A Caveat When Using Alkyl Halides as Tagging Agents to Detect/Quantify Reactive Sulfur Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Conditions of the Reactions
2.3. HPLC-MS/MS Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Filipovic, M.R.; Zivanovic, J.; Alvarez, B.; Banerjee, R. Chemical Biology of H2S Signaling through Persulfidation. Chem. Rev. 2017, 118, 1253–1337. [Google Scholar] [CrossRef] [PubMed]
- Olson, K.R. Hydrogen sulfide, reactive sulfur species and coping with reactive oxygen species. Free Radic. Biol. Med. 2019, 140, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Fukuto, J.M.; Ignarro, L.J.; Nagy, P.; Wink, D.A.; Kevil, C.G.; Feelisch, M.; Cortese-Krott, M.M.; Bianco, C.L.; Kumagai, Y.; Hobbs, A.J.; et al. Biological hydropersulfides and related polysulfides—A new concept and perspective in redox biology. FEBS Lett. 2018, 592, 2140–2152. [Google Scholar] [CrossRef] [PubMed]
- Wallace, J.L.; Wang, R. Hydrogen sulfide-based therapeutics: Exploiting a unique but ubiquitous gasotransmitter. Nat. Rev. Drug Discov. 2015, 14, 329–345. [Google Scholar] [CrossRef]
- Kimura, H. Hydrogen Sulfide (H2S) and Polysulfide (H2Sn) Signaling: The First 25 Years. Biomolecules 2021, 11, 896. [Google Scholar] [CrossRef]
- Yang, C.-T.; Devarie-Baez, N.O.; Hamsath, A.; Fu, X.-D.; Xian, M. S-Persulfidation: Chemistry, Chemical Biology, and Significance in Health and Disease. Antioxid. Redox Signal. 2020, 33, 1092–1114. [Google Scholar] [CrossRef]
- Saha, S.; Chakraborty, P.K.; Xiong, X.; Dwivedi, S.K.D.; Mustafi, S.B.; Leigh, N.R.; Ramchandran, R.; Mukherjee, P.; Bhattacharya, R. Cystathionine β-synthase regulates endothelial function via protein S-sulfhydration. FASEB J. 2015, 30, 441–456. [Google Scholar] [CrossRef]
- Braunstein, I.; Engelman, R.; Yitzhaki, O.; Ziv, T.; Galardon, E.; Benhar, M. Opposing effects of polysulfides and thioredoxin on apoptosis through caspase persulfidation. J. Biol. Chem. 2020, 295, 3590–3600. [Google Scholar] [CrossRef]
- Xie, L.; Gu, Y.; Wen, M.; Zhao, S.; Wang, W.; Ma, Y.; Meng, G.; Han, Y.; Wang, Y.; Liu, G.; et al. Hydrogen Sulfide Induces Keap1 S-sulfhydration and Suppresses Diabetes-Accelerated Atherosclerosis via Nrf2 Activation. Diabetes 2016, 65, 3171–3184. [Google Scholar] [CrossRef]
- Mishanina, T.V.; Libiad, M.; Banerjee, R. Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways. Nat. Chem. Biol. 2015, 11, 457–464. [Google Scholar] [CrossRef]
- Akaike, T.; Ida, T.; Wei, F.; Nishida, M.; Kumagai, Y.; Alam, M.M.; Ihara, H.; Sawa, T.; Matsunaga, T.; Kasamatsu, S.; et al. Cysteinyl-tRNA synthetase governs cysteine polysulfidation and mitochondrial bioenergetics. Nat. Commun. 2017, 8, 1177. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cai, X.; Zhang, Q.; Li, X.; Li, S.; Ma, J.; Zhu, W.; Liu, X.; Wei, M.; Tu, W.; et al. Hydrogen sulfide restores sevoflurane postconditioning mediated cardioprotection in diabetic rats: Role of SIRT1/Nrf2 signaling-modulated mitochondrial dysfunction and oxidative stress. J. Cell Physiol. 2021, 236, 5052–5068. [Google Scholar] [CrossRef] [PubMed]
- Takata, T.; Jung, M.; Matsunaga, T.; Ida, T.; Morita, M.; Motohashi, H.; Shen, X.; Kevil, C.G.; Fukuto, J.M.; Akaike, T. Methods in sulfide and persulfide research. Nitric Oxide 2021, 116, 47–64. [Google Scholar] [CrossRef] [PubMed]
- Newton, G.L.; Dorian, R.; Fahey, R.C. Analysis of biological thiols: Derivatization with monobromobimane and sep-aration by reverse-phase high-performance liquid chromatography. Anal. Biochem. 1981, 114, 383–387. [Google Scholar] [CrossRef]
- Shen, X.; Kolluru, G.K.; Yuan, S.; Kevil, C.G. Measurement of H2S In Vivo and In Vitro by the Monobromobimane Method. Methods Enzymol. 2015, 554, 31–45. [Google Scholar] [CrossRef]
- Dóka, É.; Pader, I.; Bíró, A.; Johansson, K.; Cheng, Q.; Ballagó, K.; Prigge, J.R.; Pastor-Flores, D.; Dick, T.P.; Schmidt, E.E.; et al. A novel persulfide detection method reveals protein persulfide- and polysulfide-reducing functions of thioredoxin and glutathione systems. Sci. Adv. 2016, 2, e1500968. [Google Scholar] [CrossRef]
- Fu, L.; Liu, K.; He, J.; Tian, C.; Yu, X.; Yang, J. Direct Proteomic Mapping of Cysteine Persulfidation. Antioxid. Redox Signal. 2020, 33, 1061–1076. [Google Scholar] [CrossRef]
- Fan, K.; Chen, Z.; Liu, H. Evidence that the ProPerDP method is inadequate for protein persulfidation detection due to lack of specificity. Sci. Adv. 2020, 6, eabb6477. [Google Scholar] [CrossRef]
- Ono, K.; Akaike, T.; Sawa, T.; Kumagai, Y.; Wink, D.A.; Tantillo, D.J.; Hobbs, A.J.; Nagy, P.; Xian, M.; Lin, J.; et al. Redox chemistry and chemical biology of H2S, hydropersulfides, and derived species: Implications of their possible biological activity and utility. Free Radic. Biol. Med. 2014, 77, 82–94. [Google Scholar] [CrossRef]
- Kamyshny, A.; Borkenstein, C.G.; Ferdelman, T.G. Protocol for quantitative detection of elemental sulfur and poly-sulfide zero-valent sulfur distribution in natural aquatic samples. Geostand Geoanal. Res. 2009, 33, 415–435. [Google Scholar] [CrossRef]
- Luthy, R.G.; Bruce, S.G. Kinetics of reaction of cyanide and reduced sulfur species in aqueous solution. Environ. Sci. Technol. 1979, 13, 1481–1487. [Google Scholar] [CrossRef]
- Luebke, J.L.; Shen, J.; Bruce, K.E.; Kehl Fie, T.E.; Peng, H.; Skaar, E.P.; Giedroc, D.P. The CsoR-like sulfurtransferase repressor (CstR) is a persulfide sensor in Staphylococcus aureus. Mol. Microbiol. 2014, 94, 1343–1360. [Google Scholar] [CrossRef]
- Lau, N.; Pluth, M.D. Reactive sulfur species (RSS): Persulfides, polysulfides, potential, and problems. Curr. Opin. Chem. Biol. 2018, 49, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bondarenko, S.; Zheng, W.; Yates, A.S.R.; Gan, J. Dehalogenation of Halogenated Fumigants by Polysulfide Salts. J. Agric. Food Chem. 2006, 54, 5503–5508. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wilson, J.H.; Lawson, A.J.; Hohenstein, E.G.; Jans, U. Stereoisomer specific reaction of hexabromocyclododecane with reduced sulfur species in aqueous solutions. Chemosphere 2019, 226, 238–245. [Google Scholar] [CrossRef]
- Bianco, C.L.; Chavez, T.A.; Sosa, V.; Saund, S.S.; Nguyen, Q.N.N.; Tantillo, D.J.; Ichimura, A.S.; Toscano, J.P.; Fukuto, J.M. The chemical biology of the persulfide (RSSH)/perthiyl (RSS·) redox couple and possible role in biological redox signaling. Free Radic. Bio. Med. 2016, 101, 20–31. [Google Scholar] [CrossRef]
- Chauvin, J.-P.R.; Griesser, M.; Pratt, D.A. Hydropersulfides: H-Atom Transfer Agents Par Excellence. J. Am. Chem. Soc. 2017, 139, 6484–6493. [Google Scholar] [CrossRef]
Time (min) | Pure Water (%) | Methanol (%) |
---|---|---|
0.01 | 92.5 | 7.5 |
1 | 47.5 | 52.5 |
15 | 45 | 55 |
15.1 | 0 | 100 |
20 | 0 | 100 |
20.1 | 92.5 | 7.5 |
31 | 92.5 | 7.5 |
Reaction | Tagged Product | Reduced Product |
---|---|---|
GSH + mBBr (1:1) | GS-mB: 8.97 × 105 | mBH: 7.77 × 103 |
GSH + mBBr (1:10) | GS-mB: 3.06 × 105 | mBH: 8.52 × 102 |
GSSH+ mBBr (1:1) | GSS-mB: 4.59 × 106 | mBH: 2.37 × 105 |
GSSH + mBBr (1:10) | GSS-mB: 2.88 × 106 | mBH: 4.45 × 105 |
H2S + mBBr (1:1) | mB-S-mB: 1.59 × 105 | mBH: 3.97 × 104 |
H2S + mBBr (1:10) | mB-S-mB: 1.66 × 105 | mBH: 3.98 × 104 |
HSSH + mBBr (1:1) | mB-SS-mB: 4.70 × 104 | mBH: 9.80 × 104 |
HSSH + mBBr (1:10) | mB-SS-mB: 4.83 × 104 | mBH: 3.80 × 104 |
GSH + IAB (1:1) | GS-AB: 7.89 × 105 | HAB: 3.01 × 104 |
GSSH + IAB (1:1) | GSS-AB: 3.52 × 106 | HAB: 3.27 × 106 |
GSSH + IAB (1:10) | GSS-AB: 2.30 × 106 | HAB: 1.92 × 106 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Xin, Y.; Wang, Q.; Xia, Y.; Xun, L.; Liu, H. A Caveat When Using Alkyl Halides as Tagging Agents to Detect/Quantify Reactive Sulfur Species. Antioxidants 2022, 11, 1583. https://doi.org/10.3390/antiox11081583
Wu X, Xin Y, Wang Q, Xia Y, Xun L, Liu H. A Caveat When Using Alkyl Halides as Tagging Agents to Detect/Quantify Reactive Sulfur Species. Antioxidants. 2022; 11(8):1583. https://doi.org/10.3390/antiox11081583
Chicago/Turabian StyleWu, Xiaohua, Yuping Xin, Qingda Wang, Yongzhen Xia, Luying Xun, and Huaiwei Liu. 2022. "A Caveat When Using Alkyl Halides as Tagging Agents to Detect/Quantify Reactive Sulfur Species" Antioxidants 11, no. 8: 1583. https://doi.org/10.3390/antiox11081583
APA StyleWu, X., Xin, Y., Wang, Q., Xia, Y., Xun, L., & Liu, H. (2022). A Caveat When Using Alkyl Halides as Tagging Agents to Detect/Quantify Reactive Sulfur Species. Antioxidants, 11(8), 1583. https://doi.org/10.3390/antiox11081583