Influence of 5-Week Snack Supplementation with the Addition of Gelatin Hydrolysates from Carp Skins on Pro-Oxidative and Antioxidant Balance Disturbances (TOS, TAS) in a Group of Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Somatic Measurements
2.3. Incremental Exercise Test
2.4. Eccentric Exercise Test
2.5. Biochemical Analysis
2.6. Analysis of Nutrition
2.7. Tested Snack
2.8. Statistical Analysis
3. Results
3.1. Nutrition
3.2. Prooxidative and Antioxidant Status
4. Discussion
4.1. Nutrition and Oxidative Stress
4.2. Effect of Fish Protein Hydrolysate on Pro-Oxidative Status
4.3. Supplementation and Antioxidant Potential of the Athletes’ Plasma
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Atalay, M.; Lappalainen, J.; Sen, C.K. Dietary Antioxidants for the Athlete. Curr. Sports Med. Rep. 2006, 5, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Elena, B.; Piero, S. Reactive oxygen species in skeletal muscle signaling. J. Signal Transduct. 2012, 2012, 982794. [Google Scholar]
- Devrim-Lanpir, A.; Bilgic, P.; Kocahan, T.; Deliceoğlu, G.; Rosemann, T.; Knechtle, B. Total Dietary Antioxidant Intake Including Polyphenol Content: Is It Capable to Fight against Increased Oxidants within the Body of Ultra-Endurance Athletes? Nutrients 2020, 12, 1877. [Google Scholar] [CrossRef] [PubMed]
- Fatouros, I.; Jamurtas, A. Insights into the molecular etiology of exercise-induced inflammation: Opportunities for optimizing performance. J. Inflamm. Res. 2016, 9, 175–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.-W.; Kao, H.-H.; Wu, C.-H. Exercise training upregulates SIRT1 to attenuate inflammation and metabolic dysfunction in kidney and liver of diabetic db/db mice. Nutr. Metab. 2019, 16, 22. [Google Scholar] [CrossRef]
- Diaz, K.; Feairheller, D.; Sturgeon, K.; Williamson, S.; Brown, M. Oxidative Stress Response to Short Duration Bout of Submaximal Aerobic Exercise in Healthy Young Adults. Int. J. Exerc. Sci. 2011, 4, 247–256. [Google Scholar]
- Quinn, K.M.; Cox, A.J.; Roberts, L.; Pennell, E.N.; McKeating, D.R.; Fisher, J.J.; Perkins, A.V.; Minahan, C. Temporal changes in blood oxidative stress biomarkers across the menstrual cycle and with oral contraceptive use in active women. Eur. J. Appl. Physiol. 2021, 121, 2607–2620. [Google Scholar] [CrossRef]
- Massafra, C.; Gioia, D.; De Felice, C.; Picciolini, E.; De Leo, V.; Bonifazi, M.; Bernabei, A. Effects of estrogens and androgens on erythrocyte antioxidant superoxide dismutase, catalase and glutathione peroxidase activities during the menstrual cycle. J. Endocrinol. 2000, 167, 447–452. [Google Scholar] [CrossRef] [Green Version]
- Palan, P.R.; Magneson, A.T.; Castillo, M.; Dunne, J.; Mikhail, M.S. Effects of menstrual cycle and oral contraceptive use on serum levels of lipid-soluble antioxidants. Am. J. Obstet. Gynecol. 2006, 194, e35–e38. [Google Scholar] [CrossRef]
- Gaskins, A.J.; Wilchesky, M.; Mumford, S.L.; Whitcomb, B.W.; Browne, R.W.; Wactawski-Wende, J.; Perkins, N.J.; Schisterman, E.F. Endogenous reproductive hormones and C-reactive protein across the menstrual cycle: The BioCycle Study. Am. J. Epidemiol. 2012, 175, 423–431. [Google Scholar] [CrossRef]
- Schisterman, E.; Mumford, S.; Sjaarda, L. Failure to Consider the Menstrual Cycle Phase May Cause Misinterpretation of Clinical and Research Findings of Cardiometabolic Biomarkers in Premenopausal Women. Epidemiol. Rev. 2013, 36, 71–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowalska, K.; Milnerowicz, H. Pro/antioxidant status in young healthy women using oral contraceptives. Environ. Toxicol. Pharmacol. 2016, 43, 1–6. [Google Scholar] [CrossRef]
- Lewis, N.A.; Simpkin, A.J.; Moseley, S.; Turner, G.; Homer, M.; Redgrave, A.; Pedlar, C.; Burden, R. Increased Oxidative Stress in Injured and Ill Elite International Olympic Rowers. Int. J. Sports Physiol. Perform. 2020, 15, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Nocella, C.; Cammisotto, V.; Pigozzi, F.; Borrione, P.; Fossati, C.; D’Amico, A.; Cangemi, R.; Peruzzi, M.; Gobbi, G.; Ettorre, E.; et al. Impairment between Oxidant and Antioxidant Systems: Short- and Long-term Implications for Athletes’ Health. Nutrients 2019, 11, 1353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahal, A.; Kumar, A.; Singh, V.; Yadav, B.; Tiwari, R.; Chakraborty, S.; Dhama, K. Oxidative Stress, Prooxidants, and Antioxidants: The Interplay. BioMed Res. Int. 2014, 2014, 761264. [Google Scholar] [CrossRef] [Green Version]
- Maughan, R.J.; Burke, L.M.; Dvorak, J.; Larson-Meyer, D.E.; Peeling, P.; Phillips, S.M.; Rawson, E.S.; Walsh, N.P.; Garthe, I.; Geyer, H.; et al. IOC Consensus Statement: Dietary Supplements and the High-Performance Athlete. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 104–125. [Google Scholar] [CrossRef] [Green Version]
- Knapik, J.J.; Steelman, R.A.; Hoedebecke, S.S.; Austin, K.G.; Farina, E.K.; Lieberman, H.R. Prevalence of Dietary Supplement Use by Athletes: Systematic Review and Meta-Analysis. Sports Med. 2015, 46, 103–123. [Google Scholar] [CrossRef] [Green Version]
- Lun, V.; Erdman, K.A.; Fung, T.S.; Reimer, R.A. Dietary supplementation practices in Canadian high-performance athletes. Int. J. Sport Nutr. Exerc. Metab. 2012, 22, 31–37. [Google Scholar] [CrossRef]
- Zou, T.-B.; He, T.-P.; Li, H.-B.; Tang, H.-W.; Xia, E.-Q. The Structure-Activity Relationship of the Antioxidant Peptides from Natural Proteins. Molecules 2016, 21, 72. [Google Scholar] [CrossRef]
- Tkaczewska, J.; Borawska-Dziadkiewicz, J.; Kulawik, P.; Duda, I.; Morawska, M.; Mickowska, B. The effects of hydrolysis condition on the antioxidant activity of protein hydrolysate from Cyprinus carpio skin gelatin. LWT 2019, 117, 108616. [Google Scholar] [CrossRef]
- Tkaczewska, J.; Jamróz, E.; Kulawik, P.; Morawska, M.; Szczurowska, K. Evaluation of the potential use of a carp (Cyprinus carpio) skin gelatine hydrolysate as an antioxidant component. Food Funct. 2019, 10, 1038–1048. [Google Scholar] [CrossRef] [PubMed]
- Tkaczewska, J.; Borczak, B.; Piątkowska, E.; Kapusta-Duch, J.; Morawska, M.; Czech, T. Effect of protein hydrolysates from carp (Cyprinus carpio) skin gelatine on oxidative stress biomarkers and other blood parameters in healthy rats. J. Funct. Foods 2019, 60, 103411. [Google Scholar] [CrossRef]
- Tkaczewska, J.; Jamróz, E.; Piątkowska, E.; Borczak, B.; Kapusta-Duch, J.; Morawska, M. Furcellaran-Coated Microcapsules as Carriers of Cyprinus carpio Skin-Derived Antioxidant Hydrolysate: An In Vitro and In Vivo Study. Nutrients 2019, 11, 2502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tkaczewska, J.; Bukowski, M.; Mak, P. Identification of Antioxidant Peptides in Enzymatic Hydrolysates of Carp (Cyprinus Carpio) Skin Gelatin. Molecules 2018, 24, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhambhani, Y.; Singh, M. Ventilatory Thresholds during a Graded Exercise Test. Respiration 1985, 47, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Binder, R.K.; Wonisch, M.; Corra, U.; Cohen-Solal, A.; Vanhees, L.; Saner, H.; Schmid, J.-P. Methodological approach to the first and second lactate threshold in incremental cardiopulmonary exercise testing. Eur. J. Cardiovasc. Prev. Rehabil. 2008, 15, 726–734. [Google Scholar] [CrossRef]
- Marqueste, T.; Decherchi, P.; Messan, F.; Kipson, N.; Grélot, L.; Jammes, Y. Eccentric exercise alters muscle sensory motor control through the release of inflammatory mediators. Brain Res. 2004, 1023, 222–230. [Google Scholar] [CrossRef]
- Clarkson, P.; Hubal, M. Exercise-induced muscle damage in humans. Am. J. Phys. Med. Rehabil. 2002, 81, 52–69. [Google Scholar] [CrossRef]
- Ahmadi, S.; Sinclair, P.J.; Davis, G.M. Muscle oxygenation after downhill walking-induced muscle damage. Clin. Physiol. Funct. Imaging 2007, 28, 55–63. [Google Scholar] [CrossRef]
- Johansen, L.B.; Videbæk, R.; Hammerum, M.; Norsk, P. Underestimation of plasma volume changes in humans by hematocrit/hemoglobin method. Am. J. Physiol. Integr. Comp. Physiol. 1998, 274, R126–R130. [Google Scholar] [CrossRef]
- Kraemer, R.R.; Brown, B.S. Alterations in plasma-volume-corrected blood components of marathon runners and concomitant relationship to performance. Eur. J. Appl. Physiol. Occup. Physiol. 1986, 55, 579–584. [Google Scholar] [CrossRef] [PubMed]
- Kunachowicz, H.; Przygoda, B.; Nadolna, I.; Iwanow, K. Food Composition and Nutrition Tables; PZWL: Warsaw, Poland, 2017. [Google Scholar]
- Jarosz, M.; Rychlik, E.; Stoś, K.; Charzewska, J. Nutrition Standards for the Polish Population and Their Application; National Institute of Public Health/National Institute of Hygiene: Warsaw, Poland, 2020. (In Polish) [Google Scholar]
- Tkaczewska, J.; Kulawik, P.; Morawska-Tota, M.; Zając, M.; Guzik, P.; Tota, Ł.; Pająk, P.; Duliński, R.; Florkiewicz, A.; Migdał, W. Protocol for Designing New Functional Food with the Addition of Food Industry By-Products, Using Design Thinking Techniques—A Case Study of a Snack with Antioxidant Properties for Physically Active People. Foods 2021, 10, 694. [Google Scholar] [CrossRef] [PubMed]
- Di Meo, S.; Reed, T.T.; Venditti, P.; Victor, V.M. Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxidative Med. Cell. Longev. 2016, 2016, 1245049. [Google Scholar] [CrossRef]
- Bae, Y.S.; Oh, H.; Rhee, S.G.; Yoo, Y.D. Regulation of reactive oxygen species generation in cell signaling. Mol. Cells 2011, 32, 491–509. [Google Scholar] [CrossRef] [Green Version]
- Merry, T.L.; Ristow, M. Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training? J. Physiol. 2016, 594, 5135–5147. [Google Scholar] [CrossRef] [PubMed]
- Antonioni, A.; Fantini, C.; Dimauro, I.; Caporossi, D. Redox homeostasis in sport: Do athletes really need antioxidant support? Res. Sports Med. 2019, 27, 147–165. [Google Scholar] [CrossRef]
- Petrova, I.; Tolstorebrov, I.; Eikevik, T.M. Production of fish protein hydrolysates step by step: Technological aspects, equipment used, major energy costs and methods of their minimizing. Int. Aquat. Res. 2018, 10, 223–241. [Google Scholar] [CrossRef] [Green Version]
- Lees, M.; Carson, B. The Potential Role of Fish-Derived Protein Hydrolysates on Metabolic Health, Skeletal Muscle Mass and Function in Ageing. Nutrients 2020, 12, 2434. [Google Scholar] [CrossRef]
- Pezeshk, S.; Ojagh, S.M.; Rezaei, M.; Shabanpour, B. Fractionation of Protein Hydrolysates of Fish Waste Using Membrane Ultrafiltration: Investigation of Antibacterial and Antioxidant Activities. Probiotics Antimicrob. Proteins 2018, 11, 1015–1022. [Google Scholar] [CrossRef]
- Hu, X.-M.; Wang, Y.-M.; Zhao, Y.-Q.; Chi, C.-F.; Wang, B. Antioxidant Peptides from the Protein Hydrolysate of Monkfish (Lophius litulon) Muscle: Purification, Identification, and Cytoprotective Function on HepG2 Cells Damage by H2O2. Mar. Drugs 2020, 18, 153. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.-R.; Zhang, L.; Ding, D.-G.; Chi, C.-F.; Wang, B.; Huo, J.-C. Preparation, Identification, and Activity Evaluation of Eight Antioxidant Peptides from Protein Hydrolysate of Hairtail (Trichiurus japonicas) Muscle. Mar. Drugs 2019, 17, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouglé, D.; Bouhallab, S. Dietary bioactive peptides: Human studies. Crit. Rev. Food Sci. Nutr. 2017, 57, 335–343. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Munekata, P.E.; Gómez, B.; Barba, F.J.; Mora, L.; Pérez-Santaescolástica, C.; Toldrá, F. Bioactive peptides as natural antioxidants in food products—A review. Trends Food Sci. Technol. 2018, 79, 136–147. [Google Scholar] [CrossRef]
- Erdmann, K.; Grosser, N.; Schipporeit, K.; Schröder, H. The ACE Inhibitory Dipeptide Met-Tyr Diminishes Free Radical Formation in Human Endothelial Cells via Induction of Heme Oxygenase-1 and Ferritin. J. Nutr. 2006, 136, 2148–2152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, X. Effect on plant leaf protein on lipotropy peroxidase system of rats. Chin. J. Vet. Sci. Technol. 2003, 11, 1–18. [Google Scholar]
- Lu, B. Evaluating the Efficacy of Fish Proteins for the Amelioration of Extreme Exercise-induced Fatigue Leading to Death in Mice. Curr. Top. Nutraceutical Res. 2020, 18, 52–55. [Google Scholar]
- Mjøs, I.; Thorsen, E.; Hausken, T.; Lied, E.; Nilsen, R.M.; Brønstad, I.; Edvardsen, E.; Frisk, B. The effect of low dose marine protein hydrolysates on short-term recovery after high intensity performance cycling: A double-blinded crossover study. J. Int. Soc. Sports Nutr. 2019, 16, 48. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, M.; Merten, J.W.; Gordon, B.T.; Hamadi, H. CBD (Cannabidiol) Product Attitudes, Knowledge, and Use among Young Adults. Subst. Use Misuse 2020, 55, 1138–1145. [Google Scholar] [CrossRef]
- Lohman, R.; Carr, A.; Condo, D. Nutritional Intake in Australian Football Players: Sports Nutrition Knowledge and Macronutrient and Micronutrient Intake. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 289–296. [Google Scholar] [CrossRef]
- Dziedziński, M.; Goryńska-Goldmann, E.; Kobus, J.; Szczepaniak, O.; Marciniak, G. Problem nadkonsumpcji suplementów diety przez Polaków. Intercathedra 2019, 40, 235–242. [Google Scholar]
- Whitehouse, G.; Lawlis, T. Protein supplements and adolescent athletes: A pilot study investigating the risk knowledge, motivations and prevalence of use. Nutr. Diet. 2017, 74, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Dietz, P.; Ulrich, R.; Niess, A.; Best, R.; Simon, P.; Striegel, H. Prediction Profiles for Nutritional Supplement Use among Young German Elite Athletes. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 623–631. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, D.C.; Rosa, F.T.; Simões-Ambrósio, L.; Jordao, A.A.; Deminice, R. Antioxidant vitamin supplementation prevents oxidative stress but does not enhance performance in young football athletes. Nutrition 2019, 63, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Vitale, K.C.; Hueglin, S.; Broad, E. Tart cherry juice in athletes: A literature review and commentary. Curr. Sports Med. Rep. 2017, 16, 230–239. [Google Scholar] [CrossRef]
- Urbaniak, A.; Basta, P.; Ast, K.; Wołoszyn, A.; Wołoszyn, J.K.; Latour, E.; Stejnborn, A.S. The impact of supplementation with pomegranate fruit (Punica granatum L.) juice on selected antioxidant parameters and markers of iron metabolism in rowers. J. Int. Soc. Sports Nutr. 2018, 15, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Carvalho, F.G.; Fisher, M.G.; Thornley, T.T.; Roemer, K.; Pritchett, R.; de Freitas, E.C.; Pritchett, K. Cocoa flavanol effects on markers of oxidative stress and recovery after muscle damage protocol in elite rugby players. Nutrition 2019, 62, 47–51. [Google Scholar] [CrossRef]
- Cavarretta, E.; Peruzzi, M.; Del Vescovo, R.; Di Pilla, F.; Gobbi, G.; Serdoz, A.; Ferrara, R.; Schirone, L.; Sciarretta, S.; Nocella, C.; et al. Dark Chocolate Intake Positively Modulates Redox Status and Markers of Muscular Damage in Elite Football Athletes: A Randomized Controlled Study. Oxid. Med. Cell. Longev. 2018, 2018, 4061901. [Google Scholar] [CrossRef]
- Hadi, A.; Pourmasoumi, M.; Kafeshani, M.; Karimian, J.; Maracy, M.R.; Entezari, M.H. The Effect of Green Tea and Sour Tea (Hibiscus sabdariffa L.) Supplementation on Oxidative Stress and Muscle Damage in Athletes. J. Diet. Suppl. 2016, 14, 346–357. [Google Scholar] [CrossRef]
- Jówko, E.; Długołęcka, B.; Makaruk, B.; Cieśliński, I. The effect of green tea extract supplementation on exercise-induced oxidative stress parameters in male sprinters. Eur. J. Nutr. 2014, 54, 783–791. [Google Scholar] [CrossRef] [Green Version]
- Terrazas, S.I.B.M.; Galan, B.S.M.; De Carvalho, F.G.; Venancio, V.P.; Antunes, L.M.G.; Papoti, M.; Toro, M.J.U.; da Costa, I.F.; de Freitas, E.C. Açai pulp supplementation as a nutritional strategy to prevent oxidative damage, improve oxidative status, and modulate blood lactate of male cyclists. Eur. J. Nutr. 2019, 59, 2985–2995. [Google Scholar] [CrossRef]
SERIES | BH [cm] | BM [kg] | FFM [kg] | FM [%] |
---|---|---|---|---|
control group x ± SD | ||||
I | 180.7 ± 7.2 | 75.9 ± 6.9 | 66.7 ± 5.1 | 12.0 ± 4.1 |
II | 180.7 ± 7.2 | 75.8 ± 6.5 | 66.8 ± 5.0 | 11.7 ± 4.2 |
experimental group x ± SD | ||||
I | 181.0 ± 4.9 | 74.0 ± 5.6 | 61.3 ± 4.0 | 17.1 ± 3.1 |
II | 181.0 ± 4.9 | 73.8 ± 5.8 | 61.2 ± 4.3 | 16.8 ± 2.8 |
placebo group x ± SD | ||||
I | 179.1 ± 5.3 | 75.6 ± 11.1 | 63.1 ± 8.1 | 16.2 ± 4.4 |
II | 179.1 ± 5.3 | 75.7 ± 11.6 | 64.3 ± 8.3 | 14.7 ± 5.1 |
Index → | t [min] | v [km∙h−1] | HR [sk∙min−1] | VO2 [L∙min−1] | VO2peak [mL·min−1·kg−1] | Ve [L∙min−1] | |
---|---|---|---|---|---|---|---|
Level ↓ | |||||||
control group x ± SD | |||||||
VT2 | 10.5 ± 2.5 | 11.4 ± 1.5 | 168.6 ± 9.1 | 3.4 ± 0.6 | 45.2 ± 8.7 | 92.1 ± 13.6 | |
max | 17.0 ± 2.5 | 15.2 ± 2.0 | 188.3 ± 14.0 | 4.2 ± 0.6 | 55.4 ± 8.7 | 151.5 ± 22.4 | |
experimental group x ± SD | |||||||
VT2 | 11.3 ± 2.0 | 12.0 ± 1.7 | 164.5 ± 9.1 | 3.3 ± 0.4 | 45.1 ± 5.5 | 95.0 ± 18.7 | |
max | 18.3 ± 1.8 | 16.4 ± 1.7 | 186.1 ± 8.9 | 4.0 ± 0.3 | 54.9 ± 4.9 | 157.5 ± 14.6 | |
placebo group x ± SD | |||||||
VT2 | 11.6 ± 1.9 | 12.5 ± 1.3 | 170.0 ± 7.7 | 3.1 ± 0.4 | 42.1 ± 7.1 | 93.6 ± 17.3 | |
max | 17.5 ± 3.7 | 16.1 ± 2.5 | 188.6 ± 8.4 | 3.8 ± 0.5 | 50.7 ± 9.5 | 152.7 ± 24.8 |
Component | Vitamin A [µg] | Vitamin E [mg] | Vitamin C [mg] | Zinc [mg] | Copper [mg] | |||||
---|---|---|---|---|---|---|---|---|---|---|
Series | I | II | I | II | I | II | I | II | I | II |
control group | 898.9 ± 193.8 | 888.5 ± 173.9 | 10.5 ± 0.8 | 10.4 ± 0.5 | 102.2 ± 18.8 | 98.3 ± 14 | 11.2 ± 1.7 | 11.2 ± 1.4 | 1.3 ± 0.4 | 1.3 ± 0.4 |
experimental group | 984.1 ± 198.9 | 987.3 ± 161.0 | 10.7 ± 1.0 | 10.8 ± 1.0 | 132.6 ± 49.9 | 125.2 ± 42.1 | 11.0 ± 1.2 | 10.7 ± 1.3 | 1.4 ± 0.3 | 1.4 ± 0.3 |
placebo group | 936.8 ± 241.9 | 938.4 ± 240.1 | 11.5 ± 1.5 | 11.1 ± 1.2 | 127.6 ± 52.9 | 125.4 ± 60.4 | 11.7 ± 2.5 | 11.4 ± 2.2 | 1.3 ± 0.4 | 1.2 ± 0.4 |
Norm AI/EAR | 630 | 10 | 75 | 9.4 | 0.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morawska-Tota, M.; Tota, Ł.; Tkaczewska, J. Influence of 5-Week Snack Supplementation with the Addition of Gelatin Hydrolysates from Carp Skins on Pro-Oxidative and Antioxidant Balance Disturbances (TOS, TAS) in a Group of Athletes. Antioxidants 2022, 11, 1314. https://doi.org/10.3390/antiox11071314
Morawska-Tota M, Tota Ł, Tkaczewska J. Influence of 5-Week Snack Supplementation with the Addition of Gelatin Hydrolysates from Carp Skins on Pro-Oxidative and Antioxidant Balance Disturbances (TOS, TAS) in a Group of Athletes. Antioxidants. 2022; 11(7):1314. https://doi.org/10.3390/antiox11071314
Chicago/Turabian StyleMorawska-Tota, Małgorzata, Łukasz Tota, and Joanna Tkaczewska. 2022. "Influence of 5-Week Snack Supplementation with the Addition of Gelatin Hydrolysates from Carp Skins on Pro-Oxidative and Antioxidant Balance Disturbances (TOS, TAS) in a Group of Athletes" Antioxidants 11, no. 7: 1314. https://doi.org/10.3390/antiox11071314
APA StyleMorawska-Tota, M., Tota, Ł., & Tkaczewska, J. (2022). Influence of 5-Week Snack Supplementation with the Addition of Gelatin Hydrolysates from Carp Skins on Pro-Oxidative and Antioxidant Balance Disturbances (TOS, TAS) in a Group of Athletes. Antioxidants, 11(7), 1314. https://doi.org/10.3390/antiox11071314