Overexpression of Heat Shock Protein 70 Ameliorates Meat Quality of Broilers Subjected to Pre-Slaughter Transport at High Ambient Temperatures by Improving Energy Status of Pectoralis Major Muscle and Antioxidant Capacity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Birds and Experimental Design
2.2. Slaughter and Sample Collection
2.3. Meat-Quality Measurements
2.4. Hematoxylin and Eosin Staining and Microscopic Analysis
2.5. Muscle-Lactate, -Glycogen, and -Glycolytic-Potential Determination
2.6. Muscle-Adenosine-Phosphate Assessment
2.7. Muscle-Redox-Status Analysis
2.8. Activities of Muscle Glycolytic Enzymes
2.9. Total Protein Extraction and Immunoblotting Analysis
2.10. RNA Extraction, cDNA Synthesis, and Quantitative Real-Time PCR
2.11. Statistical Analysis
3. Results
3.1. Levels of HSP70
3.2. Meat-Quality Traits
3.3. Morphological Analysis
3.4. Glycolytic Metabolism
3.5. Energy Status and Activation of AMPK
3.6. ROS Generation and Redox Status
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schwartzkopf-Genswein, K.S.; Faucitano, L.; Dadgar, S.; Shand, P.; Gonzalez, L.A.; Crowe, T.G. Road transport of cattle, swine and poultry in North America and its impact on animal welfare, carcass and meat quality: A review. Meat Sci. 2012, 92, 227–243. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, X.; Li, J.; Zhu, X.; Gao, F.; Zhou, G. Creatine monohydrate enhances energy status and reduces glycolysis via inhibition of AMPK pathway in pectoralis major muscle of transport-stressed broilers. J. Agric. Food Chem. 2017, 65, 6991–6999. [Google Scholar] [CrossRef] [PubMed]
- Xing, T.; Xu, X.L.; Zhou, G.H.; Wang, P.; Jiang, N.N. The effect of transportation of broilers during summer on the expression of heat shock protein 70, postmortem metabolism and meat quality. J. Anim. Sci. 2015, 93, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Wang, P.; Xing, T.; Han, M.; Xu, X. An evaluation of the effect of water-misting sprays with forced ventilation on the occurrence of pale, soft, and exudative meat in transported broilers during summer: Impact of the thermal microclimate. J. Anim. Sci. 2016, 94, 2218–2227. [Google Scholar] [CrossRef]
- Dos Santos, V.M.; Dallago, B.S.L.; Racanicci, A.M.C.; Santana, Â.P.; Bernal, F.E.M. Effects of season and distance during transport on broiler chicken meat. Poult. Sci. 2017, 96, 4270–4279. [Google Scholar] [CrossRef]
- Xing, T.; Gao, F.; Tume, R.K.; Zhou, G.; Xu, X. Stress effects on meat quality: A mechanistic perspective. Compr. Rev. Food Sci. Food Saf. 2019, 18, 380–401. [Google Scholar] [CrossRef]
- Kim, Y.H.B.; Warner, R.D.; Rosenvold, K. Influence of high pre-rigor temperature and fast pH fall on muscle proteins and meat quality: A review. Anim. Prod. Sci. 2014, 54, 375–395. [Google Scholar] [CrossRef]
- Xing, T.; Xu, X.; Jiang, N.; Deng, S. Effect of transportation and pre-slaughter water shower spray with resting on AMP-activated protein kinase, glycolysis and meat quality of broilers during summer. Anim. Sci. J. 2016, 87, 299–307. [Google Scholar] [CrossRef]
- Estévez, M. Oxidative damage to poultry: From farm to fork. Poult. Sci. 2015, 94, 1368–1378. [Google Scholar] [CrossRef]
- Xing, T.; Zhao, X.; Wang, P.; Chen, H.; Xu, X.; Zhou, G. Different oxidative status and expression of calcium channel components in stress-induced dysfunctional chicken muscle. J. Anim. Sci. 2017, 95, 1565–1573. [Google Scholar] [CrossRef]
- Pan, L.; Ma, X.K.; Zhao, P.F.; Shang, Q.H.; Long, S.F.; Wu, Y.; Piao, X.S. Forsythia suspensa extract attenuates breast muscle oxidative injury induced by transport stress in broilers. Poult. Sci. 2018, 97, 1554–1563. [Google Scholar] [CrossRef]
- Rosenzweig, R.; Nillegoda, N.B.; Mayer, M.P.; Bukau, B. The Hsp70 chaperone network. Nat. Rev. Mol. Cell Biol. 2019, 20, 665–680. [Google Scholar] [CrossRef]
- Xing, T.; Wang, M.F.; Han, M.Y.; Zhu, X.S.; Xu, X.L.; Zhou, G.H. Expression of heat shock protein 70 in transport-stressed broiler pectoralis major muscle and its relationship with meat quality. Animal 2017, 11, 1599–1607. [Google Scholar] [CrossRef]
- Gu, X.H.; Hao, Y.; Wang, X.L. Overexpression of heat shock protein 70 and its relationship to intestine under acute heat stress in broilers: 2. Intestinal oxidative stress. Poult. Sci. 2012, 91, 790–799. [Google Scholar] [CrossRef]
- Tang, S.; Yin, B.; Xu, J.; Bao, E. Rosemary reduces heat stress by inducing CRYAB and HSP70 expression in broiler chickens. Oxid. Med. Cell. Longev. 2018, 2018, 7014126. [Google Scholar] [CrossRef]
- Cruzat, V.F. Glutamine and skeletal muscle. In Nutrition and Skeletal Muscle; Elsevier: Amsterdam, The Netherlands, 2019; pp. 299–313. [Google Scholar]
- Petry, É.R.; de Freitas Dresch, D.; Carvalho, C.; Medeiros, P.C.; Rosa, T.G.; de Oliveira, C.M.; Martins, L.A.M.; Schemitt, E.; Bona, S.; Guma, F.C.R.; et al. Oral glutamine supplementation attenuates inflammation and oxidative stress-mediated skeletal muscle protein content degradation in immobilized rats: Role of 70 kDa heat shock protein. Free Radic. Biol. Med. 2019, 145, 87–102. [Google Scholar] [CrossRef]
- Hao, Y.; Gu, X.H.; Wang, X.L. Overexpression of heat shock protein 70 and its relationship to intestine under acute heat stress in broilers: 1. Intestinal structure and digestive function. Poult. Sci. 2012, 91, 781–789. [Google Scholar] [CrossRef]
- Xing, T.; Luo, D.; Zhao, X.; Xu, X.; Li, J.; Zhang, L.; Gao, F. Enhanced cytokine expression and upregulation of inflammatory signaling pathways in broiler chickens affected by wooden breast myopathy. J. Sci. Food Agric. 2021, 101, 279–286. [Google Scholar] [CrossRef]
- Gomez-Perez, S.L.; Haus, J.M.; Sheean, P.; Patel, B.; Mar, W.; Chaudhry, V.; McKeever, L.; Braunschweig, C. Measuring abdominal circumference and skeletal muscle from a single cross-sectional computed tomography image: A step-by-step guide for clinicians using National Institutes of Health ImageJ. J. Parenter. Enter. 2016, 40, 308–318. [Google Scholar] [CrossRef]
- Hambrecht, E.; Eissen, J.J.; Newman, D.J.; Smits, C.H.M.; Verstegen, M.W.A.; Den Hartog, L.A. Preslaughter handling effects on pork quality and glycolytic potential in two muscles differing in fiber type composition. J. Anim. Sci. 2005, 83, 900–907. [Google Scholar] [CrossRef]
- Monin, G.; Sellier, P. Pork of low technological quality with a normal rate of muscle pH fall in the immediate post-mortem period: The case of the Hampshire breed. Meat Sci. 1985, 13, 49–63. [Google Scholar] [CrossRef]
- Adzitey, F. Effect of pre-slaughter animal handling on carcass and meat quality. Int. Food Res. J. 2011, 18, 485–491. [Google Scholar]
- Sun, P.M.; Liu, Y.T.; Zhao, Y.G.; Bao, E.D.; Wang, Z.L. Relationship between heart damages and HSPs mRNA in persistent heat stressed broilers. Agric. Sci. China. 2007, 6, 227–233. [Google Scholar]
- Hao, Y.; Gu, X. Effects of heat shock protein 90 expression on pectoralis major oxidation in broilers exposed to acute heat stress. Poult. Sci. 2014, 93, 2709–2717. [Google Scholar] [CrossRef]
- Neufer, P.D.; Ordway, G.A.; Hand, G.A.; Shelton, J.M.; Richardson, J.A.; Benjamin, I.J.; Williams, R.S. Continuous contractile activity induces fiber type specific expression of HSP70 in skeletal muscle. Am. J. Physiol. Cell Physiol. 1996, 271, C1828–C1837. [Google Scholar] [CrossRef]
- Wang, X.; Li, J.; Cong, J.; Chen, X.; Zhu, X.; Zhang, L.; Gao, F.; Zhou, G. Preslaughter Transport Effect on Broiler Meat Quality and Post-mortem Glycolysis Metabolism of Muscles with Different Fiber Types. J. Agric. Food Chem. 2017, 65, 10310–10316. [Google Scholar] [CrossRef]
- Hamiel, C.R.; Pinto, S.; Hau, A.; Wischmeyer, P.E. Glutamine enhances heat shock protein 70 expression via increased hexosamine biosynthetic pathway activity. Am. J. Physiol. Cell Physiol. 2009, 297, C1509–C1519. [Google Scholar] [CrossRef]
- Zachara, N.E.; O’Donnell, N.; Cheung, W.D.; Mercer, J.J.; Marth, J.D.; Hart, G.W. Dynamic O-GlcNAc Modification of Nucleocytoplasmic Proteins in Response to Stress: A survival response of mammalian cells. J. Biol. Chem. 2004, 279, 30133–30142. [Google Scholar] [CrossRef]
- Huff-Lonergan, E.; Lonergan, S.M. Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes. Meat Sci. 2005, 71, 194–204. [Google Scholar] [CrossRef]
- England, E.M.; Scheffler, T.L.; Kasten, S.C.; Matarneh, S.K.; Gerrard, D.E. Exploring the unknowns involved in the transformation of muscle to meat. Meat Sci. 2013, 95, 837–843. [Google Scholar] [CrossRef]
- Wang, R.H.; Liang, R.R.; Lin, H.; Zhu, L.X.; Zhang, Y.M.; Mao, Y.W.; Dong, P.C.; Niu, L.B.; Zhang, M.H.; Luo, X. Effect of acute heat stress and slaughter processing on poultry meat quality and postmortem carbohydrate metabolism. Poult. Sci. 2017, 96, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Yang, J.; Huang, M.; Zhu, Z.; Sun, X.; Zhang, B.; Xu, X.; Meng, W.; Chen, K.; Xu, B. Effect of pre-slaughter shackling and wing flapping on plasma parameters, postmortem metabolism, AMPK, and meat quality of broilers. Poult. Sci. 2018, 97, 1841–1847. [Google Scholar] [CrossRef] [PubMed]
- Scheffler, T.; Gerrard, D. Mechanisms controlling pork quality development: The biochemistry controlling postmortem energy metabolism. Meat Sci. 2007, 77, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Kabakov, A.E.; Budagova, K.R.; Latchman, D.S.; Kampinga, H.H. Stressful preconditioning and HSP70 overexpression attenuate proteotoxicity of cellular ATP depletion. Am. J. Physiol. Cell Physiol. 2002, 283, C521–C534. [Google Scholar] [CrossRef]
- Ouyang, Y.B.; Xu, L.J.; Sun, Y.J.; Giffard, R.G. Overexpression of inducible heat shock protein 70 and its mutants in astrocytes is associated with maintenance of mitochondrial physiology during glucose deprivation stress. Cell Stress Chaperon. 2006, 11, 180–186. [Google Scholar] [CrossRef]
- Sammut, I.A.; Harrison, J.C. Cardiac mitochondrial complex activity is enhanced by heat shock proteins. Clin. Exp. Pharmacol. Physiol. 2003, 30, 110–115. [Google Scholar] [CrossRef]
- Xing, T.; Wang, P.; Zhao, L.; Liu, R.; Zhao, X.; Xu, X.; Zhou, G. A comparative study of heat shock protein 70 in normal and PSE (pale, soft, exudative)-like muscle from broiler chickens. Poult. Sci. 2016, 95, 2391–2396. [Google Scholar] [CrossRef]
- Zhang, W.; Xiao, S.; Ahn, D.U. Protein oxidation: Basic principles and implications for meat quality. Crit. Rev. Food Sci. 2013, 53, 1191–1201. [Google Scholar] [CrossRef]
- Liao, H.; Zhang, L.; Li, J.; Xing, T.; Gao, F. Acute stress deteriorates breast meat quality of Ross 308 broiler chickens by inducing redox imbalance and mitochondrial dysfunction. J. Anim. Sci. 2022. [Google Scholar] [CrossRef]
- Zhang, H.; Gong, W.; Wu, S.; Perrett, S. Hsp70 in redox homeostasis. Cells 2022, 11, 829. [Google Scholar] [CrossRef]
- Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 2014, 94, 909–950. [Google Scholar] [CrossRef]
Meat-Quality Traits | Treatments 1 | SEM | p-Value | |||
---|---|---|---|---|---|---|
CON | T | CG | TG | |||
L* (lightness) | 50.12 c | 53.62 a | 50.46 cb | 51.44 b | 0.33 | <0.001 |
a* (redness) | 2.87 | 2.82 | 3.07 | 2.92 | 0.24 | 0.902 |
b* (yellowness) | 3.72 | 4.02 | 3.60 | 4.30 | 0.46 | 0.707 |
pH0.5h | 6.48 a | 6.30 c | 6.45 a | 6.38 b | 0.02 | <0.001 |
pH24h | 5.88 a | 5.71 c | 5.85 ba | 5.80 b | 0.02 | <0.001 |
Cooking loss (%) | 12.60 c | 19.17 a | 12.79 c | 15.45 b | 0.49 | <0.001 |
Drip loss (%) | 2.68 c | 4.28 a | 2.82 cb | 3.22 b | 0.16 | <0.001 |
Items 2 | Treatments 1 | SEM | p-Value | |||
---|---|---|---|---|---|---|
CON | T | CG | TG | |||
ROS level (relative to CON) | 1.00 c | 1.63 a | 1.03 c | 1.37 b | 0.07 | <0.001 |
MDA (nmol/mg protein) | 0.17 c | 0.34 a | 0.17 c | 0.25 b | 0.01 | <0.001 |
Carbonyls (nmol/mg protein) | 0.43 b | 0.77 a | 0.44 b | 0.58 b | 0.05 | <0.001 |
T-AOC (U/mg protein) | 0.11 b | 0.12 b | 0.11 b | 0.16 a | 0.01 | 0.003 |
T-SOD (U/mg protein) | 11.86 b | 11.89 b | 11.84 b | 13.12 a | 0.35 | 0.048 |
GSH-Px (U/mg protein) | 6.36 b | 7.10 ba | 5.86 b | 8.06 a | 0.50 | 0.028 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, T.; Xu, X.; Zhang, L.; Gao, F. Overexpression of Heat Shock Protein 70 Ameliorates Meat Quality of Broilers Subjected to Pre-Slaughter Transport at High Ambient Temperatures by Improving Energy Status of Pectoralis Major Muscle and Antioxidant Capacity. Antioxidants 2022, 11, 1468. https://doi.org/10.3390/antiox11081468
Xing T, Xu X, Zhang L, Gao F. Overexpression of Heat Shock Protein 70 Ameliorates Meat Quality of Broilers Subjected to Pre-Slaughter Transport at High Ambient Temperatures by Improving Energy Status of Pectoralis Major Muscle and Antioxidant Capacity. Antioxidants. 2022; 11(8):1468. https://doi.org/10.3390/antiox11081468
Chicago/Turabian StyleXing, Tong, Xinglian Xu, Lin Zhang, and Feng Gao. 2022. "Overexpression of Heat Shock Protein 70 Ameliorates Meat Quality of Broilers Subjected to Pre-Slaughter Transport at High Ambient Temperatures by Improving Energy Status of Pectoralis Major Muscle and Antioxidant Capacity" Antioxidants 11, no. 8: 1468. https://doi.org/10.3390/antiox11081468
APA StyleXing, T., Xu, X., Zhang, L., & Gao, F. (2022). Overexpression of Heat Shock Protein 70 Ameliorates Meat Quality of Broilers Subjected to Pre-Slaughter Transport at High Ambient Temperatures by Improving Energy Status of Pectoralis Major Muscle and Antioxidant Capacity. Antioxidants, 11(8), 1468. https://doi.org/10.3390/antiox11081468