Phenolic Content and Antioxidant Activity in Fruit of the Genus Rosa L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Object of the Study
2.2. Chemicals and Solvents
2.3. Equipment Used
2.4. Preparation of the Raw Material
2.5. Preparation of the Ethanol Extracts
2.6. Spectrophotometric Studies
2.6.1. Evaluation of the Total Amounts of Phenolic Compounds, Flavonoids, Procyanidins, and Hydroxycinnamic Acid Derivatives
2.6.2. Evaluation of Antioxidant Activity
2.7. Chromatographic Studies
2.8. Data Analysis
3. Results and Discussion
3.1. Evaluation of the Total Content of Phenolic Compounds, Flavonoids, Proanthocyanidins, and Hydroxycinnamic Acid Derivatives in Rosa L. Fruit Samples
3.2. Evaluation of the Qualitative and Quantitative Composition of Phenolic Compounds by HPLC in Rosa L. Fruit Samples
3.3. Evaluation of the Antioxidant Activity of Rosa L. Fruit Sample Extracts In Vitro
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hummer, K.E.; Janick, J. Rosaceae: Taxonomy, economic importance, genomics. In Genetics and Genomics of Rosaceae; Springer: New York, NY, USA, 2009; pp. 1–17. [Google Scholar]
- Czyzowska, A.; Klewicka, E.; Pogorzelski, E.; Nowak, A. Polyphenols, vitamin C and antioxidant activity in wines from Rosa canina L. and Rosa rugosa Thunb. J. Food Compos. Anal. 2015, 39, 62–68. [Google Scholar] [CrossRef]
- Ghazghazi, H.; Miguel, M.G.; Hasnaoui, B.; Sebei, H.; Ksontini, M.; Figueiredo, A.C.; Barroso, J.G. Phenols, essential oils and carotenoids of Rosa canina from Tunisia and their antioxidant activities. Afr. J. Biotechnol. 2010, 9, 2709–2716. [Google Scholar]
- Shameh, I.S.; Abolfazl Alirezalu, A.; Bahman Hosseinia, B.; Maleki, R. Fruit phytochemical composition and color parameters of 21 accessions of five Rosa species grown in North West. J. Sci. Food Agric. 2019, 99, 5740–5751. [Google Scholar] [CrossRef] [PubMed]
- Barros, L.; Carvalho, A.M.; Morais, J.S.; Ferreira, I.C.F.R. Strawberry-tree, blackthorn and rose fruits: Detailed characterisation in nutrients and phytochemicals with antioxidant properties. Food Chem. 2010, 120, 247–254. [Google Scholar] [CrossRef]
- Demir, N.; Yildiz, O.; Alpaslan, M.; Hayaloglu, A.A. Evaluation of volatiles, phenolic compounds and antioxidant activities of rose hip (Rosa L.) fruits in Turkey. LWT Food Sci. Technol. 2014, 57, 126–133. [Google Scholar] [CrossRef]
- Nadpal, J.D.; Lesjak, M.M.; Šibul, F.S.; Anackov, G.T.; Cetojevic-Simin, D.D.; Mimica-Dukic, N.M.; Beara, I.N. Comparative study of biological activities and phytochemical composition of two rose hips and their preserves: Rosa canina L. and Rosa arvensis Huds. Food Chem. 2016, 192, 907–914. [Google Scholar] [CrossRef]
- Koczka, N.; Stefanovits-Bányai, É.; Ombódi, A. Total polyphenol content and antioxidant capacity of rosehips of some Rosa species. Medicines 2018, 5, 84. [Google Scholar] [CrossRef] [Green Version]
- Orhan, D.D.; Hartevioglu, A.; Küpeli, E.; Yesilada, E. In vivo Anti-Inflammatory and antinociceptive activity of the crude extract and fractions from Rosa canina L. fruits. J. Ethnopharmacol. 2007, 112, 394–400. [Google Scholar] [CrossRef]
- Wenzig, E.M.; Widowitz, U.; Kunert, O.; Chrubasik, S.; Bucar, F.; Knauder, E.; Bauer, R. Phytochemical composition and in vitro pharmacological activity of two rose hip (Rosa canina L.) preparations. Phytomedicine 2008, 15, 826–835. [Google Scholar] [CrossRef]
- Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Exotic fruits as a source of important phytochemicals: Improving the traditional use of Rosa canina fruits in Portugal. Food Res. Int. 2011, 44, 2233–2236. [Google Scholar] [CrossRef]
- Tumbas, V.T.; Canadanovic-Brunet, J.M.; Cetojevic-Simin, D.D.; Cetkovi´c, G.S.; Ðilas, S.M.; Gille, L. Effect of rosehip (Rosa canina L.) phytochemicals on stable free radicals and human cancer cells. J. Sci. Food Agric. 2012, 92, 1273–1281. [Google Scholar] [CrossRef] [PubMed]
- Cosmulescu, S.; Trandafir, I.; Nour, V. Phenolic acids and flavonoids profiles of extracts from edible wild fruits and their antioxidant properties. Int. J. Food Prop. 2017, 20, 3124–3134. [Google Scholar] [CrossRef] [Green Version]
- Knekt, P.; Kumpulainen, J.; Järvinen, R.; Rissanen, H.; Heliövaara, M.; Reunanen, A.; Hakulinen, T.; Aromaa, A. Flavonoid intake and risk of chronic diseases. Am. J. Clin. Nutr. 2002, 76, 560–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahidi, F. Functional foods: Their role in health promotion and disease prevention. J. Food Sci. 2004, 69, R146–R149. [Google Scholar] [CrossRef]
- Jiménez, S.; Jiménez-Moreno, N.; Luquin, A.; Laguna, M.; Rodríguez-Yoldi, M.J.; Ancín-Azpilicueta, C. Chemical composition of rosehips from different Rosa species: An alternative source of antioxidants for the food industry. Food Addit. Contam. Part A 2017, 34, 1121–1130. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Yin, J.J.; Charles, D.; Zhou, K.; Moore, J.; Yu, L. Total phenolic contents, chelating capacities, and radical-scavenging properties of black peppercorn, nutmeg, rosehip, cinnamon and oregano leaf. Food Chem. 2007, 100, 990–997. [Google Scholar] [CrossRef]
- Council of Europe. Loss on drying, 07/2019:20232. In European Pharmacopoeia, 10th ed.; Council of Europe: Strasbourg, France, 2019; p. 57. [Google Scholar]
- Bobinaite, R.; Viškelis, P.; Venskutonis, P.R. Variation of total phenolics, anthocyanins, ellagic acid and radical scavenging capacity in various raspberry (Rubus spp.) cultivars. Food Chem. 2012, 132, 1495–1501. [Google Scholar] [CrossRef]
- Urbonavičiūtė, A.; Jakštas, V.; Kornyšova, O.; Janulis, V.; Maruška, A. Capillary electrophoretic analysis of flavonoids in single-styled hawthorn (Crataegus monogyna Jacq.) ethanolic extracts. J. Chromatogr. A 2006, 1112, 339–344. [Google Scholar] [CrossRef]
- Heil, M.; Baumann, B.; Andary, C.; Linsenmair, E.K.; McKey, D. Extraction and quantification of “condensed tannins” as a measure of plant anti-herbivore defence? Revisiting an old problem. Naturwissenschaften 2002, 89, 519–524. [Google Scholar] [CrossRef]
- Fraisse, D.; Felgines, C.; Texier, O.; Lamaison, J.L. Caffeoyl derivatives: Major antioxidant compounds of some wild herbs of the Asteraceae family. Food Nutr. Sci. 2011, 2, 181–192. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Liaudanskas, M.; Viskelis, P.; Kviklys, D.; Raudonis, R.; Janulis, V. A comparative study of phenolic content in apple fruits. Int. J. Food Prop. 2015, 18, 945–953. [Google Scholar] [CrossRef]
- Čekanavičius, V.; Murauskas, G. Applied Regression Analysis in Social Research; Vilnius University Press: Vilnius, Lithuania, 2014; p. 124. [Google Scholar]
- Fascella, G.; D’Angiolillo, F.; Mammano, M.M.; Amenta, M.; Romeo, F.V.; Rapisarda, P.; Ballistreri, G. Bioactive compounds and antioxidant activity of four rose hip species from spontaneous Sicilian flora. Food Chem. 2019, 289, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Ersoy, N.; Bagci, Y.; Zenginbal, H.; Ozen, M.S.; Elidemir, A.Y. Antioxidant properties of Rosehip fruit types (Rosa canina sp.) selected from Bolu-Turkey. Int. J. Sci. Knowl. 2015, 4, 51–59. [Google Scholar]
- Liaudanskas, M.; Noreikienė, I.; Zymonė, K.; Juodytė, R.; Žvikas, V.; Janulis, V. Composition and antioxidant activity of phenolic compounds in fruit of the genus Rosa L. Antioxidants 2021, 10, 545. [Google Scholar] [CrossRef] [PubMed]
- Jemaa, H.B.; Jemia, A.B.; Khlifi, S.; Ahmed, H.B.A.; Slama, F.B.; Benzarti, A.; Elati, J.; Aouidet, A. Antioxidant activity and α -amylase inhibitory potential of Rosa canina L. Afr. J. Tradit. Complementary Altern. Med. 2017, 14, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Nadpal, J.D. Phytochemical composition and in vitro functional properties of three wild rose hips and their traditional preserves. Food Chem. 2018, 241, 290–300. [Google Scholar] [CrossRef] [PubMed]
- Tahirovic, A.; Bašic, N. Determination of phenolic content and antioxidant activity of Rosa canina L. fruits in different extraction systems. Rad. Šumarskog Fak. Univ. U Sarajev. 2017, 47, 13. [Google Scholar] [CrossRef]
- Adamczak, A.; Buchwald, W.; Zielinski, J.; Mielcarek, S. Flavonoid and organic acid content in rose hips (Rosa L., sect. Caninae dc. Em. Christ.). Acta Biol. Crac. Bot. 2012, 54, 105–112. [Google Scholar] [CrossRef]
- Najda, A.; Buczkowska, H. Morphological and chemical characteristics of fruits of selected Rosa sp. Mod. Phytomorphol. 2013, 3, 99–103. [Google Scholar]
- Contessa, C.; Botta, R. Comparison of physicochemical traits of red-fleshed, commercial and ancient apple cultivars. Hort. Sci. 2016, 43, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhang, B.; Xiao, J.; Huang, Q.; Li, C.; Fu, X. Physicochemical, functional, and biological properties of water-soluble polysaccharides from Rosa roxburghii Tratt fruit. Food Chem. 2018, 249, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Luo, Q.; Sun, M.; Corke, H. Antioxidant activity and phenolic compounds of 112 traditional chinese medicinal plants associated with anticancer. Life Sci. 2004, 74, 2157–2184. [Google Scholar] [CrossRef]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002, 13, 572–584. [Google Scholar] [CrossRef]
- Faramarzi, S.; Pacifico, S.; Yadollahi, A.; Lettieri, A.; Nocera, P.; Piccolella, S. Red-fleshed apples: Old autochthonous fruits as a novel source of anthocyanin antioxidants. Plant Foods Hum. Nutr. 2015, 70, 324–330. [Google Scholar] [CrossRef]
- Smanalieva, J.; Iskakova, J.; Oskonbaeva, Z.; Wichern, F.; Darr, D. Investigation of nutritional characteristics and free radical scavenging activity of wild apple, pear, rosehip, and barberry from the walnut-fruit forests of Kyrgyzstan. Eur. Food Res. Technol. 2020, 246, 1095–1104. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Scalbert, A.; Johnson, I.T.; Saltmarsh, M. Polyphenols: Antioxidants and beyond. Am. J. Clin. Nutr. 2005, 81, 215S–217S. [Google Scholar] [CrossRef]
- Mosanu, A.G.; Cristea, E.; Patras, A.; Sturza, R.; Niculaua, M. Rose hips, a valuable source of antioxidants to improve gingerbread characteristics. Molecules 2020, 25, 5659. [Google Scholar] [CrossRef] [PubMed]
- Szołtysik, M.; Kucharska, A.Z.; Sokół-Łętowska, A.; Dąbrowska, A.; Bobak, Ł.; Chrzanowska, J. The effect of Rosa spinosissima fruits extract on lactic acid bacteria growth and other yoghurt parameters. Foods 2020, 9, 1167. [Google Scholar] [CrossRef]
- Taneva, I.; Petkova, N.; Dimov, I.; Ivanov, I.; Denev, P. Characterization of rose hip (Rosa canina L.) fruits extracts and evaluation of their in vitro antioxidant activity. J. Pharmacogn. Phytochem. 2016, 5, 35–38. [Google Scholar]
- Javanmardia, J.; Stushnoff, C.; Lockeb, E.; Vivanco, J.M. Antioxidant activity and total phenolic content of Iranian Ocimum accessions. Food Chem. 2003, 83, 547–550. [Google Scholar] [CrossRef]
- Pizzale, L.; Bortolomeazzi, R.; Vichi, S.; Conte, L.S. Antioxidant activity of sage and oregano extracts related to their phenolic compound content. J. Sci. Food Agric. 2002, 82, 1645–1651. [Google Scholar] [CrossRef]
- Fattahi, S.; Jamei, R.; Sarghein, H.S. Antioxidant and antiradical activities of Rosa canina and Rosa pimpinellifolia fruits from West Azerbaijan. Iran. J. Plant Physiol. 2012, 2, 523–529. [Google Scholar]
- Lei, L.; Yang, Y.; He, H.; Chen, E.; Du, L.; Dong, J.; Yang, J. Flavan-3-ols consumption and cancer risk: A meta-analysis of epidemiologic studies. Oncotarget 2016, 7, 73573–73592. [Google Scholar] [CrossRef] [Green Version]
- Mena, P.; Domínguez-Perles, R.; Gironés-Vilaplana, A.; Baenas, N.; García-Viguera, C.; Villaño, D. Flavan-3-ols, anthocyanins, and inflammation: Anti-inflammatory effects of anthocyanins and flavan-3-ols. IUBMB Life 2014, 66, 745–758. [Google Scholar] [CrossRef]
- Hackman, R.M.; Polagruto, J.A.; Zhu, Q.Y.; Sun, B.; Fujii, H.; Keen, C.L. Flavanols: Digestion, absorption and bioactivity. Phytochem. Rev. 2007, 7, 195–208. [Google Scholar] [CrossRef]
- Mulero, J.; Abellán, J.; Zafrilla, P.; Amores, D.; Sánchez, H.P. Bioactive substances with preventive effect in cardiovascular diseases. Nutr. Hosp. 2015, 32, 1462–1467. [Google Scholar]
- Kanno, H.; Kawakami, Z.; Tabuchi, M.; Mizoguchi, K.; Ikarashi, Y.; Kase, Y. Protective effects of glycoumarinand procyanidin B1, active componentes of traditional Japanese medicine yokukansan, on amyloid β oligomer-induced neuronal death. J. Ethnopharmacol. 2015, 159, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Prince, P.D.; Lanzi, C.R.; Toblli, J.E.; Elesgaray, R.; Oteiza, P.I.; Fraga, C.G.; Galleano, M. Dietary (–)-epicatechin mitigates oxi- dative stress, NO metabolism alterations, and inflammation in renal córtex from fructose-fed rats. Free Radic. Biol. Med. 2016, 90, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Jin, D.; Xu, Y.; Mei, X.; Meng, Q.; Gcao, Y.; Li, B.; Tu, Y. Antiobesity and lipid lowering effects of theaflavins on high-fat diet induced obese rats. J. Funct. Foods 2013, 5, 1142–1150. [Google Scholar] [CrossRef]
- Serra, A.T.; Rocha, J.; Sepodesc, B.; Matiasa, A.A.; Feliciano, R.P.; de Carvalho, A.; Bronze, M.R.; Duarte, C.M.; Figueira, M.E. Evaluation of cardiovascular protective effect of different apple varieties—Correlation ofresponse with composition. Food Chem. 2012, 135, 2378–2383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piccolo, E.L.; Landi, M.; Massai, R.; Remorini, D.; Conte, G.; Guidi, L. Ancient apple cultivars from Garfagnana (Tuscany, Italy): A potential source for ‘nutrafruit’ production. Food Chem. 2019, 294, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Lakhanpal, P.; Rai, D.K. Role of quercetin in cardiovascular diseases. Internet J. Med. Update 2008, 3, 31–49. [Google Scholar] [CrossRef] [Green Version]
- Ferenczyova, K.; Kalocayova, B.; Bartekova, M. Potential implications of quercetin and its derivatives in cardioprotection. Int. J. Mol. Sci. 2020, 21, 1585. [Google Scholar] [CrossRef] [Green Version]
- Khan, H.; Ullah, H.; Aschner, M.; Cheang, W.S.; Akkol, E.K. Neuroprotective effects of quercetin in Alzheimer’s disease. Biomolecules 2019, 10, 59. [Google Scholar] [CrossRef] [Green Version]
- Magalingam, K.B.; Radhakrishnan, A.; Haleagrahara, N. Protective effects of quercetin glycosides, rutin, and isoquercetrin against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in rat pheochromocytoma (PC-12) cells. Int. J. Immunopathol. Pharmacol. 2016, 29, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Muniandy, K.; Gothai, S.; Tan, W.S.; Kumar, S.; Esa, N.M.; Chandramohan, G.; Al-Numair, K.S.; Arulselvan, P. In vitro wound healing potential of stem extract of Alternanthera sessilis. Evid. Based Complement. Altern. Med. 2018, 2018, 13. [Google Scholar] [CrossRef] [Green Version]
- Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef] [PubMed]
No. | Plant Name | Distribution |
---|---|---|
1. | Rosa × acantha Waitz ex Link. Hybrid: Rosa majalis Herrm. × Rosa rugosa Thunb. | Natural habitat: East Asia. |
2. | Rosa corymbifera Borkh. | Natural habitat: Europe, West and Central Asia, and Northwest Africa. |
3. | Rosa glauca Pourr. | Natural habitat: Western, Central, and South-Eastern Europe. |
4. | Rosa orientalis A.Dupont ex Ser. | Natural habitat: Turkey, Lebanon, and Iran. |
5. | Rosa pendulina L. | Natural habitat: Central and Southern Europe and the Balkans. |
6. | Rosa pisocarpa A.Gray | Natural habitat: Canada and the USA. |
7. | Rosa scabriuscula Gervė ex. Sm. | Natural habitat: France, Great Britain, and Ireland |
8. | Rosa stylosa Desv. | Natural habitat: Europe and Northwest Africa. |
9. | Rosa subcanina (H.Christ) Vuk. | Natural habitat: Belgium, France, Germany, Great Britain, and Hungary |
10. | Rosa tomentosa Sm. | Natural habitat: Europe, up to the Caucasus region. |
Species | Avicularin, µg/g DW | Quercitrin, µg/g DW | Procyanidin B1, µg/g DW | Procyanidin B2, µg/g DW | (+)-Catechin, µg/g DW | (−)-Epicatechin, µg/g DW |
---|---|---|---|---|---|---|
Rosa × acantha Waitz ex Link. | 21.87 ± 1.09 B | 19.33 ± 0.97 C | 108.18 ± 5.41 D | 86.95 ± 4.35 D | 133.62 ± 6.68 B | 2.12 ± 0.11 A |
Rosa corymbifera Borkh. | 16.24 ± 0.81 A | 9.79 ± 0.49 A | 98.18 ± 4.91 D | 46.82 ± 2.34 B,C | 261.64 ± 13.08 B,C | 8.92 ± 0.45 A,B |
Rosa glauca Pourr. | 15.46 ± 0.77 A | 28.75 ± 1.44 F | 21.32 ± 1.07 A | - | 228.62 ± 11.4 B,C | 7.02 ± 0.35 A,B |
Rosa orientalis A. Dupont ex Ser. | 15.93 ± 0.80 A | 25.61 ± 1.28 E | 56.19 ± 2.81 B,C | 31.77 ± 1.59 A,B | 397.42 ± 19.87 C,D | 17.35 ± 0.87 A,B |
Rosa pendulina L. | 16.96 ± 0.85 A | 18.95 ± 0.95 C | 33.89 ± 1.69 A,B | 71.29 ± 3.56 C,D | 170.34 ± 8.52 B,C | 20.66 ± 1.03 B |
Rosa pisocarpa A.Gray. | 30.43 ± 1.52 C | 14.51 ± 0.50 B | 340.89 ± 17.04 E | 93.31 ± 4.67 D | 202.61 ± 10.13 B,C | 5.50 ± 0.27 A,B |
Rosa scabriuscula Gervė ex. Sm. | 17.51 ± 0.88 A | 10.05 ± 0.46 A | 2.01 ± 0.10 A | 8.60 ± 0.43 A | 297.87 ± 14.89 B,C | 2.54 ± 0.13 A |
Rosa stylosa Desv. | 17.96 ± 0.90 A | 9.21 ± 0.45 A | 1.65 ± 0.08 A | 5.54 ± 0.28 A | 76.36 ± 3.82 A,B | 14.36 ± 0.72 A,B |
Rosa subcanina (H.Christ) Vuk. | 17.44 ± 0.87 A | 22.91 ± 1.15 D | 78.07 ± 3.90 C,D | 42.29 ± 2.11 B,C | 522.48 ± 26.12 D | 11.22 ± 0.56 A,B |
Rosa tomentosa Sm. | 16.45 ± 0.82 A | 8.98 ± 0.45 A | 10.06 ± 0.50 A | - | 26.30 ± 1.31 A | 3.61 ± 0.18 A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butkevičiūtė, A.; Urbštaitė, R.; Liaudanskas, M.; Obelevičius, K.; Janulis, V. Phenolic Content and Antioxidant Activity in Fruit of the Genus Rosa L. Antioxidants 2022, 11, 912. https://doi.org/10.3390/antiox11050912
Butkevičiūtė A, Urbštaitė R, Liaudanskas M, Obelevičius K, Janulis V. Phenolic Content and Antioxidant Activity in Fruit of the Genus Rosa L. Antioxidants. 2022; 11(5):912. https://doi.org/10.3390/antiox11050912
Chicago/Turabian StyleButkevičiūtė, Aurita, Rima Urbštaitė, Mindaugas Liaudanskas, Kęstutis Obelevičius, and Valdimaras Janulis. 2022. "Phenolic Content and Antioxidant Activity in Fruit of the Genus Rosa L." Antioxidants 11, no. 5: 912. https://doi.org/10.3390/antiox11050912
APA StyleButkevičiūtė, A., Urbštaitė, R., Liaudanskas, M., Obelevičius, K., & Janulis, V. (2022). Phenolic Content and Antioxidant Activity in Fruit of the Genus Rosa L. Antioxidants, 11(5), 912. https://doi.org/10.3390/antiox11050912