Horned Melon Pulp, Peel, and Seed: New Insight into Phytochemical and Biological Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit Samples
2.2. Preparation of Horned Melon Extracts
2.3. Phytochemical Analysis
2.4. Nutritive Analysis
2.5. Antioxidant Assays
2.6. Antimicrobial Assays
2.7. Artificial Neural Network (ANN) Modelling
2.8. Global Sensitivity Analysis
2.9. Multiobjective Optimization
2.10. Statistical Analyses
3. Results and Discussion
3.1. C. metuliferus Pulp Extracts
3.2. C. metuliferus Peel Extracts
3.3. C. metuliferus Seed Extracts
3.4. ANN Model
3.5. Global Sensitivity Analysis—Yoon’s Interpretation Method
3.6. Multiobjective Optimization of the Outputs of the ANN
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bölek, S. Determination of in Vitro Antioxidant Activity and Bioactive Compounds of Kiwano Seeds. In Proceedings of the International Conference on Research in Health Sciences, Kuala Lumpur, Malaysia, 5–16 May 2020. [Google Scholar]
- Ezekaibeya, A.C.; Nnenna, A.O.; Kenechukwu, O.C. Proximate, phytochemical and vitamin compositions of Cucumis metuliferus (horned melon) rind. JOCAMR 2020, 9, 40–50. [Google Scholar] [CrossRef]
- Vilas-Boas, A.A.; Pintado, M.; Oliveira, A.L.S. Natural Bioactive Compounds from Food Waste: Toxicity and Safety Concerns. Foods 2021, 10, 1564. [Google Scholar] [CrossRef] [PubMed]
- Šeregelj, V.; Šovljanski, O.; Tumbas Šaponjac, V.; Vulić, J.; Ćetković, G.; Markov, S.; Čanadanović-Brunet, J. Horned Melon (Cucumis metuliferus E. Meyer Ex. Naudin)—Current Knowledge on Its Phytochemicals, Biological Benefits, and Potential Aplications. Processes 2022, 10, 94. [Google Scholar] [CrossRef]
- García, Y.M.; Ramos, A.L.C.C.; de Paula, A.C.C.F.F.; do Nascimento, M.H.; Augusti, R.; de Araújo, R.L.B.; de Lemos, E.E.P.; Melo, J.O.F. Chemical Physical Characterization and Profile of Fruit Volatile Compounds from Different Accesses of Myrciaria floribunda (H. West Ex Wild.) O. Berg through Polyacrylate Fiber. Molecules 2021, 26, 5281. [Google Scholar] [CrossRef]
- Whitehead, S.R.; Schneider, G.F.; Dybzinski, R.; Nelson, A.S.; Gelambi, M.; Jos, E.; Beckman, N.G. Fruits, frugivores, and the evolution of phytochemical diversity. Oikos 2022, 2022. [Google Scholar] [CrossRef]
- Vieira, E.; Grosso, C.; Rodrigues, F.; Moreira, M.; Cruz Fernandes, V.; Delerue-Matos, C. Bioactive Compounds of Horned Melon (Cucumis metuliferus E. Meyer ex Naudin). In Bioactive Compounds in Underutilized Vegetables and Legumes; Reference Series in Phytochemistry; Murthy, H.N., Paek, K.Y., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Ferrara, L. A fruit to discover: Cucumis metuliferus E.Mey Ex Naudin(Kiwano). Clin. Nutr. Metab. 2018, 1. [Google Scholar] [CrossRef]
- Adeleke, O.; Akinlabi, A.S.; Jen, T.-C.; Dunmade, I. Application of artificial neural networks for predicting the physical composition of municipal solid waste: An assessment of the impact of seasonal variation. Waste Manag. Res. J. Sustain. Circ. Econ. 2021, 39, 1058–1068. [Google Scholar] [CrossRef]
- Jahanbakhshi, A.; Momeny, M.; Mahmoudi, M.; Radeva, P. Waste management using an automatic sorting system for carrot fruit based on image processing technique and improved deep neural networks. Energy Rep. 2021, 7, 5248–5256. [Google Scholar] [CrossRef]
- Xu, A.; Chang, H.; Xu, Y.; Li, R.; Li, X.; Zhao, Y. Applying artificial neural networks (ANNs) to solve solid waste-related issues: A critical review. Waste Manag. 2021, 124, 385–402. [Google Scholar] [CrossRef]
- Šeregelj, V.; Ćetković, G.; Čanadanović-Brunet, J.; Šaponjac, V.T.; Vulić, J.; Stajčić, S. Encapsulation and Degradation Kinetics of Bioactive Compounds from Sweet Potato Peel During Storage. Food Technol. Biotechnol. 2020, 58, 314–324. [Google Scholar] [CrossRef]
- Aborus, E.N.; Čanadanović-Brunet, J.; Ćetković, G.; Tumbas Šaponjac, V.; Vulić, J.; Ilić, N. Powdered barley sprouts: Composition, functionality and polyphenol digestibility. Int. J. Food Sci. Technol. 2016, 52, 231–238. [Google Scholar] [CrossRef]
- Tumbas-Saponjac, V.; Seregelj, V.; Cetkovic, G.; Canadanovic-Brunet, J.; Djilas, S. Optimization of the composition of the powdered cereal sprouts mixtures. Acta Period. Technol. 2016, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Nagata, M.; Yamashita, I. Simple Method for Simultaneous Determination of Chlorophyll and Carotenoids in Tomato Fruit Nippon. Shokuhin Kogyo Gakkaishi 1992, 39, 925–928. [Google Scholar] [CrossRef] [Green Version]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar]
- Vulić, J.J.; Čanadanović-Brunet, J.M.; Ćetković, G.S.; Djilas, S.M.; Tumbas Šaponjac, V.T.; Stajčić, S.S. Bioactive Compounds and Antioxidant Properties of Goji fruits (Lycium barbarum L.) Cultivated in Serbia. J. Am. Coll. Nutr. 2016, 35, 692–698. [Google Scholar] [CrossRef] [PubMed]
- de Castro, M.L.; Priego-Capote, F. Soxhlet extraction: Past and present panacea. J. Chromatogr. A 2010, 1217, 2383–2389. [Google Scholar] [CrossRef] [PubMed]
- Marcó, A. Comparison of the Kjeldahl method and a combustion method for total nitrogen determination in animal feed. Talanta 2002, 57, 1019–1026. [Google Scholar] [CrossRef]
- Tumbas Šaponjac, V.; Gironés-Vilaplana, A.; Djilas, S.; Mena, P.; Ćetković, G.; Moreno, D.A.; Čanadanović-Brunet, J.; Vulić, J.; Stajčić, S.; Krunić, M. Anthocyanin profiles and biological properties of caneberry (Rubuss pp.) press residues. JSFA 2014, 94, 2393–2400. [Google Scholar]
- Oyaizu, M. Studies on products of browning reaction–antioxidant activities of products of browning reaction prepared from glucoamine. Jpn. J. Nutr. 1986, 44, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Micić, D.; Đurović, S.; Riabov, P.; Tomić, A.; Šovljanski, O.; Filip, S.; Tosti, T.; Dojčinović, B.; Božović, R.; Jovanović, D.; et al. Rosemary Essential Oils as a Promising Source of Bioactive Compounds: Chemical Composition, Thermal Properties, Biological Activity, and Gastronomical Perspectives. Foods 2021, 10, 2734. [Google Scholar] [CrossRef]
- Pezo, L.; Ćurčić, B.; Filipović, V.; Nićetin, M.; Koprivica, G.; Mišljenović, N.; Lević, L.J. Artificial neural network model of pork meat cubes osmotic dehydration. Hem. Ind. 2013, 67, 465–475. [Google Scholar] [CrossRef]
- Grieu, S.; Faugeroux, O.; Traoré, A.; Claudet, B.; Bodnar, J.-L. Artificial intelligence tools and inverse methods for estimating the thermal diffusivity of building materials. Energy Build. 2011, 43, 543–554. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, A. Increasing Efficiency and Quality in the Automatic Composition of Three-Move Mate Problems. In Entertainment Computing; ICEC: Sydney, Australia, 2011; Volume 6972, pp. 186–197. [Google Scholar] [CrossRef] [Green Version]
- Šovljanski, O.; Pezo, L.; Tomić, A.; Ranitović, A.; Cvetković, D.; Markov, S. Contribution of bacterial cells as nucleation centers in microbiologically induced CaCO3 precipitation—A mathematical modeling approach. J. Basic Microb. 2021, 61, 835–848. [Google Scholar] [CrossRef] [PubMed]
- Voca, N.; Pezo, L.; Peter, A.; Suput, D.; Loncar, B.; Kricka, T. Modelling of corn kernel pre-treatment, drying and processing for ethanol production using artificial neural networks. Ind. Crops Prod. 2021, 162, 113293. [Google Scholar] [CrossRef]
- Kollo, T.; von Rosen, D. Advanced Multivariate Statistics with Matrices; Springer: Berlin, Germany, 2005. [Google Scholar]
- Yoon, E.; Guffey, H.J.; Kijewski, V. The effects of information and company reputation on intentions to buy a business service. J. Bus. Res. 1993, 27, 215–228. [Google Scholar] [CrossRef]
- Kojić, J.S.; Ilić, N.M.; Kojić, P.S.; Pezo, L.L.; Banjac, V.V.; Krulj, J.A.; Bodroža Solarov, M.I. Multiobjective process optimization for betaine enriched spelt flour based extrudates. J. Food Proc. Eng. 2018, 42, e12942. [Google Scholar] [CrossRef] [Green Version]
- Aćimović, M.; Šeregelj, V.; Šovljanski, O.; Tumbas Šaponjac, V.; Švarc Gajić, J.; Brezo-Borjan, T.; Pezo, L. In vitro antioxidant, antihyperglycemic, anti-inflammatory, and antimicrobial activity of Satureja kitaibelii Wierzb. ex Heuff. subcritical water extract. Ind. Crops Prod. 2021, 169, 113672. [Google Scholar] [CrossRef]
- Matsusaka, Y.; Kawabata, J. Evaluation of Antioxidant Capacity of Non-Edible Parts of Some Selected Tropical Fruits. Food Sci. Technol. Res. 2010, 16, 467–472. [Google Scholar] [CrossRef] [Green Version]
- Sadou, H.; Sabo, H.; Saadou, M.; Leger, C.-L.; Alma, M.M. Chemical content of the seeds and physico-chemical characteristic of the seed oils from Citrullus colocynthis, Coccinia grandis, Cucumis metuliferus and Cucumis prophetarum of niger. Bull. Chem. Soc. Ethiop. 2007, 21, 323–330. [Google Scholar] [CrossRef] [Green Version]
- Arrieta, M.P.; Garrido, L.; Faba, S.; Guarda, A.; Galotto, M.J.; De Dicastillo, C.L. Cucumis metuliferus Fruit Extract Loaded Acetate Cellulose Coatings for Antioxidant Active Packaging. Polymers 2020, 12, 1248. [Google Scholar] [CrossRef]
- Usman, J.G.; Sodipo, O.A.; Kwaghe, A.V.; Sandabe, U.K. Uses of Cucumis metuliferus: A Review. Cancer Biol. 2015, 5, 24–34. [Google Scholar]
- Achikanu, C.E.; Ani, O.N.; Akpata, E.I. Proximate, vitamin and phytochemical composition of Cucumis metuliferus seed. Int. J. Food Sci. Nutr. 2020, 5, 20–24. [Google Scholar]
- Aliero, A.A.; Gumi, A.M. Studies on the germination, chemical composition and antimicrobial properties of Cucumis metuliferus. Ann. Biol. Res. 2012, 3, 4059–4064. [Google Scholar]
- Nwadiaro, P.O.; Ogbonna, A.I.; Wuyep, P.A.; Sila-Gyang, M.D. Antifungal Activity of Cucumis metuliferus E.Mey. ex Naudin on Some Post-harvest Decay Fungi of String beans. JAIR 2015, 3, 490–497. [Google Scholar]
- Rakholiya, K.; Kaneria, M.; Chanda, S. Inhibition of microbial pathogens using fruit and vegetable peel extracts. Int. J. Food Sci. Nutr. 2014, 65, 733–739. [Google Scholar] [CrossRef]
- Saleem, M.; Saeed, M.T. Potential application of waste fruit peels (orange, yellow lemon and banana) as wide range natural anmicrobial agent. J. King Saud Univ.-Sci. 2019, 32, 805–810. [Google Scholar] [CrossRef]
- Latté, K.P.; Kolodziej, H. Antifungal Effects of Hydrolysable Tannins and Related Compounds on Dermatophytes, Mould Fungi and Yeasts. Z. Für Nat. C. 2000, 55, 5–6. [Google Scholar] [CrossRef]
- Carvalho, R.S.; Carollo, C.A.; de Magalhães, J.C.; Palumbo, J.M.C.; Boaretto, A.G.; Nunes e Sá, I.C.; Ferraz, A.C.; Lima, W.G.; de Siqueira, J.M.; Ferreira, J.M.S. Antibacterial and antifungal activities of phenolic compound-enriched ethyl acetate fraction from Cochlospermum regium (mart. Et. Schr.) Pilger roots: Mechanisms of action and synergism with tannin and gallic acid, South African. J. Bot. 2018, 114, 181–187. [Google Scholar] [CrossRef]
- Ivanov, M.S. Mechanisms of Action of Selected Flavonoids, Terpenes and Nitrate Esters of Heterocyclic Compounds on Candida Albicans Isolates from the Human Oral Cavity. Ph.D. Thesis, Faculty of Biology, University of Belgrade, Belgrade, Serbia, 2019. [Google Scholar]
- Cardona, F.; Andrés-Lacueva, C.; Tulipani, S.; Tinahones, F.J.; Queipo-Ortuño, M.I. Benefits of polyphenols on gut microbiota and implications in human health. J. Nutr. Biochem. 2013, 24, 1415–1422. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Tai, W.C.S.; Hsiao, W.L.W. Dietary saponins from four popular herbal tea exert prebiotic-like effects on gut microbiota in C57BL/6 mice. J. Funct. Foods 2018, 17, 892–902. [Google Scholar] [CrossRef]
- Dingeo, G.; Brito, A.; Samouda, H.; Iddir, M.; La Frano, M.R.; Bohn, T. Phytochemicals as modifiers of gut microbial commnities. Food Funct. 2020, 11, 8444–8471. [Google Scholar] [CrossRef] [PubMed]
Analysis | Unit | Sample | ||||
---|---|---|---|---|---|---|
Pulp 1 | Pulp 2 | Pulp 3 | Pulp 4 | Pulp 5 | ||
Phytochemical Composition | ||||||
TCar | (mg β-car/100 g) | 1.05 ± 0.04 | 1.02 ± 0.01 | 0.96 ± 0.02 | 0.81 ± 0.03 | 1.14 ± 0.01 |
TPh | (mg GAE/100 g) | 64.51 ± 2.07 | 58.22 ± 7.97 | 61.90 ± 5.23 | 58.71 ± 5.11 | 74.90 ± 1.31 |
TChl | mg/100 g | 4.23 ± 0.12 | 4.25 ± 0.04 | 5.06 ± 0.31 | 4.87 ± 0.65 | 4.91 ± 0.09 |
Chl a | 0.91 ± 0.03 | 1.01 ± 0.29 | 1.43 ± 0.09 | 1.41 ± 0.09 | 1.49 ± 0.51 | |
Chl b | 2.41 ± 0.06 | 2.56 ± 0.31 | 3.25 ± 0.02 | 2.78± 0.18 | 3.31 ± 0.60 | |
Vitamin C | nd | |||||
Nutritional composition | ||||||
Proteins | g/100 g | 2.61 ± 0.08 | 2.70 ± 0.13 | 2.05 ± 0.04 | 3.01 ± 0.06 | 3.45 ± 0.17 |
Lipids | 0.71 ± 0.01 | 0.73 ± 0.01 | 0.70 ± 0.01 | 0.97 ± 0.02 | 0.83 ± 0.01 | |
Antioxidant activity | ||||||
DPPH | μmol TE/100 g | 77.98 ± 2.13 | 60.13 ± 7.01 | 70.15 ± 6.38 | 63.45 ± 8.22 | 85.81 ± 9.15 |
ABTS | 2508.69 ± 23.14 | 2315.73 ± 14.01 | 2306.82 ± 9.22 | 2598.93 ± 14.12 | 2421.54 ± 25.26 | |
RP | 271.53 ± 11.22 | 260.99 ± 11.78 | 269.28 ± 1.99 | 284.03 ± 12.01 | 275.34 ± 9.86 | |
Antimicrobial activity | ||||||
Inhibition zone (mm) | ||||||
B. cereus | nd | |||||
S. aureus | ||||||
E. faecalis | ||||||
E. coli | ||||||
P. aeruginosa | ||||||
S. ser. Typhimurium | 19.7 ± 2.1 | 19 ± 1 | 18.7 ± 0.6 | 18.7 ± 0.6 | 18.3 ± 1.1 | |
S. cerevisiae | nd | |||||
C. albicans | ||||||
A. brasiliensis | ||||||
P. aurantiogriseum | ||||||
Minimal inhibitory concentration (mg/mL) | ||||||
B. cereus | >50 | |||||
S. aureus | ||||||
E. faecalis | ||||||
E. coli | ||||||
P. aeruginosa | ||||||
S. ser. Typhimurium | ||||||
S. cerevisiae | ||||||
C. albicans | ||||||
A. brasiliensis | ||||||
P. aurantiogriseum |
Analysis | Unit | Sample | ||||
---|---|---|---|---|---|---|
Peel 1 | Peel 2 | Peel 3 | Peel 4 | Peel 5 | ||
Phytochemical Composition | ||||||
TCar | (mg β-car/100 g) | 330.88 ± 14.12 | 341.01 ± 4.28 | 326.68 ± 8.31 | 332.01 ± 13.01 | 312.51 ± 9.93 |
TPh | (mg GAE/100 g) | 1897.20 ± 21.88 | 1728.94 ± 9.41 | 1758.81 ± 38.18 | 1923.52 ± 12.14 | 1899.23 ± 15.13 |
TChl | mg/100 g | nd | ||||
Chl a | ||||||
Chl b | ||||||
Vitamin C | 625.12 ± 11.17 | 467.53 ± 5.74 | 448.41 ± 9.26 | 928.15 ± 6.13 | 860.05 ± 5.20 | |
Nutritional composition | ||||||
Proteins | g/100 g | 6.16 ± 0.21 | 5.24 ± 0.29 | 5.27 ± 0.11 | 5.73 ± 0.10 | 8.19 ± 0.31 |
Lipids | 1.74 ± 0.02 | 1.94 ± 0.07 | 2.13 ± 0.03 | 2.30 ± 0.06 | 2.20 ± 0.01 | |
Antioxidant activity | ||||||
DPPH | μmol TE/100 g | 211.53 ± 7.95 | 163.47 ± 30.57 | 158.13 ± 21.12 | 226.56 ± 9.59 | 219.17 ± 10.12 |
ABTS | 7845.91 ± 57.13 | 5472.91 ± 67.19 | 5183.46 ± 22.28 | 8042.55 ± 31.06 | 7812.13 ± 54.89 | |
RP | 7337.34 ± 12.53 | 5393.22 ± 5.12 | 5943.95 ± 31.15 | 7526.36 ± 38.19 | 5892.16 ± 12.17 | |
Antimicrobial activity | ||||||
Inhibition zone (mm) | ||||||
B. cereus | 26 ± 0.0 | 25 ± 2.6 | 31.7 ± 0.6 | 30 ± 1.0 | 21 ± 1.0 | |
S. aureus | nd | |||||
E. faecalis | ||||||
E. coli | ||||||
P. aeruginosa | 27.7 ± 2.5 | 25.3 ± 1.1 | 37 ± 3 | 30.7 ± 1.1 | 27.3 ± 3 | |
S. ser. Typhimurium | nd | |||||
S. cerevisiae | 40.0 ± 0.0 | |||||
C. albicans | ||||||
A. brasiliensis | 23 ± 1.0 | 25.7 ± 0.6 | 25.3 ± 2.1 | 25.3 ± 1.1 | 25.3 ± 1.1 | |
P. aurantiogriseum | 29.7 ± 0.63 | 27.3 ± 0.6 | 31.1 ± 0.6 | 29.3 ± 0.6 | 25.3 ± 1.1 | |
Minimal inhibitory concentration (mg/mL) | ||||||
B. cereus | 25 | |||||
S. aureus | >50 | |||||
E. faecalis | ||||||
E. coli | ||||||
P. aeruginosa | 3.125 | |||||
S. ser. Typhimurium | >50 | |||||
S. cerevisiae | 3.125 | |||||
C. albicans | ||||||
A. brasiliensis | 25 | |||||
P. aurantiogriseum |
Analysis | Unit | Sample | ||||
---|---|---|---|---|---|---|
Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | ||
Phytochemical Composition | ||||||
TCar | (mg β-car/100 g) | 0.59 ± 0.01 | 0.41 ± 0.03 | 0.53 ± 0.01 | 0.62 ± 0.01 | 0.45 ± 0.02 |
TPh | (mg GAE/100 g) | 123.16 ± 5.12 | 141.25 ± 7.27 | 136.71 ± 9.36 | 144.39 ± 1.12 | 144.08 ± 5.74 |
TChl | mg/100 g | nd | ||||
Chl a | ||||||
Chl b | ||||||
Vitamin C | ||||||
Nutritional composition | ||||||
Proteins | g/100 g | 24.06 ± 1.21 | 23.97 ± 2.17 | 23.99 ± 1.07 | 25.12 ± 0.86 | 24.04 ± 1.88 |
Lipids | 27.15 ± 0.06 | 27.68 ± 0.05 | 27.08 ± 0.11 | 28.22 ± 0.09 | 26.14 ± 0.02 | |
Antioxidant activity | ||||||
DPPH | μmol TE/100 g | 49.21 ± 1.15 | 74.52 ± 9.12 | 47.15 ± 3.31 | 58.40 ± 6.53 | 81.80 ± 10.13 |
ABTS | 1425.96 ± 21.03 | 1706.52 ± 6.55 | 1516.86 ± 21.45 | 1753.29 ± 19.62 | 1777.09 ± 13.15 | |
RP | 305.73 ± 4.06 | 366.05 ± 6.76 | 330.85 ± 2.11 | 368.34 ± 1.45 | 373.54 ± 7.43 | |
Antimicrobial activity | ||||||
Inhibition zone (mm) | ||||||
B. cereus | nd | |||||
S. aureus | ||||||
E. faecalis | ||||||
E. coli | ||||||
P. aeruginosa | ||||||
S. ser. Typhimurium | ||||||
S. cerevisiae | 33.0 ± 4.4 | 30.3 ± 2.1 | 29 ± 1.0 | 26 ± 1.0 | nd | |
C. albicans | 23.33 ± 5.0 | 25 ± 0.0 | 30 ± 4.0 | 20 ± 4.4 | nd | |
A. brasiliensis | nd | |||||
P. aurantiogriseum | ||||||
Minimal inhibitory concentration (mg/mL) | ||||||
B. cereus | >50 | |||||
S. aureus | ||||||
E. faecalis | ||||||
E. coli | ||||||
P. aeruginosa | ||||||
S. ser. Typhimurium | ||||||
S. cerevisiae | 6.25 | >50 | ||||
C. albicans | ||||||
A. brasiliensis | >50 | |||||
P. aurantiogriseum |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šovljanski, O.; Šeregelj, V.; Pezo, L.; Tumbas Šaponjac, V.; Vulić, J.; Cvanić, T.; Markov, S.; Ćetković, G.; Čanadanović-Brunet, J. Horned Melon Pulp, Peel, and Seed: New Insight into Phytochemical and Biological Properties. Antioxidants 2022, 11, 825. https://doi.org/10.3390/antiox11050825
Šovljanski O, Šeregelj V, Pezo L, Tumbas Šaponjac V, Vulić J, Cvanić T, Markov S, Ćetković G, Čanadanović-Brunet J. Horned Melon Pulp, Peel, and Seed: New Insight into Phytochemical and Biological Properties. Antioxidants. 2022; 11(5):825. https://doi.org/10.3390/antiox11050825
Chicago/Turabian StyleŠovljanski, Olja, Vanja Šeregelj, Lato Pezo, Vesna Tumbas Šaponjac, Jelena Vulić, Teodora Cvanić, Siniša Markov, Gordana Ćetković, and Jasna Čanadanović-Brunet. 2022. "Horned Melon Pulp, Peel, and Seed: New Insight into Phytochemical and Biological Properties" Antioxidants 11, no. 5: 825. https://doi.org/10.3390/antiox11050825
APA StyleŠovljanski, O., Šeregelj, V., Pezo, L., Tumbas Šaponjac, V., Vulić, J., Cvanić, T., Markov, S., Ćetković, G., & Čanadanović-Brunet, J. (2022). Horned Melon Pulp, Peel, and Seed: New Insight into Phytochemical and Biological Properties. Antioxidants, 11(5), 825. https://doi.org/10.3390/antiox11050825