Estimation of Redox Status in Military Pilots during Hypoxic Flight-Simulation Conditions—A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Ethics
2.3. Anthropometric Measurements
2.4. Procedures and Flight Simulation Protocol
2.5. Blood Collection
2.6. Redox Status Assays
2.7. Statistical Analyses
3. Results
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Summerfield, D.; Raslau, D.; Johnson, B.; Steinkraus, L. Physiologic Challenges to Pilots of Modern High Performance Aircraft. Aircr. Technol. 2018, 12, 43–73. [Google Scholar] [CrossRef] [Green Version]
- Martin-Gill, C.; Doyle, T.J.; Yealy, D.M. Aircraft Cabin Hypoxia and Adverse Medical Events—Reply. JAMA 2019, 321, 2030–2031. [Google Scholar] [CrossRef]
- Zhou, B.; Ding, L.; Chen, B.; Shi, H.; Ao, Y.; Xu, R.; Li, Y. Physiological Characteristics and Operational Performance of Pilots in the High Temperature and Humidity Fighter Cockpit Environments. Sensors 2021, 21, 5798. [Google Scholar] [CrossRef] [PubMed]
- Askew, E.W. Work at high altitude and oxidative stress: Antioxidant nutrients. Toxicology 2002, 180, 107–119. [Google Scholar] [CrossRef]
- Bakonyi, T.; Radak, Z. High Altitude and Free Radicals. J. Sports Sci. Med. 2004, 3, 64. [Google Scholar] [PubMed]
- Radak, Z.; Acs, Z.; Bori, Z.; Taylor, A.W.; Yang, H. The Effects of High-Altitude Exposure on Reactive Oxygen and Nitrogen Species. Syst. Biol. Free Radic. Antioxid. 2014, 407–416. [Google Scholar] [CrossRef]
- Schmidt, M.C.; Askew, E.W.; Roberts, D.E.; Prior, R.L.; Ensign, W.Y.; Hesslink, R.E. Oxidative Stress in Humans Training in a Cold, Moderate Altitude Environment and Their Response to a Phytochemical Antioxidant Supplement—Wilderness & Environmental Medicine. Wilderness Environ. Med. 2002, 13, P94–P105. [Google Scholar]
- Moller, P.; Loft, S.; Lundby, C.; Olsen, N.V. Acute hypoxia and hypoxic exercise induce DNA strand breaks and oxidative DNA damage in humans. FASEB J. 2001, 15, 1181–1186. [Google Scholar] [CrossRef] [Green Version]
- Bailey, D.M.; Davies, B.; Young, I.S.; Hullin, D.A.; Seddon, P.S. A potential role for free radical-mediated skeletal muscle soreness in the pathophysiology of acute mountain sickness. Aviat. Space Environ. Med. 2001, 72, 513–521. [Google Scholar]
- Jenni-Eiermann, S.; Jenni, L.; Smith, S.; Costantini, D. Oxidative Stress in Endurance Flight: An Unconsidered Factor in Bird Migration. PLoS ONE 2014, 9, e97650. [Google Scholar] [CrossRef] [Green Version]
- McWilliams, S.; Carter, W.; Cooper-Mullin, C.; DeMoranville, K.; Frawley, A.; Pierce, B.; Skrip, M. How Birds during Migration Maintain (Oxidative) Balance. Front. Ecol. Evol. 2021, 9, 756. [Google Scholar] [CrossRef]
- Gutiérrez, J.S.; Sabat, P.; Castañeda, L.E.; Contreras, C.; Navarrete, L.; Peña-Villalobos, I.; Navedo, J.G. Oxidative status and metabolic profile in a long-lived bird preparing for extreme endurance migration. Sci. Rep. 2019, 9, 17616. [Google Scholar] [CrossRef] [PubMed]
- Eikenaar, C.; Winslott, E.; Hessler, S.; Isaksson, C. Oxidative damage to lipids is rapidly reduced during migratory stopovers. Funct. Ecol. 2020, 34, 1215–1222. [Google Scholar] [CrossRef] [Green Version]
- Dogliotti, G.; Dozio, E.; Agrifoglio, M.; Costa, E.; Broich, G.; Malavazos, A.E.; Palumbo, F.; Corsi, M.M. Italian air force acrobatic pilots are protected against flight-induced oxidative stress. In Vivo 2011, 25, 1013–1018. [Google Scholar]
- Zawadzka-Bartczak, E.K.; Kopka, L.H. Cardiac Arrhythmias During Aerobatic Flight and Its Simulation on a Centrifuge. Aviat. Space Environ. Med. 2011, 82, 599–603. [Google Scholar] [CrossRef]
- Taleghani, E.A.; Sotoudeh, G.; Amini, K.; Araghi, M.H.; Mohammadi, B.; Yeganeh, H.S. Comparison of Antioxidant Status between Pilots and Non-flight Staff of the Army Force: Pilots May Need More Vitamin C. Biomed. Environ. Sci. 2014, 27, 371–377. [Google Scholar] [CrossRef]
- de Luca, C.; Deeva, I.; Mariani, S.; Maiani, G.; Stancato, A.; Korkina, L. Monitoring antioxidant defenses and free radical production in space-flight, aviation and railway engine operators, for the prevention and treatment of oxidative stress, immunological impairment, and pre-mature cell aging. Toxicol. Ind. Health 2009, 25, 259–267. [Google Scholar] [CrossRef]
- Srivastav, S.; Jamil, R.T.; Zeltser, R. Valsalva Maneuver. Encycl. Neurol. Sci. 2014, 5, 591–592. [Google Scholar] [CrossRef]
- de Toledo, F.W.; Grundler, F.; Goutzourelas, N.; Tekos, F.; Vassi, E.; Mesnage, R.; Kouretas, D. Influence of Long-Term Fasting on Blood Redox Status in Humans. Antioxidants 2020, 9, 496. [Google Scholar] [CrossRef]
- Grundler, F.; Mesnage, R.; Goutzourelas, N.; Tekos, F.; Makri, S.; Brack, M.; Kouretas, D.; Wilhelmi de Toledo, F. Interplay between oxidative damage, the redox status, and metabolic biomarkers during long-term fasting. Food Chem. Toxicol. 2020, 145, 111701. [Google Scholar] [CrossRef]
- Keles, M.S.; Taysi, S.; Sen, N.; Aksoy, H.; Akçay, F. Effect of corticosteroid therapy on serum and CSF malondialdehyde and antioxidant proteins in multiple sclerosis. Can. J. Neurol. Sci. 2001, 28, 141–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michailidis, Y.; Jamurtas, A.Z.; Nikolaidis, M.G.; Fatouros, I.G.; Koutedakis, Y.; Papassotiriou, I.; Kouretas, D. Sampling time is crucial for measurement of aerobic exercise-induced oxidative stress. Med. Sci. Sports Exerc. 2007, 39, 1107–1113. [Google Scholar] [CrossRef] [PubMed]
- Aebi, H. Catalase in vitro. Methods Enzyml. 1984, 105, 121–126. [Google Scholar] [CrossRef]
- Veskoukis, A.S.; Kyparos, A.; Paschalis, V.; Nikolaidis, M.G. Spectrophotometric assays for measuring redox biomarkers in blood. Biomarkers 2016, 21, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Janaszewska, A.; Bartosz, G. Assay of total antioxidant capacity: Comparison of four methods as applied to human blood plasma. Scand. J. Clin. Lab. Investig. 2002, 62, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Spanidis, Y.; Stagos, D.; Orfanou, M.; Goutzourelas, N.; Bar-Or, D.; Spandidos, D.; Kouretas, D. Variations in Oxidative Stress Levels in 3 Days Follow-Up in Ultramarathon Mountain Race Athletes. J. Strength Cond. Res. 2017, 31, 582–594. [Google Scholar] [CrossRef]
- Spanidis, Y.; Goutzourelas, N.; Stagos, D.; Mpesios, A.; Priftis, A.; Bar-Or, D.; Spandidos, D.A.; Tsatsakis, A.M.; Leon, G.; Kouretas, D. Variations in oxidative stress markers in elite basketball players at the beginning and end of a season. Exp. Ther. Med. 2016, 11, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Goutzourelas, N.; Orfanou, M.; Charizanis, I.; Leon, G.; Spandidos, D.A.; Kouretas, D. GSH levels affect weight loss in individuals with metabolic syndrome and obesity following dietary therapy. Exp. Ther. Med. 2018, 16, 635–642. [Google Scholar] [CrossRef] [Green Version]
- Bailey, D.M.; Davies, B.; Young, I.S. Intermittent hypoxic training: Implications for lipid peroxidation induced by acute normoxic exercise in active men. Clin. Sci. 2001, 101, 465–475. [Google Scholar] [CrossRef]
- Kyparos, A.; Riganas, C.; Nikolaidis, M.G.; Sampanis, M.; Koskolou, M.D.; Grivas, G.V.; Kouretas, D.; Vrabas, I.S. The effect of exercise-induced hypoxemia on blood redox status in well-trained rowers. Eur. J. Appl. Physiol. 2012, 112, 2073–2083. [Google Scholar] [CrossRef]
- Mahasneh, A.A.; Zhang, Y.; Zhao, H.; Ambrosone, C.B.; Hong, C.C. Lifestyle predictors of oxidant and antioxidant enzyme activities and total antioxidant capacity in healthy women: A cross-sectional study. J. Physiol. Biochem. 2016, 72, 745–762. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, Y.; Liu, H.; Che, Y.; Xu, Y.; Lingling, E. Age-related variations of protein carbonyls in human saliva and plasma: Is saliva protein carbonyls an alternative biomarker of aging? Age 2015, 37, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanase, M.; Urbanska, A.M.; Zolla, V.; Clement, C.C.; Huang, L.; Morozova, K.; Follo, C.; Goldberg, M.; Roda, B.; Reschiglian, P.; et al. Role of Carbonyl Modifications on Aging-Associated Protein Aggregation. Sci. Rep. 2016, 6, 19311. [Google Scholar] [CrossRef] [Green Version]
- Rudzińska, M.; Parodi, A.; Balakireva, A.V.; Chepikova, O.E.; Venanzi, F.M.; Zamyatnin, A.A. Cellular Aging Characteristics and Their Association with Age-Related Disorders. Antioxidants 2020, 9, 94. [Google Scholar] [CrossRef] [Green Version]
- Starke-Reed, P.E.; Oliver, C.N. Protein oxidation and proteolysis during aging and oxidative stress. Arch. Biochem. Biophys. 1989, 275, 559–567. [Google Scholar] [CrossRef]
- Sohal, R.S.; Agarwal, S.; Dubey, A.; Orr, W.C. Protein oxidative damage is associated with life expectancy of houseflies. Proc. Natl. Acad. Sci. USA 1993, 90, 7255–7259. [Google Scholar] [CrossRef] [Green Version]
- Oliver, C.N.; Ahn, B.W.; Moerman, E.J.; Goldstein, S.; Stadtman, E.R. Age-related changes in oxidized proteins. J. Biol. Chem. 1987, 262, 5488–5491. [Google Scholar] [CrossRef]
- Gonos, E.S.; Kapetanou, M.; Sereikaite, J.; Bartosz, G.; Naparlo, K.; Grzesik, M.; Sadowska-Bartosz, I. Origin and pathophysiology of protein carbonylation, nitration and chlorination in age-related brain diseases and aging. Aging 2018, 10, 868. [Google Scholar] [CrossRef]
- Chen, R.; Lai, U.H.; Zhu, L.; Singh, A.; Ahmed, M.; Forsyth, N.R. Reactive Oxygen Species Formation in the Brain at Different Oxygen Levels: The Role of Hypoxia Inducible Factors. Front. Cell Dev. Biol. 2018, 6, 132. [Google Scholar] [CrossRef] [Green Version]
- Choudhry, H.; Harris, A.L. Advances in Hypoxia-Inducible Factor Biology|Enhanced Reader. Cell Metab. 2018, 27, 281–298. [Google Scholar] [CrossRef] [Green Version]
- Chan, M.C.; Holt-Martyn, J.P.; Schofield, C.J.; Ratcliffe, P.J. Pharmacological targeting of the HIF hydroxylases—A new field in medicine development. Mol. Asp. Med. 2016, 47–48, 54–75. [Google Scholar] [CrossRef] [PubMed]
- Suski, J.M.; Lebiedzinska, M.; Bonora, M.; Pinton, P.; Duszynski, J.; Wieckowski, M.R. Relation between mitochondrial membrane potential and ROS formation. Methods Mol. Biol. 2012, 810, 183–205. [Google Scholar] [CrossRef] [PubMed]
- Leinonen, A.; Varis, N.; Kokki, H.; Leino, T.K. Normobaric hypoxia training in military aviation and subsequent hypoxia symptom recognition. Ergonomics 2020, 64, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Steinman, Y.; Groen, E.; Frings-Dresen, M.H.W. Exposure to hypoxia impairs helicopter pilots’ awareness of environment. Ergonomics 2021, 64, 1481–1490. [Google Scholar] [CrossRef] [PubMed]
- Ighodaro, O.M.; Akinloye, O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 2018, 54, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Sies, H. Total Antioxidant Capacity: Appraisal of a Concept. J. Nutr. 2007, 137, 1493–1495. [Google Scholar] [CrossRef]
- Raj Rai, S.; Bhattacharyya, C.; Sarkar, A.; Chakraborty, S.; Sircar, E.; Dutta, S.; Sengupta, R. Glutathione: Role in Oxidative/Nitrosative Stress, Antioxidant Defense, and Treatments. ChemistrySelect 2021, 6, 4566–4590. [Google Scholar] [CrossRef]
- Zhu, Y.; Carvey, P.M.; Ling, Z. Age-related changes in glutathione and glutathione-related enzymes in rat brain. Brain Res. 2006, 1090, 44. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Liu, H.; Liu, R.M. Gender difference in glutathione metabolism during aging in mice. Exp. Gerontol. 2003, 38, 507–517. [Google Scholar] [CrossRef]
- López-Navarro, M.E.; Jarquín-Martínez, M.; Sánchez-Labastida, L.A.; Ramírez-Rosales, D.; Godínez-Victoria, M.; Quintas-Granados, L.I.; Trujillo-Ferrara, J.G. Decoding Aging: Understanding the Complex Relationship among Aging, Free Radicals, and GSH. Oxidative Med. Cell. Longev. 2020, 2020, 3970860. [Google Scholar] [CrossRef]
- Elokda, A.S.; Nielsen, D.H. Effects of exercise training on the glutathione antioxidant system. Eur. J. Cardiovasc. Prev. Rehabil. 2007, 14, 630–637. [Google Scholar] [CrossRef] [PubMed]
- Varamenti, E.; Tod, D.; Pullinger, S.A. Redox Homeostasis and Inflammation Responses to Training in Adolescent Athletes: A Systematic Review and Meta-analysis. Sports Med. Open 2020, 6, 34. [Google Scholar] [CrossRef] [PubMed]
- Aoi, W.; Ogaya, Y.; Takami, M.; Konishi, T.; Sauchi, Y.; Park, Y.Y.; Wada, S.; Sato, K.; Higashi, A. Glutathione supplementation suppresses muscle fatigue induced by prolonged exercise via improved aerobic metabolism. J. Int. Soc. Sports Nutr. 2015, 12, 7. [Google Scholar] [CrossRef] [Green Version]
- Fratantonio, D.; Virgili, F.; Zucchi, A.; Lambrechts, K.; Latronico, T.; Lafère, P.; Germonpré, P.; Balestra, C. Increasing Oxygen Partial Pressures Induce a Distinct Transcriptional Response in Human PBMC: A Pilot Study on the “Normobaric Oxygen Paradox”. Int. J. Mol. Sci. 2021, 22, 458. [Google Scholar] [CrossRef] [PubMed]
- Balestra, C.; Lambrechts, K.; Mrakic-Sposta, S.; Vezzoli, A.; Levenez, M.; Germonpré, P.; Virgili, F.; Bosco, G.; Lafère, P. Hypoxic and Hyperoxic Breathing as a Complement to Low-Intensity Physical Exercise Programs: A Proof-of-Principle Study. Int. J. Mol. Sci. 2021, 22, 9600. [Google Scholar] [CrossRef] [PubMed]
- Moore, C.G.; Carter, R.E.; Nietert, P.J.; Stewart, P.W. Recommendations for Planning Pilot Studies in Clinical and Translational Research. Clin. Transl. Sci. 2011, 4, 332. [Google Scholar] [CrossRef]
- Leite-Almeida, L.; Morato, M.; Cosme, D.; Afonso, J.; Areias, J.C.; Guerra, A.; Caldas Afonso, A.; Albino-Teixeira, A.; Sousa, T.; Correia-Costa, L. Impact of physical activity on redox status and nitric oxide bioavailability in nonoverweight and overweight/obese prepubertal children. Free Radic. Biol. Med. 2021, 163, 116–124. [Google Scholar] [CrossRef]
- Galli, D.; Carubbi, C.; Masselli, E.; Vaccarezza, M.; Presta, V.; Pozzi, G.; Ambrosini, L.; Gobbi, G.; Vitale, M.; Mirandola, P. Physical Activity and Redox Balance in the Elderly: Signal Transduction Mechanisms. Appl. Sci. 2021, 11, 2228. [Google Scholar] [CrossRef]
- Tekos, F.; Skaperda, Z.; Goutzourelas, N.; Phelps, D.S.; Floros, J.; Kouretas, D. The Importance of Redox Status in the Frame of Lifestyle Approaches and the Genetics of the Lung Innate Immune Molecules, SP-A1 and SP-A2, on Differential Outcomes of COVID-19 Infection. Antioxidants 2020, 9, 784. [Google Scholar] [CrossRef]
- Spanidis, Y.; Mpesios, A.; Stagos, D.; Goutzourelas, N.; Bar-Or, D.; Karapetsa, M.; Zakynthinos, E.; Spandidos, D.A.; Tsatsakis, A.M.; Leon, G.; et al. Assessment of the redox status in patients with metabolic syndrome and type 2 diabetes reveals great variations. Exp. Ther. Med. 2016, 11, 895–903. [Google Scholar] [CrossRef] [Green Version]
- Olsen, T.; Sollie, O.; Nurk, E.; Turner, C.; Jernerén, F.; Ivy, J.L.; Vinknes, K.J.; Clauss, M.; Refsum, H.; Jensen, J. Exhaustive Exercise and Post-exercise Protein Plus Carbohydrate Supplementation Affect Plasma and Urine Concentrations of Sulfur Amino Acids, the Ratio of Methionine to Homocysteine and Glutathione in Elite Male Cyclists. Front. Physiol. 2020, 11, 1678. [Google Scholar] [CrossRef] [PubMed]
Pilots (n = 7) | Trainees (n = 7) | p Value | |
---|---|---|---|
Age (years) | 41.7 ± 3.1 | 19.6 ± 0.3 | 0.0004 |
Body weight (kg) | 83.5 ± 6.2 | 75.3 ± 2.8 | 0.12 |
Height (cm) | 177.5 ± 1.8 | 175.9 ± 2.0 | 0.27 |
BMI (kg/m2) | 26.5 ± 1.9 | 24.3 ± 0.5 | 0.15 |
Pilots (n = 7) | Trainees (n = 7) | |||
---|---|---|---|---|
Before Simulation | Post-Simulation | Before Simulation | Post-Simulation | |
GSH (μmol/g of Hb) | 3.73 ± 1.81 | 4.22 ± 1.43 * | 3.5 ± 0.78 | 3.4 ± 0.61 |
CAT (U/mg of Hb) | 210 ± 29 | 220 ± 36 | 210 ± 24 | 223 ± 13 * |
TAC (mmol DPPH/L of plasma) | 0.87 ± 0.12 | 0.84 ± 0.08 * | 0.75 ± 0.04 † | 0.77 ± 0.03 *,† |
TBARS (μmol/L) | 5.28 ± 1.03 | 5.12 ± 1.86 | 4.66 ± 0.84 | 4.74 ± 0.96 |
PCs (nmol/mg of protein) | 0.67 ± 0.08 | 0.67 ± 0.11 | 0.59 ± 0.06 † | 0.6 ± 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petraki, K.; Grammatikopoulou, M.G.; Tekos, F.; Skaperda, Z.; Orfanou, M.; Mesnage, R.; Vassilakou, T.; Kouretas, D. Estimation of Redox Status in Military Pilots during Hypoxic Flight-Simulation Conditions—A Pilot Study. Antioxidants 2022, 11, 1241. https://doi.org/10.3390/antiox11071241
Petraki K, Grammatikopoulou MG, Tekos F, Skaperda Z, Orfanou M, Mesnage R, Vassilakou T, Kouretas D. Estimation of Redox Status in Military Pilots during Hypoxic Flight-Simulation Conditions—A Pilot Study. Antioxidants. 2022; 11(7):1241. https://doi.org/10.3390/antiox11071241
Chicago/Turabian StylePetraki, Konstantina, Maria G. Grammatikopoulou, Fotios Tekos, Zoi Skaperda, Marina Orfanou, Robin Mesnage, Tonia Vassilakou, and Demetrios Kouretas. 2022. "Estimation of Redox Status in Military Pilots during Hypoxic Flight-Simulation Conditions—A Pilot Study" Antioxidants 11, no. 7: 1241. https://doi.org/10.3390/antiox11071241
APA StylePetraki, K., Grammatikopoulou, M. G., Tekos, F., Skaperda, Z., Orfanou, M., Mesnage, R., Vassilakou, T., & Kouretas, D. (2022). Estimation of Redox Status in Military Pilots during Hypoxic Flight-Simulation Conditions—A Pilot Study. Antioxidants, 11(7), 1241. https://doi.org/10.3390/antiox11071241