Protective Effects of N-Acetylcysteine on Lipopolysaccharide-Induced Respiratory Inflammation and Oxidative Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Materials
2.3. Establishment of Lung Injury Model
2.4. Experimental Design In Vitro
2.5. Cell Culture and CCK8 Assay
2.6. Cell Counting and Protein Concentration Assay in Bronchoalveolar Lavage Fluid (BALF)
2.7. Histopathological Evaluation
2.8. Measurement of Myeloperoxidase (MPO), MDA, CAT and SOD Levels in Lung Tissues
2.9. ELISA for Cytokines
2.10. RNA Extraction and Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
2.11. Statistical Analysis
3. Results
3.1. Effect of Different Concentrations of LPS and NAC on the EBTr Viability
3.2. Inflammation and Oxidative Stress during LPS Administration at Different Times and the Effect of NAC Supplementation
3.3. NAC Pretreatment Moderated the LPS-Induced Histopathological Changes in ALI Mice
3.4. NAC Treatment Ameliorated Cytokine Secretion, Protein Leakage, Total Cell Numbers, and Neutrophils in BALF and MPO Levels in LPS-Induced ALI Mice
3.5. Influence of NAC on Antioxidant Enzyme Activity and Lipid Peroxidation in Mice
3.6. NAC Reverses Inflammatory and Oxidative-Stress Related Genes Changes in ALI Mice
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schneider, M.J.; Tait, J.R.G.; Busby, W.D.; Reecy, J.M. An evaluation of bovine respiratory disease complex in feedlot cattle: Impact on performance and carcass traits using treatment records and lung lesion scores. J. Anim. Sci. 2009, 87, 1821–1827. [Google Scholar] [CrossRef] [PubMed]
- Fulton, R.W.; Blood, K.S.; Panciera, R.J.; Payton, M.E.; Ridpath, J.F.; Confer, A.W.; Saliki, J.T.; Burge, L.T.; Welsh, R.D.; Johnson, B.J.; et al. Lung pathology and infectious agents in fatal feedlot pneumonias and relationship with mortality, disease onset, and treatments. J. Vet. Diagn. Investig. 2009, 21, 464–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, C.; Chowdhury, S. A review of the biology of bovine herpesvirus type 1 (BHV-1), its role as a cofactor in the bovine respiratory disease complex and development of improved vaccines. Anim. Health Res. Rev. 2007, 8, 187–206. [Google Scholar] [CrossRef] [PubMed]
- Edwards, T.A. Control methods for bovine respiratory disease for feedlot cattle. Vet-Clin. N. Am. Food Anim. Pract. 2010, 26, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.C.; Young, D.W.; Golenbock, D.T.; Christ, W.J.; Gusovsky, F. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J. Biol. Chem. 1999, 274, 10689–10692. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.X.; Kirschning, C.J.; Mancinelli, R.; Xu, X.P.; Jin, Y.; Faure, E.; Mantovani, A.; Rothe, M.; Muzio, M.; Arditi, M. Bacterial lipopolysaccharide activates nuclear factor-κB through interleukin-1 signaling mediators in cultured human dermal endothelial cells and mononuclear phagocytes. J. Biol. Chem. 1999, 274, 7611–7614. [Google Scholar] [CrossRef] [Green Version]
- Kline, J.N.; Cowden, J.D.; Hunninghake, G.W.; Schutte, B.C.; Watt, J.L.; Wohlford-Lenane, C.L.; Powers, L.S.; Jones, M.P.; Schwartz, D.A. Variable airway responsiveness to inhaled lipopolysaccharide. Am. J. Respir. Crit. Care Med. 1999, 160, 297–303. [Google Scholar] [CrossRef] [Green Version]
- Harada, A.; Sekido, N.; Akahoshi, T.; Wada, T.; Mukaida, N.; Matsushima, K. Essential involvement of interleukin-8 (IL-8) in acute inflammation. J. Leukoc. Biol. 1994, 56, 559–564. [Google Scholar] [CrossRef]
- Yücel, G.; Zhao, Z.; El-Battrawy, I.; Lan, H.; Lang, S.; Li, X.; Buljubasic, F.; Zimmermann, W.-H.; Cyganek, L.; Utikal, J.; et al. Lipopolysaccharides induced inflammatory responses and electrophysiological dysfunctions in human-induced pluripotent stem cell derived cardiomyocytes. Sci. Rep. 2017, 7, 2935. [Google Scholar] [CrossRef]
- Huang, W.C.; Lai, C.L.; Liang, Y.T.; Hung, H.C.; Liu, H.C.; Liou, C.J. Phloretin attenuates LPS-induced acute lung injury in mice via modulation of the NF-κB and MAPK pathways. Int. Immunopharmacol. 2016, 40, 98–105. [Google Scholar] [CrossRef]
- Chen, T.; Mou, Y.; Tan, J.; Wei, L.; Qiao, Y.; Wei, T.; Xiang, P.; Peng, S.; Zhang, Y.; Huang, Z.; et al. The protective effect of CDDO-Me on lipopolysaccharide-induced acute lung injury in mice. Int. Immunopharmacol. 2015, 25, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Aeffner, F.; Bolon, B.; Davis, I.C. Mouse models of acute respiratory distress syndrome: A review of analytical approaches, pathologic features, and common measurements. Toxicol. Pathol. 2015, 43, 1074–1092. [Google Scholar] [CrossRef] [PubMed]
- Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef]
- Tarique, H.; Bie, T.; Yin, Y.; Francois, B.; Tossou, M.; Najma, R. Oxidative stress and inflammation: What polyphenols can do for us? Oxid. Med. Cell. Longev. 2016, 2016, 7432797. [Google Scholar]
- Grommes, J.; Soehnlein, O. Contribution of neutrophils to acute lung injury. Mol. Med. 2011, 17, 293–307. [Google Scholar] [CrossRef]
- Dahlgren, C.; Karlsson, A. Respiratory burst in human neutrophils. J. Immunol. Methods 1999, 232, 3. [Google Scholar] [CrossRef]
- Handy, D.E.; Loscalzo, J. Redox regulation of mitochondrial function. Antioxid. Redox Signal. 2012, 16, 1323. [Google Scholar] [CrossRef]
- Ishigami, M. Superoxide dismutase. Nihon Rinsho Jpn. J. Clin. Med. 1998, 56, 160. [Google Scholar]
- Marklund, S.L. Human copper-containing superoxide dismutase of high molecular weight. Proc. Natl. Acad. Sci. USA 1982, 79, 7634–7638. [Google Scholar] [CrossRef] [Green Version]
- Kinnula, V.L.; Crapo, J.D. Superoxide dismutases in the lung and human lung diseases. Am. J. Respir. Crit. Care Med. 2003, 167, 1600. [Google Scholar] [CrossRef]
- Lebovitz, R.M.; Zhang, H.; Vogel, H.; Cartwright, J.; Dionne, L.; Lu, N.; Huang, S.; Matzuk, M.M. Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc. Natl. Acad. Sci. USA 1996, 93, 9782–9787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Huang, T.-T.; Carlson, E.J.; Melov, S.; Ursell, P.C.; Olson, J.L.; Noble, L.J.; Yoshimura, M.P.; Berger, C.; Chan, P.H.; et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat. Genet. 1995, 11, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Gao, Y.; Ci, X. Role of Nrf2 and its activators in respiratory diseases. Oxid. Med. Cell. Longev. 2019, 2019, 7090534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atkuri, K.R.; Mantovani, J.J.; Herzenberg, L.A. N-Acetylcysteine—A safe antidote for cysteine/glutathione deficiency. Curr. Opin. Pharmacol. 2007, 7, 355–359. [Google Scholar] [CrossRef] [Green Version]
- Jannatifar, R.; Parivar, K.; Roodbari, N.H.; Nasr-Esfahani, M.H. Effects of N-acetyl-cysteine supplementation on sperm quality, chromatin integrity and level of oxidative stress in infertile men. Reprod. Biol. Endocrinol. 2019, 17, 24. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Jo, Y.H.; Kim, K.; Lee, J.H.; Rim, K.P.; Kwon, W.Y.; Suh, G.J.; Rhee, J.E. Effect of N-acetylcysteine (NAC) on acute lung injury and acute kidney injury in hemorrhagic shock. Resuscitation 2013, 84, 121–127. [Google Scholar] [CrossRef]
- Mitsopoulos, P.; Omri, A.; Alipour, M.; Vermeulen, N.; Smith, M.G.; Suntres, Z.E. Effectiveness of liposomal-N-acetylcysteine against LPS-induced lung injuries in rodents. Int. J. Pharm. 2008, 363, 106–111. [Google Scholar] [CrossRef]
- Kao, S.J.; Wang, D.; Lin, H.I.; Chen, H.I. N-acetylcysteine abrogates acute lung injury induced by endotoxin. Clin. Exp. Pharmacol. Physiol. 2010, 33, 33–40. [Google Scholar] [CrossRef]
- Matute-Bello, G.; Downey, G.; Moore, B.B.; Groshong, S.D.; Matthay, M.A.; Slutsky, A.S.; Kuebler, W.M. An official American thoracic society workshop report: Features and measurements of experimental acute lung injury in animals. Am. J. Respir. Cell Mol. Biol. 2011, 44, 725–738. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR. Methods 2002, 25, 402–408. [Google Scholar] [CrossRef]
- Smeding, L.; Kuiper, J.W.; Plötz, F.B.; Kneyber, M.C.; Groeneveld, A.J. Aggravation of myocardial dysfunction by injurious mechanical ventilation in LPS-induced pneumonia in rats. Respir. Res. 2013, 14, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, W.; Gan, J.; Xu, S.; Jiang, G.; Wu, H. Penehyclidine hydrochloride attenuates LPS-induced acute lung injury involvement of NF-kappaB pathway. Pharmacol. Res. 2009, 60, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Rubenfeld, G.D.; Herridge, M.S. Incidence and outcomes of acute lung injury. Chest 2007, 131, 554–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jing, W.; Chunhua, M.; Shumin, W. Effects of acteoside on lipopolysaccharide-induced inflammation in acute lung injury via regulation of NF-κB pathway in vivo and in vitro. Toxicol. Appl. Pharm. 2015, 285, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Card, J.W.; Carey, M.A.; Bradbury, J.A.; DeGraff, L.M.; Morgan, D.L.; Moorman, M.P.; Flake, G.P.; Zeldin, D.C. Gender differences in murine airway responsiveness and lipopolysaccharide-induced inflammation. J. Immunol. 2006, 177, 621–630. [Google Scholar] [CrossRef]
- Zhang, R.; Li, C.; Wang, C.; Xu, M.; Xu, T.; Wei, D.; Liu, B.; Wang, G.; Tian, S. N-acetyl-l-cystine (NAC) protects against H9N2 swine influenza virus-induced acute lung injury. Int. Immunopharmacol. 2014, 22, 1–8. [Google Scholar] [CrossRef]
- Song, Q.; Lin, L.; Chen, L.; Cheng, L.; Zhong, W. Co-administration of N-acetylcysteine and dexmedetomidine plays a synergistic effect on protection of LPS-induced acute lung injury via correcting Th1/Th2/Th17 cytokines imbalance. Clin. Exp. Pharmacol. Physiol. 2020, 47, 294–301. [Google Scholar] [CrossRef]
- Lv, H.; Liu, Q.; Wen, Z.; Feng, H.; Deng, X.; Ci, X. Xanthohumol ameliorates lipopolysaccharide (LPS)-induced acute lung injury via induction of AMPK/GSK3beta-Nrf2 signal axis. Redox Biol. 2017, 12, 311–324. [Google Scholar] [CrossRef]
- Coomber, B.L.; Nyarko, K.A.; Noyes, T.M.; Gentry, P.A. Neutrophil–platelet interactions and their relevance to bovine respiratory disease. Vet. J. 2001, 161, 41–62. [Google Scholar] [CrossRef]
- Stravitz, R.T.; Sanyal, A.J.; Reisch, J.; Bajaj, J.S.; Mirshahi, F.; Cheng, J.; Lee, W.M. Effects of N-acetylcysteine on cytokines in non-acetaminophen acute liver failure: Potential mechanism of improvement in transplant-free survival. Liver Int. 2014, 33, 1324–1331. [Google Scholar] [CrossRef] [Green Version]
- Hou, X.; Yang, S.; Yin, J. Blocking REDD1/TXNIP axis ameliorates LPS-induced vascular endothelial cell injury through repressing oxidative stress and apoptosis. Am. J. Physiol. Cell Physiol. 2018, 316, C104–C110. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Hua, C.; Yang, X.; Fan, X.; Song, H.; Peng, L.; Ci, X. Pterostilbene prevents LPS-induced early pulmonary fibrosis by suppressing oxidative stress, inflammation and apoptosis in vivo. Food Funct. 2020, 11, 4471–4484. [Google Scholar] [CrossRef] [PubMed]
- Goyal, M.M.; Basak, A. Human catalase: Looking for complete identity. Protein Cell 2010, 1, 888–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, M.; Clair, D. Regulation of superoxide dismutase genes: Implications in disease. Free Radic. Biol. Med. 2009, 47, 344–356. [Google Scholar]
- Del Rio, D.; Stewart, A.J.; Pellegrini, N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr. Metab. Cardiovasc. Dis. 2005, 15, 316–328. [Google Scholar] [CrossRef] [PubMed]
- Slatter, D.A.; Bolton, C.H.; Bailey, A.J. The importance of lipid-derived malondialdehyde in diabetes mellitus. Diabetologia 2000, 43, 550–557. [Google Scholar] [CrossRef]
- Purdom-Dickinson, S.E.; Sheveleva, E.V.; Sun, H.; Chen, Q.M. Translational control of nrf2 protein in activation of antioxidant response by oxidants. Mol. Pharmacol. 2007, 72, 1074–1081. [Google Scholar] [CrossRef]
- Rushworth, S.A.; Chen, X.-L.; Mackman, N.; Ogborne, R.M.; O’Connell, M.A. Lipopolysaccharide-induced heme oxygenase-1 expression in human monocytic cells is mediated via Nrf2 and protein kinase C. J. Immunol. 2005, 175, 4408–4415. [Google Scholar] [CrossRef] [Green Version]
- Nobuhara, W.K.; Carnes, D.L.; Gilles, J.A. Anti-inflammatory effects of dexamethasone on periapical tissues following endodontic overinstrumentation. J. Endodont. 1993, 19, 501–507. [Google Scholar] [CrossRef]
- Hatamoto, L.K.; Sobrinho, C.; Nichi, M.; Barnabe, V.H.; Barnabe, R.C.; Cortada, C. Effects of dexamethasone treatment (to mimic stress) and Vitamin E oral supplementation on the spermiogram and on seminal plasma spontaneous lipid peroxidation and antioxidant enzyme activities in dogs. Theriogenology 2006, 66, 1610–1614. [Google Scholar] [CrossRef]
Target Gene | Primer Sequence | Accession | Product (bp) | |
---|---|---|---|---|
HO-1 | Forward | TGAAGGAGGCCACCAAGGAGG | NM_010442.2 | 375 |
Reverse | AGAGGTCACCCAGGTAGCGGG | |||
GCLC | Forward | CACTGCCAGAACACAGACCC | XM_006510812.2 | 238 |
Reverse | ATGGTCTGCTGAGAAGCCT | |||
SOD-1 | Forward | GTTCCACGTCCATCAG | NM_011434.2 | 144 |
Reverse | TCCTTTCCAGCAGTCA | |||
Nrf2 | Forward | CTGGCTGATACTACCGCTGTT | NM_010902.5 | 164 |
Reverse | GTGGAGAGGATGCTGCTGAA | |||
CAT | Forward | CAGGAAGGCTTGCTCAGGAA | NM_009804.2 | 81 |
Reverse | AGGACGGGTAATTGCCATTG | |||
IL-6 | Forward | AGGACTCTGGCTTTGTCTTTC | NM_001314054.1 | 216 |
Reverse | CAATGGCAATTCTGATTGTATG | |||
IL1-β | Forward | TCATCTCGGAGCCTGTAGTGC | XM_006498795.5 | 292 |
Reverse | GCTGCTTCCAAACCTTTGACC | |||
TNF-α | Forward | GCTCTGTGAAGGGAATGGGTGT | NM_001278601.1 | 276 |
Reverse | CCAGGTCACTGTCCCAGCATCT | |||
IL-8 | Forward | CGGCAATGAAGCTTCTGTAT | NM_011339.2 | 224 |
Reverse | CCTTGAAACTCTTTGCCTCA | |||
GAPDH | Forward | ACCACAGTCCATGCCATCAC | XM_036165840.1 | 452 |
Reverse | TCCACCACCCTGTTGCTGTA |
Target Gene | Primer Sequence | Accession | Product (bp) | |
---|---|---|---|---|
HO-1 | Forward | TGAAGGAGGCCACCAAGGAGG | NM_001014912 | 375 |
Reverse | AGAGGTCACCCAGGTAGCGGG | |||
GCLC | Forward | ATTGGGTGGAGAGTGGAA | XM_024983548.1 | 133 |
Reverse | ACAGCGGGATGAGAAAGT | |||
NQO-1 | Forward | CAACAGACCAGCCAATCA | NM_001034535.1 | 144 |
Reverse | ACCTCCCATCCTTTCCTC | |||
Nrf2 | Forward | CTGGCTGATACTACCGCTGTT | XM_005202312.4 | 164 |
Reverse | GTGGAGAGGATGCTGCTGAA | |||
CAT | Forward | TCACTCAGGTGCGGACTTTC | NM_001035386.2 | 163 |
Reverse | TGGATGCGGGAGCCATATTC | |||
IL-6 | Forward | GGAGGAAAAGGACGGATGCT | NM_173923.2 | 227 |
Reverse | GGTCAGTGTTTGTGGCTGGA | |||
TNF-ɑ | Forward | CTTCTGCCTGCTGCACTTCG | XM_005223596.4 | 153 |
Reverse | GAGTTGATGTCGGCTACAACG | |||
IL-8 | Forward | CCTCTTGTTCAATATGACTTCCA | NM_173925.2 | 170 |
Reverse | GGСССАСТСТCAТАACTCTC | |||
GAPDH | Forward | GGGTCATCATCTCTGCACCT | NM_001034034 | 177 |
Reverse | GGTCATAAGТCCCTCCACGA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Ma, N.; Song, X.; Wei, G.; Zhang, H.; Liu, J.; Shen, X.; Zhuge, X.; Chang, G. Protective Effects of N-Acetylcysteine on Lipopolysaccharide-Induced Respiratory Inflammation and Oxidative Stress. Antioxidants 2022, 11, 879. https://doi.org/10.3390/antiox11050879
Chen H, Ma N, Song X, Wei G, Zhang H, Liu J, Shen X, Zhuge X, Chang G. Protective Effects of N-Acetylcysteine on Lipopolysaccharide-Induced Respiratory Inflammation and Oxidative Stress. Antioxidants. 2022; 11(5):879. https://doi.org/10.3390/antiox11050879
Chicago/Turabian StyleChen, Hongbai, Nana Ma, Xiaokun Song, Guozhen Wei, Hongzhu Zhang, Jing Liu, Xiangzhen Shen, Xiangkai Zhuge, and Guangjun Chang. 2022. "Protective Effects of N-Acetylcysteine on Lipopolysaccharide-Induced Respiratory Inflammation and Oxidative Stress" Antioxidants 11, no. 5: 879. https://doi.org/10.3390/antiox11050879
APA StyleChen, H., Ma, N., Song, X., Wei, G., Zhang, H., Liu, J., Shen, X., Zhuge, X., & Chang, G. (2022). Protective Effects of N-Acetylcysteine on Lipopolysaccharide-Induced Respiratory Inflammation and Oxidative Stress. Antioxidants, 11(5), 879. https://doi.org/10.3390/antiox11050879