
- MITO Q: This substance is reduced in the mitochondria to active ubiquinol, which prevents lipid peroxidation and mitochondrial damage. MitoQ has been successfully used in humans, showing a reduced placental MDA and lower levels of placental lipid peroxidation. Interestingly, two main responses have been observed with MitoQ supplementation in mice, depending on the pregnancy period of administration. Although it shows a protective effect against hypertension and kidney damage induced by RUPP rats when administered in late gestation, it exacerbates the preeclampsia-like phenotype when given in early gestation, predisposing to a smaller placenta and increasing proteinuria. As mild OS is required to normal trophoblast proliferation, which occurs due to Mito-Q interference with placenta formation in early pregnancies [110,111]. These findings may help explain the negative results from clinical trials and suggest that more research should be conducted.
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Moran, P.S.; Wuytack, F.; Turner, M.; Normand, C.; Brown, S. Economic burden of maternal morbidity—A systematic review of cost-of-illness studies. PLoS ONE 2020, 15, e0227377. [Google Scholar] [CrossRef] [PubMed]
- Duley, L. The Global Impact of Pre-eclampsia and Eclampsia. Semin. Perinatol. 2009, 33, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.M.; August, P.A.; Bakris, G.; Barton, J.R.; Bernstein, I.M.; Druzin, M.; Gaiser, R.R.; Granger, J.R.; Jeyabalan, A.; Johnson, D.D.; et al. Hypertension in Pregnancy. Obstet. Gynecol. 2013, 122, 1122–1131. [Google Scholar] [CrossRef]
- Reuters, T. The Cost of Prematurity and Complicated Deliveries to U.S. Employers. Report Prepared for the March of Dimes Foundation. 29 October 2008. Available online: https://www.marchofdimes.org/peristats/pdfdocs/cts/ThomsonAnalysis2008_SummaryDocument_final121208.pdf (accessed on 18 March 2022).
- Rosenberg, K.; Twaddle, S. 6 Screening and surveillance of pregnancy hypertension—An economic approach to the use of daycare. Baillière’s Clin. Obstet. Gynaecol. 1990, 4, 89–107. [Google Scholar] [CrossRef]
- Rolnik, D.L.; Wright, D.; Poon, L.C.; O’Gorman, N.; Syngelaki, A.; Matallana, C.P.; Akolekar, R.; Cicero, S.; Janga, D.; Singh, M.; et al. Aspirin versus Placebo in Pregnancies at High Risk for Preterm Preeclampsia. N. Engl. J. Med. 2017, 377, 613–622. [Google Scholar] [CrossRef]
- Fernández-Sánchez, A.; Madrigal-Santillán, E.; Bautista, M.; Esquivel-Soto, J.; Morales-González, A.; Esquivel-Chirino, C.; Durante-Montiel, I.; Sánchez-Rivera, G.; Valadez-Vega, C.; Morales-González, J. Inflammation, Oxidative Stress, and Obesity. Int. J. Mol. Sci. 2011, 12, 3117–3132. [Google Scholar] [CrossRef] [Green Version]
- Nieto, M.C.; Barrabes, E.M.; Martínez, S.G.; Prat, M.G.; Zantop, B.S. Impact of aging on obstetric outcomes: Defining advanced maternal age in Barcelona. BMC Pregnancy Childbirth 2019, 19, 342. [Google Scholar] [CrossRef]
- Hansson, S.R.; Nääv, Å.; Erlandsson, L. Oxidative stress in preeclampsia and the role of free fetal hemoglobin. Front. Physiol. 2015, 5, 516. [Google Scholar] [CrossRef] [Green Version]
- Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian J. Clin. Biochem. 2015, 30, 11–26. [Google Scholar] [CrossRef] [Green Version]
- Jauniaux, E.; Poston, L.; Burton, G.J. Placental-related diseases of pregnancy: Involvement of oxidative stress and implications in human evolution. Hum. Reprod. Update 2006, 12, 747–755. [Google Scholar] [CrossRef] [Green Version]
- Poston, L.; Briley, A.; Seed, P.; Kelly, F.; Shennan, A. Vitamin C and vitamin E in pregnant women at risk for pre-eclampsia (VIP trial): Randomised placebo-controlled trial. Lancet 2006, 367, 1145–1154. [Google Scholar] [CrossRef]
- Beazley, D.; Ahokas, R.; Livingston, J.; Griggs, M.; Sibai, B.M. Vitamin C and E supplementation in women at high risk for preeclampsia: A double-blind, placebo-controlled trial. Am. J. Obstet. Gynecol. 2005, 192, 520–521. [Google Scholar] [CrossRef] [PubMed]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxidative Med. Cell. Longev. 2017, 2017, 1–13. [Google Scholar] [CrossRef]
- Volpe, C.M.O.; Villar-Delfino, P.H.; Anjos, P.M.F.d.; Nogueira-Machado, J.A. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis. 2018, 9, 119. [Google Scholar] [CrossRef] [PubMed]
- Barnes, R.P.; Fouquerel, E.; Opresko, P.L. The impact of oxidative DNA damage and stress on telomere homeostasis. Mech. Ageing Dev. 2019, 177, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Miriyala, S.; Spasojevic, I.; Tovmasyan, A.; Salvemini, D.; Vujaskovic, Z.; Clair, D.S.; Batinic-Haberle, I. Manganese superoxide dismutase, MnSOD and its mimics. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 2012, 1822, 794–814. [Google Scholar] [CrossRef] [Green Version]
- Mannaerts, D.; Faes, E.; Cos, P.; Briede, J.J.; Gyselaers, W.; Cornette, J.; Gorbanev, Y.; Bogaerts, A.; Spaanderman, M.; Van Craenenbroeck, E.; et al. Oxidative stress in healthy pregnancy and preeclampsia is linked to chronic inflammation, iron status and vascular function. PLoS ONE 2018, 13, e0202919. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.Y.; Griendling, K.K. Redox Signaling, Vascular Function, and Hypertension. Antioxid. Redox Signal. 2008, 10, 1045–1059. [Google Scholar] [CrossRef]
- Huang, Q.T.; Zhang, M.; Zhong, M.; Yu, Y.H.; Liang, W.Z.; Hang, L.L.; Gao, Y.F.; Huang, L.P.; Wang, Z.J. Advanced glycation end products as an upstream molecule triggers ROS-induced sFlt-1 production in extravillous trophoblasts: A novel bridge between oxidative stress and preeclampsia. Placenta 2013, 34, 1177–1182. [Google Scholar] [CrossRef]
- Schoots, M.H.; Gordijn, S.J.; Scherjon, S.A.; van Goor, H.; Hillebrands, J.-L. Oxidative stress in placental pathology. Placenta 2018, 69, 153–161. [Google Scholar] [CrossRef]
- Agarwal, A.; Aponte-Mellado, A.; Premkumar, B.J.; Shaman, A.; Gupta, S. The effects of oxidative stress on female reproduction: A review. Reprod. Biol. Endocrinol. 2012, 10, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maia, L.B.; Moura, J.J.G. Putting xanthine oxidoreductase and aldehyde oxidase on the NO metabolism map: Nitrite reduction by molybdoenzymes. Redox Biol. 2018, 19, 274–289. [Google Scholar] [CrossRef] [PubMed]
- Melchiorre, K.; Sharma, R.; Khalil, A.; Thilaganathan, B. Maternal Cardiovascular Function in Normal Pregnancy. Hypertension 2016, 67, 754–762. [Google Scholar] [CrossRef] [PubMed]
- Staff, A.; Zeisler, H.; Llurba, E.; Chantraine, F.; Vatishe, M.; Sennströmf, M.; Olovssong, M.; Brennecke, S.; Stepani, H.; Allegranza, D.; et al. Angiogenic factors and prediction of adverse pregnancy outcomes in suspected preeclampsia: The PROGNOSIS study. Pregnancy Hypertens. Int. J. Women’s Cardiovasc. Health 2017, 7, 56–57. [Google Scholar] [CrossRef]
- Nicolaides, K.; Rizzo, G.; Hecher, K.; Ximenes, R. Doppler in Obstetrics; Fetal Medicine Foundation: London, UK, 2002. [Google Scholar]
- Montano, L.; Maugeri, A.; Volpe, M.G.; Micali, S.; Mirone, V.; Mantovani, A.; Navarra, M.; Piscopo, M. Mediterranean Diet as a Shield against Male Infertility and Cancer Risk Induced by Environmental Pollutants: A Focus on Flavonoids. Int. J. Mol. Sci. 2022, 23, 1568. [Google Scholar] [CrossRef]
- Lettieri, G.; D’Agostino, G.; Mele, E.; Cardito, C.; Esposito, R.; Cimmino, A.; Giarra, A.; Trifuoggi, M.; Raimondo, S.; Notari, T.; et al. Discovery of the Involvement in DNA Oxidative Damage of Human Sperm Nuclear Basic Proteins of Healthy Young Men Living in Polluted Areas. Int. J. Mol. Sci. 2020, 21, 4198. [Google Scholar] [CrossRef]
- Lettieri, G.; Mollo, V.; Ambrosino, A.; Caccavale, F.; Troisi, J.; Febbraio, F.; Piscopo, M. Molecular effects of copper on the reproductive system of mytilus galloprovincialis. Mol. Reprod. Dev. 2019, 86, 1357–1368. [Google Scholar] [CrossRef]
- Lettieri, G.; Marra, F.; Moriello, C.; Prisco, M.; Notari, T.; Trifuoggi, M.; Giarra, A.; Bosco, L.; Montano, L.; Piscopo, M. Molecular Alterations in Spermatozoa of a Family Case Living in the Land of Fires—A First Look at Possible Transgenerational Effects of Pollutants. Int. J. Mol. Sci. 2020, 21, 6710. [Google Scholar] [CrossRef]
- American College of Obstetricians and Gynecologists. Practice Bulletin. Gestational Hypertension and Preeclampsia. Obstet. Gynecol. 2020, 135, e237–e260. [Google Scholar] [CrossRef]
- Sibai, B.; Dekker, G.; Kupferminc, M. Pre-eclampsia. Lancet 2005, 365, 785–799. [Google Scholar] [CrossRef]
- Redman, C. The six stages of pre-eclampsia. Pregnancy Hypertens. Int. J. Women’s Cardiovasc. Health 2014, 4, 246. [Google Scholar] [CrossRef] [PubMed]
- Peral, J.H.; Rodríguez, S.M.; Ayala, A.U.; González-Mesa, E.; Garcia, E.S. Manejo perinatal en el límite de la viabilidad. Propuestas de abordaje en un hospital terciario. Prog. Obstet. Ginecol. 2013, 56, 65–72. [Google Scholar] [CrossRef]
- Hutcheon, J.A.; Lisonkova, S.; Joseph, K.S. Epidemiology of pre-eclampsia and the other hypertensive disorders of pregnancy. Best Pract. Res. Clin. Obstet. Gynaecol. 2011, 25, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Perry, H.; Gutierrez, J.; Binder, J.; Thilaganathan, B.; Khalil, A. Maternal arterial stiffness in hypertensive pregnancies with and without small-for-gestational-age neonate. Ultrasound Obstet. Gynecol. 2020, 56, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Cooper, L.L.; Mitchell, G.F. Incorporation of Novel Vascular Measures into Clinical Management: Recent Insights from the Framingham Heart Study. Curr. Hypertens. Rep. 2019, 21, 19. [Google Scholar] [CrossRef] [PubMed]
- Tenório, M.B.; Ferreira, R.C.; Moura, F.A.; Bueno, N.B.; Goulart, M.O.F.; Oliveira, A.C.M. Oral antioxidant therapy for prevention and treatment of preeclampsia: Meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 865–876. [Google Scholar] [CrossRef]
- Kharb, S. Low whole blood glutathione levels in pregnancies complicated by preeclampsia and diabetes. Clin. Chim. Acta 2000, 294, 179–183. [Google Scholar] [CrossRef]
- Nuttall, S.L.; Khan, J.N.; Thorpe, G.H.; Langford, N.; Kendall, M.J. The impact of therapeutic doses of paracetamol on serum total antioxidant capacity. J. Clin. Pharm. Ther. 2003, 28, 289–294. [Google Scholar] [CrossRef]
- Allegaert, K.; van den Anker, J.N. Perinatal and neonatal use of paracetamol for pain relief. Semin. Fetal Neonatal Med. 2017, 22, 308–313. [Google Scholar] [CrossRef]
- Zusterzeel, P.L.M.; Mulder, T.P.J.; Peters, W.H.M.; Wiseman, S.A.; Steegers, E.A.P. Plasma protein carbonyls in nonpregnant, healthy pregnant and preeclamptic women. Free Radic. Res. 2000, 33, 471–476. [Google Scholar] [CrossRef]
- Vanderlelie, J.; Venardos, K.; Clifton, V.L.; Gude, N.M.; Clarke, F.M.; Perkins, A.V. Increased biological oxidation and reduced anti-oxidant enzyme activity in pre-eclamptic placentae. Placenta 2005, 26, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Padmini, E.; Lavanya, S.; Uthra, V. Preeclamptic placental stress and over expression of mitochondrial HSP70. Clin. Chem. Lab. Med. 2009, 47, 1073–1080. [Google Scholar] [CrossRef] [PubMed]
- Llurba, E.; Gratacós, E.; Martín-Gallán, P.; Cabero, L.; Dominguez, C. A comprehensive study of oxidative stress and antioxidant status in preeclampsia and normal pregnancy. Free Radic. Biol. Med. 2004, 37, 557–570. [Google Scholar] [CrossRef] [PubMed]
- Rashid, C.S.; Bansal, A.; Simmons, R.A. Oxidative Stress, Intrauterine Growth Restriction, and Developmental Programming of Type 2 Diabetes. Physiology 2018, 33, 348–359. [Google Scholar] [CrossRef] [Green Version]
- Aouache, R.; Biquard, L.; Vaiman, D.; Miralles, F. Oxidative Stress in Preeclampsia and Placental Diseases. Int. J. Mol. Sci. 2018, 19, 1496. [Google Scholar] [CrossRef] [Green Version]
- Burton, G.J.; Yung, H.-W.; Cindrova-Davies, T.; Charnock-Jones, D.S. Placental Endoplasmic Reticulum Stress and Oxidative Stress in the Pathophysiology of Unexplained Intrauterine Growth Restriction and Early Onset Preeclampsia. Placenta 2009, 30, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Karowicz-Bilińska, A.; Suzin, J.; Sieroszewski, P. Evaluation of oxidative stress indices during treatment in pregnant women with intrauterine growth retardation. Med. Sci. Monit. 2002, 8, CR211-6. [Google Scholar] [PubMed]
- Cuffe, J.S.; Xu, Z.C.; Perkins, A.V. Biomarkers of oxidative stress in pregnancy complications. Biomark. Med. 2017, 11, 295–306. [Google Scholar] [CrossRef]
- Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Al-Maiahy, T.J. Concept and connotation of oxidative stress in preeclampsia. J. Lab. Physicians 2018, 10, 276–282. [Google Scholar] [CrossRef]
- Biri, A.; Bozkurt, N.; Turp, A.; Kavutcu, M.; Himmetoglu, Ö.; Durak, İ. Role of Oxidative Stress in Intrauterine Growth Restriction. Gynecol. Obstet. Investig. 2007, 64, 187–192. [Google Scholar] [CrossRef]
- Tamás, G.; Kerényi, Z. Gestational diabetes: Current aspects on pathogenesis and treatment. Exp. Clin. Endocrinol. Diabetes 2001, 109 (Suppl. S2), S400–S411. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhang, C. Prevalence of Gestational Diabetes and Risk of Progression to Type 2 Diabetes: A Global Perspective. Curr. Diabetes Rep. 2016, 16, 7. [Google Scholar] [CrossRef] [PubMed]
- National Institute for Health and Care Excellence (NICE). Diabetes in Pregnancy: Management from Preconception to the Postnatal Period; NICE Guidelines: London, UK, 2020; Available online: https://www.nice.org.uk/guidance/ng3 (accessed on 12 March 2022).
- Hebert, J.F.; Myatt, L. Placental mitochondrial dysfunction with metabolic diseases: Therapeutic approaches. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 2021, 1867, 165967. [Google Scholar] [CrossRef] [PubMed]
- Sisay, M.; Edessa, D.; Ali, T.; Mekuria, A.N.; Gebrie, A. The relationship between advanced glycation end products and gestational diabetes: A systematic review and meta-analysis. PLoS ONE 2020, 15, e0240382. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhang, Y.; Yue, C.; Ye, Y.; Chen, P.; Peng, W.; Wang, Y. Accumulation of Advanced Glycation End Products Involved in Inflammation and Contributing to Severe Preeclampsia, in Maternal Blood, Umbilical Blood and Placental Tissues. Gynecol. Obstet. Investig. 2017, 82, 388–397. [Google Scholar] [CrossRef]
- Xia, L.; Wang, H.; Munk, S.; Kwan, J.; Goldberg, H.J.; Fantus, I.G.; Whiteside, C.I. High glucose activates PKC-ζ and NADPH oxidase through autocrine TGF-β 1 signaling in mesangial cells. Am. J. Physiol.-Ren. Physiol. 2008, 295, F1705–F1714. [Google Scholar] [CrossRef]
- Leloup, C.; Tourrel-Cuzin, C.; Magnan, C.; Karaca, M.; Castel, J.; Carneiro, L.; Colombani, A.L.; Ktorza, A.; Casteilla, L.; Pénicaud, L. Mitochondrial Reactive Oxygen Species Are Obligatory Signals for Glucose-Induced Insulin Secretion. Diabetes 2009, 58, 673–681. [Google Scholar] [CrossRef] [Green Version]
- Kapustin, R.; Chepanov, S.; Kopteeva, E.; Arzhanova, O. Maternal serum nitrotyrosine, 8-isoprostane and total antioxidant capacity levels in pre-gestational or gestational diabetes mellitus. Gynecol. Endocrinol. 2020, 36 (Suppl. S1), 36–42. [Google Scholar] [CrossRef]
- Walsh, S.W. Placental isoprostane is significantly increased in preeclampsia. FASEB J. 2000, 14, 1289–1296. [Google Scholar] [CrossRef]
- Chiarello, D.I.; Abad, C.; Rojas, D.; Toledo, F.; Vázquez, C.M.; Mate, A.; Sobrevia, L.; Marín, R. Oxidative stress: Normal pregnancy versus preeclampsia. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 2020, 1866, 165354. [Google Scholar] [CrossRef]
- Higashi, Y.; Sukhanov, S.; Anwar, A.; Shai, S.-Y.; Delafontaine, P. IGF-1, oxidative stress and atheroprotection. Trends Endocrinol. Metab. 2010, 21, 245–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galtier-Dereure, F.; Boegner, C.; Bringer, J. Obesity and pregnancy: Complications and cost. Am. J. Clin. Nutr. 2000, 71, 1242S–1248S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sen, S.; Herlihy, M.; Hacker, M.; Mcelrath, T.; Cherkerzian, S.; Oken, E.; Meydani, S. BMI-based Prenatal Vitamins to Ameliorate Oxidative Stress in Obese Pregnant Women: A Randomized Controlled Trial (P11-135-19). Curr. Dev. Nutr. 2019, 3 (Suppl. S1), nzz048-P11. [Google Scholar] [CrossRef] [Green Version]
- Fortuño, A.; Bidegain, J.; Baltanás, A.; Moreno, M.U.; Montero, L.; Landecho, M.F.; Beloqui, O.; Díez, J.; Zalba, G. Is leptin involved in phagocytic NADPH oxidase overactivity in obesity? Potential clinical implications. J. Hypertens. 2010, 28, 1944–1950. [Google Scholar] [CrossRef]
- Jääskeläinen, T.; Heinonen, S.; Hämäläinen, E.; Pulkki, K.; Romppanen, J.; Laivuori, H. Impact of obesity on angiogenic and inflammatory markers in the Finnish Genetics of Pre-eclampsia Consortium (FINNPEC) cohort. Int. J. Obes. 2019, 43, 1070–1081. [Google Scholar] [CrossRef] [Green Version]
- Hoch, D.; Gauster, M.; Mouzon, S.H.; Desoye, G. Diabesity-associated oxidative and inflammatory stress signalling in the early human placenta. Mol. Asp. Med. 2019, 66, 21–30. [Google Scholar] [CrossRef]
- Oficce for National Statistics, Birth Summary Tables. England and Wales. 2020. Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/livebirths/bulletins/birthsummarytablesenglandandwales/2020 (accessed on 30 March 2022).
- Odame Anto, E.; Owiredu, W.K.B.A.; Sakyi, S.A.; Turpin, C.A.; Ephraim, R.K.D.; Fondjo, L.A.; Obirikorang, C.; Adua, E.; Acheampong, E. Adverse pregnancy outcomes and imbalance in angiogenic growth mediators and oxidative stress biomarkers is associated with advanced maternal age births: A prospective cohort study in Ghana. PLoS ONE 2018, 13, e0200581. [Google Scholar] [CrossRef]
- Pandey, D.; Yevale, A.; Naha, R.; Kuthethur, R.; Chakrabarty, S.; Satyamoorthy, K. Mitochondrial DNA copy number variation—A potential biomarker for early onset preeclampsia. Pregnancy Hypertens. 2021, 23, 1–4. [Google Scholar] [CrossRef]
- Williamson, R.; McCarthy, C.; McCarthy, F.; Khashan, A.; Kenny, L. OP 15 Investigating the role of mitochondrial dysfunction as a biomarker of pre-eclampsia. Pregnancy Hypertens. Int. J. Women’s Cardiovasc. Health 2017, 9, 15. [Google Scholar] [CrossRef]
- Duhig, K.E.; Myers, J.; Seed, P.T.; Sparkes, J.; Lowe, J.; Hunter, R.M.; Shennan, A.H.; Chappell, L.C.; on behalf of the PARROT Trial Group. Placental growth factor testing to assess women with suspected pre-eclampsia: A multicentre, pragmatic, stepped-wedge cluster-randomised controlled trial. Lancet 2019, 393, 1807–1818. [Google Scholar] [CrossRef] [Green Version]
- Wikström, A.-K.; Nash, P.; Eriksson, U.J.; Olovsson, M.H. Evidence of increased oxidative stress and a change in the plasminogen activator inhibitor (PAI)-1 to PAI-2 ratio in early-onset but not late-onset preeclampsia. Am. J. Obstet. Gynecol. 2009, 201, 597.e1–597.e8. [Google Scholar] [CrossRef] [PubMed]
- Poon, L.C.; Nicolaides, K.H. First-trimester maternal factors and biomarker screening for preeclampsia. Prenat. Diagn. 2014, 34, 618–627. [Google Scholar] [CrossRef] [PubMed]
- Asiltas, B.; Surmen-Gur, E.; Uncu, G. Prediction of first-trimester preeclampsia: Relevance of the oxidative stress marker MDA in a combination model with PP-13, PAPP-A and beta-HCG. Pathophysiology 2018, 25, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Khalil, A.; Sodre, D.; Syngelaki, A.; Akolekar, R.; Nicolaides, K.H. Maternal Hemodynamics at 11–13 Weeks of Gestation in Pregnancies Delivering Small for Gestational Age Neonates. Fetal Diagn. Ther. 2012, 32, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Zion Market Research. Global Dietary Supplements Market Will Reach USD 220 Billion in 2022. 2017. Available online: https://www.globenewswire.com/news-release/2017/01/11/905073/0/en/Global-Dietary-Supplements-Market-will-reach-USD-220-3-Billion-in-2022-Zion-Market-Research.html (accessed on 11 November 2021).
- Chappell, L.C.; Seed, P.T.; Briley, A.L.; Kelly, F.J.; Lee, R.; Hunt, B.J.; Parmar, K.; Bewley, S.J.; Shennan, A.H.; Steer, P.J.; et al. Effect of antioxidants on the occurrence of pre-eclampsia in women at increased risk: A randomised trial. Lancet 1999, 354, 810–816. [Google Scholar] [CrossRef]
- Chappell, L.C.; Seed, P.T.; Kelly, F.J.; Briley, A.; Hunt, B.J.; Charnock-Jones, D.S.; Mallet, A.; Poston, L. Vitamin C and E supplementation in women at risk of preeclampsia is associated with changes in indices of oxidative stress and placental function. Am. J. Obstet. Gynecol. 2002, 187, 777–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González, C.; Claudio Vera, P.G.; Carvajal, J. Estudio clínico randomizado del efecto de la suplementación alimenticia durante el embarazo con L-arginina y vitaminas antioxidantes en pre-eclampsia en población de alto riesgo. Rev. Chil. Obstet. Ginecol. 2012, 77, 243–245. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wang, C.; Qiu, J.; Ni, Y.; Chai, S.; Zhou, L.; Li, J.; Yan, B.; Yang, J.; Liu, Q. The Association between Dietary Vitamin C/E and Gestational Hypertensive Disorder: A Case-Control Study. J. Nutr. Sci. Vitaminol. 2018, 64, 454–465. [Google Scholar] [CrossRef]
- Piscopo, M.; Trifuoggi, M.; Scarano, C.; Gori, C.; Giarra, A.; Febbraio, F. Relevance of arginine residues in Cu(II)-induced DNA breakage and Proteinase K resistance of H1 histones. Sci. Rep. 2018, 8, 7414. [Google Scholar] [CrossRef] [Green Version]
- Lorzadeh, N.; Kazemirad, Y.; Kazemirad, N. Investigating the preventive effect of vitamins C and E on preeclampsia in nulliparous pregnant women. J. Perinat. Med. 2020, 48, 625–629. [Google Scholar] [CrossRef]
- Korenc, M.; Osredkar, J.; Gersak, K.; Kumer, K.; Fabjan, T.; Sterpin, S.; Lucovnik, M. Effect of High-Dose Intravenous Vitamin C on Postpartum Oxidative Stress in Severe Preeclampsia. Reprod. Med. 2020, 1, 122–131. [Google Scholar] [CrossRef]
- Conde-Agudelo, A.; Romero, R.; Kusanovic, J.P.; Hassan, S.S. Supplementation with vitamins C and E during pregnancy for the prevention of preeclampsia and other adverse maternal and perinatal outcomes: A systematic review and metaanalysis. Am. J. Obstet. Gynecol. 2011, 204, 503.e1–503.e12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salles, A.M.R.; Galvao, T.F.; Silva, M.T.; Motta, L.C.D.; Pereira, M.G. Antioxidants for Preventing Preeclampsia: A Systematic Review. Sci. World J. 2012, 2012, 243476. [Google Scholar] [CrossRef]
- Rumbold, A.; Ota, E.; Hori, H.; Miyazaki, C.; Crowther, C.A. Vitamin E supplementation in pregnancy. Cochrane Database Syst. Rev. 2015. [Google Scholar] [CrossRef]
- Rumbold, A.; Ota, E.; Nagata, C.; Shahrook, S.; Crowther, C.A. Vitamin C supplementation in pregnancy. Cochrane Database Syst. Rev. 2015. [Google Scholar] [CrossRef]
- Rumbold, A.R.; Crowther, C.A.; Haslam, R.R.; Dekker, G.A.; Robinson, J.S. Vitamins C and E and the Risks of Preeclampsia and Perinatal Complications. N. Engl. J. Med. 2006, 354, 1796–1806. [Google Scholar] [CrossRef] [Green Version]
- Spinnato, J.A.; Freire, S.; Pinto ESilva, J.L.; Cunha Rudge, M.V.; Martins-Costa, S.; Koch, M.A.; Goco, N.; Santos Cde, B.; Cecatti, J.G.; Costa, R.; et al. Antioxidant Therapy to Prevent Preeclampsia. Obstet. Gynecol. 2007, 110, 1311–1318. [Google Scholar] [CrossRef]
- Villar, J.; Purwar, M.; Merialdi, M.; Zavaleta, N.; Thi Nhu Ngoc, N.; Anthony, J.; De Greeff, A.; Poston, L.; Shennan, A. World Health Organisation multicentre randomised trial of supplementation with vitamins C and E among pregnant women at high risk for pre-eclampsia in populations of low nutritional status from developing countries. BJOG Int. J. Obstet. Gynaecol. 2009, 116, 780–788. [Google Scholar] [CrossRef]
- Xu, H.; Perez-Cuevas, R.; Xiong, X.; Reyes, H.; Roy, C.; Julien, P.; Smith, G.; von Dadelszen, P.; Leduc, L.; Audibert, F.; et al. An international trial of antioxidants in the prevention of preeclampsia (INTAPP). Am. J. Obstet. Gynecol. 2010, 202, 239.e1–239.e10. [Google Scholar] [CrossRef]
- Roberts, J.M.; Myatt, L.; Spong, C.Y.; Thom, E.A.; Hauth, J.C.; Leveno, K.J.; Pearson, G.D.; Wapner, R.J.; Varner, M.W.; Thorp, J.M., Jr.; et al. Vitamins C and E to Prevent Complications of Pregnancy-Associated Hypertension. N. Engl. J. Med. 2010, 362, 1282–1291. [Google Scholar] [CrossRef] [Green Version]
- McCance, D.R.; Holmes, V.A.; Maresh, M.J.; Patterson, C.C.; Walker, J.D.; Pearson, D.W.; Young, I.S. Vitamins C and E for prevention of pre-eclampsia in women with type 1 diabetes (DAPIT): A randomised placebo-controlled trial. Lancet 2010, 376, 259–266. [Google Scholar] [CrossRef] [Green Version]
- Hobson, S.R.; Gurusinghe, S.; Lim, R.; Alers, N.O.; Miller, S.L.; Kingdom, J.C.; Wallace, E.M. Melatonin improves endothelial function in vitro and prolongs pregnancy in women with early-onset preeclampsia. J. Pineal Res. 2018, 65, e12508. [Google Scholar] [CrossRef] [PubMed]
- Sharma, J.B.; Kumar, A.; Kumar, A.; Malhotra, M.; Arora, R.; Prasad, S.; Batra, S. Effect of lycopene on pre-eclampsia and intra-uterine growth retardation in primigravidas. Int. J. Gynecol. Obstet. 2003, 81, 257–262. [Google Scholar] [CrossRef]
- Antartani, R.; Ashok, K. Effect of lycopene in prevention of preeclampsia in high risk pregnant women. J. Turk. Ger. Gynecol. Assoc. 2011, 12, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Zhong, C.; Zhou, X.; Chen, R.; Xiong, T.; Hong, M.; Li, Q.; Kong, M.; Han, W.; Sun, G.; et al. The association between intake of dietary lycopene and other carotenoids and gestational diabetes mellitus risk during mid-trimester: A cross-sectional study. Br. J. Nutr. 2019, 121, 1405–1412. [Google Scholar] [CrossRef]
- Mesdaghinia, E.; Rahavi, A.; Bahmani, F.; Sharifi, N.; Asemi, Z. Clinical and Metabolic Response to Selenium Supplementation in Pregnant Women at Risk for Intrauterine Growth Restriction: Randomized, Double-Blind, Placebo-Controlled Trial. Biol. Trace Elem. Res. 2017, 178, 14–21. [Google Scholar] [CrossRef]
- Rayman, M.P.; Searle, E.; Kelly, L.; Johnsen, S.; Bodman-Smith, K.; Bath, S.C.; Mao, J.; Redman, C.W. Effect of selenium on markers of risk of pre-eclampsia in UK pregnant women: A randomised, controlled pilot trial. Br. J. Nutr. 2014, 112, 99–111. [Google Scholar] [CrossRef]
- Holmquist, E.; Brantsæter, A.L.; Meltzer, H.M.; Jacobsson, B.; Barman, M.; Sengpiel, V. Maternal selenium intake and selenium status during pregnancy in relation to preeclampsia and pregnancy-induced hypertension in a large Norwegian Pregnancy Cohort Study. Sci. Total Environ. 2021, 798, 149271. [Google Scholar] [CrossRef]
- Sheikhi, M.; Sharifi-Zahabi, E.; Paknahad, Z. Dietary Antioxidant Capacity and Its Association with Preeclampsia. Clin. Nutr. Res. 2017, 6, 47. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. World Health Organization Model List of Essential Medicines; World Health Organization: Geneva, Switzerland, 2021; Volume 22. [Google Scholar]
- Panagodage, S.; Yong, H.E.; Da Silva Costa, F.; Borg, A.J.; Kalionis, B.; Brennecke, S.P.; Murthi, P. Low-Dose Acetylsalicylic Acid Treatment Modulates the Production of Cytokines and Improves Trophoblast Function in an in Vitro Model of Early-Onset Preeclampsia. Am. J. Pathol. 2016, 186, 3217–3224. [Google Scholar] [CrossRef] [Green Version]
- Xiong, W.; Wang, Y.; Zhou, X. Low-dose aspirin might alleviate the symptoms of preeclampsia by increasing the expression of antioxidative enzymes. Exp. Ther. Med. 2021, 22, 1418. [Google Scholar] [CrossRef] [PubMed]
- Williamson, R.D.; McCarthy, F.P.; Manna, S.; Groarke, E.; Kell, D.B.; Kenny, L.C.; McCarthy, C.M. L-(+)-Ergothioneine Significantly Improves the Clinical Characteristics of Preeclampsia in the Reduced Uterine Perfusion Pressure Rat Model. Hypertension 2020, 75, 561–568. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, C.; Kenny, L.C. Therapeutically targeting mitochondrial redox signalling alleviates endothelial dysfunction in preeclampsia. Sci. Rep. 2016, 6, 32683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Xu, P.; Zhu, F.; Liao, J.; Wu, Y.; Hu, M.; Fu, H.; Qiao, J.; Lin, L.; Huang, B.; et al. The Potent Antioxidant MitoQ Protects against Preeclampsia during Late Gestation but Increases the Risk of Preeclampsia When Administered in Early Pregnancy. Antioxid. Redox Signal. 2021, 34, 118–136. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Jia, J.; He, M.Z.; Zeng, Y.; Zhang, J.Y.; Shi, E.J.; Lai, S.Y.; Zhou, X.; Sharifu, L.M.; Feng, L. Placental Origins of Preeclampsia: Potential Therapeutic Targets. Curr. Med. Sci. 2019, 39, 190–195. [Google Scholar] [CrossRef]
- Rumbold, A.; Duley, L.; Crowther, C.A.; Haslam, R.R. Antioxidants for preventing pre-eclampsia. Cochrane Database Syst. Rev. 2008, 2008, CD004227. [Google Scholar] [CrossRef]
- Talaulikar, V.; Manyonda, I. Vitamins C and E for the prevention of pre-eclampsia: Time to give up the ghost. BJOG Int. J. Obstet. Gynaecol. 2009, 116, 1416–1417. [Google Scholar] [CrossRef]
Study Name | Hypothesis/Objective | Status | Recruitment | Institution | Intention to Publish |
---|---|---|---|---|---|
Treatment of FGR with l-arginine. | To study if l-arginine in pregnant women with FGR decreases the risk of SGA babies and evaluate perinatal outcomes | Ongoing | No longer recruiting | Hospital Clínico Universitario Virgen de la Arrixaca (Spain) | December 2021 |
Pravastatin for Pregnancies complicated by Ischemical Placental Disease | To assess the effect of pravastatin in placental insufficiency, the latency period of pregnancy, levels of endothelial factors in the blood, and maternal and neonatal outcomes | Ongoing | No longer recruiting | Aristotle University of Thessaloniki, Greece | December 2021 |
The Correlation Between Vitamin A/E Levels and PE | To study the correlation between intake of vitamin A, vitamin E, and both together in PE occurrence | Ongoing | Recruiting | School of Medicine, Zhejiang University (China) | January 2022 |
PLANES-placental growth factor led management of the SGA foetus: a feasibility study | To assess the feasibility of delivering sFlt-1/PIGF ratio led management of women with an SGA foetus, as well as its acceptability to women and clinicians | Ongoing | Recruiting | Dr Jane Harrold. Liverpool Women’s Hospital (UK) | April 2022 |
Role of Aspirin in Placental and Maternal Endothelial Cell Regulation In PE (ASPERIN) | To determine if aspirin has a dose-dependent response for modifying biomarkers of endothelial dysfunction in women at risk of PE | Ongoing | Recruiting | John O’Brien, MD. University of Kentucky (USA) | June 2022 |
Antioxidant Use in Diabetes to Reduce OS | To see whether potent and better-targeted antioxidants are successful in preventing birth defects in the offspring of women with diabetes | Ongoing | Active, not recruiting | University of Maryland, Baltimore (USA) | June 2024 |
Endothelium-dependent Vasodilatation and Other Biomarkers: Predictive Indicators of the Progression From Gestational Hypertension to PE? | To study the correlation between the alteration of endothelium-dependent vasodilatation in pregnant women with stable hypertension with the occurrence of PE | Planned | Not yet recruiting | Avicenne Hospital and Jean Verdier Hospital, Seine Saint Denis, (France) | September 2024 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Fabrizio, C.; Giorgione, V.; Khalil, A.; Murdoch, C.E. Antioxidants in Pregnancy: Do We Really Need More Trials? Antioxidants 2022, 11, 812. https://doi.org/10.3390/antiox11050812
Di Fabrizio C, Giorgione V, Khalil A, Murdoch CE. Antioxidants in Pregnancy: Do We Really Need More Trials? Antioxidants. 2022; 11(5):812. https://doi.org/10.3390/antiox11050812
Chicago/Turabian StyleDi Fabrizio, Carolina, Veronica Giorgione, Asma Khalil, and Colin E. Murdoch. 2022. "Antioxidants in Pregnancy: Do We Really Need More Trials?" Antioxidants 11, no. 5: 812. https://doi.org/10.3390/antiox11050812
APA StyleDi Fabrizio, C., Giorgione, V., Khalil, A., & Murdoch, C. E. (2022). Antioxidants in Pregnancy: Do We Really Need More Trials? Antioxidants, 11(5), 812. https://doi.org/10.3390/antiox11050812