Metabolite Profiling Analysis and the Correlation with Biological Activity of Betalain-Rich Portulaca grandiflora Hook. Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reference Compounds and Reagents
2.2. Plant Material and Sample Preparation
2.3. Total Content of Betalain
2.4. Betalain Profile by HPLC-DAD-ESI-MS Analysis
2.5. Phytochemical Profile by HPLC-DAD-ESI-HRMS/MS Analysis
2.6. Antioxidant Activity
2.6.1. ABTS Radical Scavenging Assay
2.6.2. DPPH Radical Scavenging Assay
2.6.3. FRAP Ferric Reducing Antioxidant Power Assay
2.7. Antimicrobial Activity
2.8. Cytotoxicity Evaluation
2.9. Antiviral Activity
2.9.1. The Effect of Portulaca grandiflora Hook. on HHV-1 Induced Cytopathic Effect
2.9.2. End-Point Dilution Test for HHV-1 Titration
2.9.3. The DNA Isolation and Real-Time PCR Analysis for HHV-1 Viral Load
2.10. Statistical Analysis
3. Results and Discussion
3.1. Phytochemical Analyses
3.2. Antioxidant Activity
3.3. Correlation between Antioxidant Activity and Phytochemical Composition
3.4. Antimicrobial Activity
3.5. Correlation between Antimicrobial Activity and Phytochemical Composition
3.6. Cytotoxicity Evaluation
3.7. Antiviral Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shinde, P.R.; Wagh, K.R.; Patil, P.S.; Bairagi, V.A. Pharmacognostic standardization and antibacterial potential of aerial herbs of Portulaca grandiflora Hooker (Portulaceae). World J. Pharm. Sci. 2014, 2, 1871–1885. [Google Scholar]
- Ohsaki, A.; Asaka, Y.; Kubota, T.; Shibata, K.; Tokoroyama, T. Portulene acetal, a novel minor constituent of Portulaca grandiflora with significance for the biosynthesis of portulal. J. Nat. Prod. 1997, 60, 912–914. [Google Scholar] [CrossRef]
- Chavalittumrong, P.; Sriwanthana, B.; Rojanawiwat, A.; Kijphati, R.; Jitjuk, B.; Treesangsri, W.; Phadungpat, S.; Bansiddhi, J.; Bunjob, M. Safety of the aqueous extract of Portulaca grandiflora Hook. in healthy volunteers. Songklanakarin. J. Sci. Technol. 2007, 29 (Suppl. 1), 95–100. [Google Scholar]
- Jayamohan, N.; Pawan Kumar, P.; Jayachandra, K. Surveillance of in vitro antioxidant and anthelmintic activity of methanolic extract of Syzygium cumini Bark (Myrtaceae). Int. J. Phytopharm. 2013, 3, 56–62. [Google Scholar]
- Anghel, A.I.; Olaru, O.T.; Gatea, F.; Dinu, M.; Ancuceanu, R.V.; Istudor, V. Preliminary research on Portulaca grandiflora Hook. species (Portulacaceae) for therapeutic use. Farmacia 2013, 61, 694–702. [Google Scholar]
- Felippe, M.J.B. Immunotherapy. In Equine Infectious Diseases; Elsevier: Amsterdam, The Netherlands, 2014; pp. 584–597. [Google Scholar]
- Subramani, P.A.; Michael, R.D. Prophylactic and prevention methods against diseases in aquaculture. In Fish Diseases; Academic Press: Cambridge, MA, USA, 2017; pp. 81–117. [Google Scholar]
- Anderson, D.; Bishop, J.B.; Garner, R.C.; Ostrosky-Wegman, P.; Selby, P.B. Cyclophosphamide: Review of its mutagenicity for an assessment of potential germ cell risks. Mutat. Res. Fundam. Mol. Mech. Mutagen. 1995, 330, 115–181. [Google Scholar] [CrossRef]
- Spórna-Kucab, A.; Wróbel, N.; Kumorkiewicz-Jamro, A.; Wybraniec, S. Separation of betacyanins from Iresine herbstii Hook. ex Lindl. leaves by high-speed countercurrent chromatography in a polar solvent system. J. Chromatogr. A 2020, 1626, 461370. [Google Scholar] [CrossRef]
- Spórna-Kucab, A.; Kumorkiewicz, A.; Szmyr, N.; Szneler, E.; Wybraniec, S.; Wybraniec, S. Separation of betacyanins from flowers of Amaranthus cruentus L. in a polar solvent system by high-speed counter-current chromatography. J. Sep. Sci. 2019, 42, 1676–1685. [Google Scholar] [CrossRef]
- Spórna-Kucab, A.; Milo, A.; Kumorkiewicz, A.; Wybraniec, S. Studies on polar high-speed counter-current chromatographic systems in separation of amaranthine-type betacyanins from Celosia species. J. Chromatogr. B 2018, 1073, 96–103. [Google Scholar] [CrossRef]
- Spórna-Kucab, A.; Jagodzińska, J.; Sławomir, W. Separation of betacyanins from purple flowers of Gomphrena globosa L. by ion-pair high-speed counter-current chromatography. J. Chromatogr. A 2017, 1489, 51–57. [Google Scholar] [CrossRef]
- Spórna-Kucab, A.; Hołda, E.; Wybraniec, S. High-speed counter-current chromatography in separation of betacyanins from flowers of red Gomphrena globosa L. cultivars. J. Chromatogr. B 2016, 1033–1034, 421–427. [Google Scholar] [CrossRef]
- Böhm, H.; Böhm, L.; Rink, E. Establishment and characterization of a betaxanthin-producing cell culture from Portulaca grandiflora. Plant Cell. Tissue Organ Cult. 1991, 26, 75–82. [Google Scholar] [CrossRef]
- Trezzini, G.F.; Zrÿd, J.P. Two betalains from Portulaca grandiflora. Phytochemistry. 1991, 30, 1897–1899. [Google Scholar] [CrossRef]
- Madadi, E.; Mazloum-Ravasan, S.; Yu, J.S.; Ha, J.W.; Hamishehkar, H.; Kim, K.H. Therapeutic application of betalains: A review. Plants 2020, 9, 1219. [Google Scholar] [CrossRef]
- Erkan, N. Antioxidant activity and phenolic compounds of fractions from Portulaca oleracea L. Food Chem. 2012, 133, 775–781. [Google Scholar] [CrossRef]
- Cai, Y.; Sun, M.; Corke, H. Antioxidant activity of betalains from plants of the Amaranthaceae. J. Agric. Food Chem. 2003, 51, 2288–2294. [Google Scholar] [CrossRef]
- Wybraniec, S.; Stalica, P.; Spórna-Kucab, A.; Nemzer, B.; Pietrzkowski, Z.; Michałowski, T. Antioxidant activity of betanidin: Electrochemical study in aqueous media. J. Agric. Food Chem. 2011, 59, 12163–12170. [Google Scholar] [CrossRef]
- Osorio-Esquivel, O.; Ortiz-Moreno, A.; Álvarez, V.B.; Dorantes-Álvarez, L.; Giusti, M.M. Phenolics, betacyanins and antioxidant activity in Opuntia joconostle fruits. Food Res. Int. 2011, 44, 2160–2168. [Google Scholar] [CrossRef]
- Khan, M.I. Plant betalains: Safety, antioxidant activity, clinical efficacy, and bioavailability. Compr. Rev. Food Sci. Food Saf. 2016, 15, 316–330. [Google Scholar] [CrossRef]
- Rahimi, P.; Abedimanesh, S.; Mesbah-Namin, S.A.; Ostadrahimi, A. Betalains, the nature-inspired pigments, in health and diseases. Crit. Rev. Food Sci. Nutr. 2019, 59, 2949–2978. [Google Scholar] [CrossRef]
- Pietrzkowski, Z.; Nemzer, B.; Spórna, A.; Stalica, P. Influence of betalain-rich extract on reduction of discomfort associated with osteoarthritis. New Med. 2010, 1, 12–17. [Google Scholar]
- Nemzer, B.; Pietrzkowski, Z.; Spórna, A.; Stalica, P. Betalainic and nutritional profiles of pigment-enriched red beet root (Beta vulgaris L.) dried extracts. Food Chem. 2011, 127, 42–53. [Google Scholar] [CrossRef]
- Spórna-Kucab, A.; Bernaś, K.; Grzegorczyk, A.; Malm, A.; Skalicka-Woźniak, K. Wybraniec, Liquid chromatographic techniques in betacyanin isomers separation from Gomphrena globosa L. flowers for the determination of their antimicrobial activities. S. J. Pharm. Biomed. Anal. 2018, 161, 83–93. [Google Scholar] [CrossRef]
- Gómez-García, M.; Sol, C.; de Nova, P.J.; Puyalto, M.; Mesas, L.; Puente, H.; Mencía-Ares, O.; Miranda, R.; Argüello, H.; Rubio, P.; et al. Antimicrobial activity of a selection of organic acids, their salts and essential oils against swine enteropathogenic bacteria. Porc. Health Manag. 2019, 5, 1–8. [Google Scholar] [CrossRef]
- Wybraniec, S.; Stalica, P.; Jerz, G.; Klose, G.; Gebers, N.; Winterhalter, P.; Mizrahi, Y. Separation of polar betalain pigments from cacti fruits of Hylocereus polyrhizus by ion-pair high-speed countercurrent chromatography. J. Chromatogr. A 2009, 1216, 6890–6899. [Google Scholar] [CrossRef] [PubMed]
- Otálora, C.M.; Bonifazi, E.L.; Fissore, E.N.; Basanta, M.F.; Gerschenson, L.N. Thermal stability of betalains in by-products of the blanching and cutting of Beta vulgaris L. var conditiva. Polish J. Food Nutr. Sci. 2020, 70, 15–24. [Google Scholar] [CrossRef]
- Nilsson, T. Studies into the pigments in beetroot (Beta vulgaris L. ssp. vulgaris var. rubra L.). Lantbr. Ann. 1970, 36, 179–219. [Google Scholar]
- Cai, Y.; Sun, M.; Schliemann, W.; Corke, H. Chemical stability and colorant properties of betaxanthin pigments from Celosia argentea. J. Agric. Food Chem. 2001, 49, 4429–4435. [Google Scholar] [CrossRef] [PubMed]
- Emad, A.M.; Rasheed, D.M.; El-Kased, R.F.; El-Kersh, D.M. Antioxidant, antimicrobial activities and characterization of polyphenol-enriched extract of egyptian celery (Apium graveolens L., Apiaceae) aerial parts via UPLC. Molecules 2022, 27, 698. [Google Scholar] [CrossRef] [PubMed]
- Petkova, R.; Tcholakova, S.; Denkov, N.D. Foaming and foam stability for mixed polymer-surfactant solutions: Effects of surfactant type and polymer charge. Langmuir 2012, 28, 4996–5009. [Google Scholar] [CrossRef]
- Dudonné, S.; Vitrac, X.; Coutiére, P.; Woillez, M.; Mérillon, J.M. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef]
- EUCAST. European committee for antimicrobial susceptibility testing (EUCAST) of the european society of clinical microbiology and infectious diseases (ESCMID): Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin. Microbiol. Infect. Dis. 2003, 40, 1–7. [Google Scholar]
- Malm, A.; Grzegorczyk, A.; Biernasiuk, A.; Baj, T.; Rój, E.; Tyśkiewicz, K.; Dębczak, A.; Stolarski, M.; Krzyżaniak, J.M.; Olba-Zięty, E. Could supercritical extracts from the aerial parts of Helianthus salicifolius a. Dietr. and Helianthus tuberosus L. be regarded as potential raw materials for biocidal purposes. Agriculture 2020, 11, 10. [Google Scholar] [CrossRef]
- Svenson, J.; Smallfield, B.M.; Joyce, N.I.; Sansom, C.E.; Perry, N.B. Betalains in red and yellow varieties of the andean tuber crop ulluco (Ullucus tuberosus). J. Agric. Food Chem. 2008, 56, 7730–7737. [Google Scholar] [CrossRef]
- Kugler, F.; Stintzing, F.C.; Carle, R. Identification of betalains from petioles of differently colored swiss chard (Beta vulgaris L. ssp. cicla Alef. Cv. Bright Lights) by high-performance liquid. J. Agric. Food Chem. 2004, 52, 2975–2981. [Google Scholar] [CrossRef]
- Slatnar, A.; Stampar, F.; Veberic, R.; Jakopic, J. HPLC-MSn Identification of betalain profile of different beetroot (Beta vulgaris L. ssp. vulgaris) parts and cultivars. J. Food Sci. 2015, 80, 1952–1958. [Google Scholar] [CrossRef]
- Ho Suh, D.; Lee, S.; Yeon Heo, D.; Kim, Y.-S.; Kim Cho, S.; Lee, S.; Hwan Lee, C. Metabolite profiling of red and white pitayas (Hylocereus polyrhizus and Hylocereus undatus) for comparing betalain biosynthesis and antioxidant activity. J. Agric. Food Chem. 2014, 62, 8764–8771. [Google Scholar] [CrossRef]
- Barkociová, M.; Tóth, J.; Sutor, K.; Drobnicka, N.; Wybraniec, S.; Dudík, B.; Bilková, A.; Czigle, S.; Braca, A.; De Leo, M. Betalains in edible fruits of three cactaceae taxa—Epiphyllum, Hylocereus, and Opuntia—Their LC-MS/MS and FTIR identification and biological activities. Plants 2021, 10, 2669. [Google Scholar] [CrossRef]
- Mata, A.; Ferreira, J.P.; Semedo, C.; Serra, T.; Duarte, C.M.M.; Bronze, M.R. Contribution to the characterization of Opuntia spp. juices by LC–DAD–ESI-MS/MS. Food Chem. 2016, 210, 558–565. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, G.; Yang, J.; Yang, C.; Guo, M. Screening and characterisation of potential antioxidant, hypoglycemic and hypolipidemic components revealed in Portulaca oleracea via multi-target affinity. Phytochem. Anal. 2022, 33, 272–285. [Google Scholar] [CrossRef]
- Farag, M.A.; Shakour, Z.T.A. Metabolomics driven analysis of 11 Portulaca leaf taxa as analysed via UPLC-ESI-MS/MS and chemometrics. Phytochemistry 2019, 161, 117–129. [Google Scholar] [CrossRef]
- Gök, H.N.; Luca, S.V.; Ay, S.T.; Komsta, Ł.; Salmas, R.E.; Orhan, I.E.; Skalicka-Woźniak, K. Profiling the annual change of the neurobiological and antioxidant effects of five Origanum species in correlation with their phytochemical composition. Food Chem. 2022, 368, 130775. [Google Scholar] [CrossRef]
- Taamalli, A.; Arráez-Román, D.; Abaza, L.; Iswaldi, I.; Fernández-Gutiérrez, A.; Zarrouk, M.; Segura-Carretero, A. LC-MS-based metabolite profiling of methanolic extracts from the medicinal and aromatic species Mentha pulegium and Origanum majorana. Phytochem. Anal. 2015, 26, 320–330. [Google Scholar] [CrossRef]
- Hossain, M.B.; Rai, D.K.; Brunton, N.P.; Martin-Diana, A.B.; Barry-Ryan, C. Characterization of phenolic composition in Lamiaceae spices by LC-ESI-MS/MS. J. Agric. Food Chem. 2010, 58, 10576–10581. [Google Scholar] [CrossRef]
- Razgonova, M.; Zakharenko, A.; Pikula, K.; Manakov, Y.; Ercisli, S.; Derbush, I.; Golokhvast, K. LC-MS/MS screening of phenolic compounds in Wild and cultivated grapes Vitis amurensis Rupr. Molecules 2021, 26, 3650. [Google Scholar] [CrossRef]
- Das Neves Costa, F.; Jerz, G.; Hewitson, P.; De Souza Figueiredo, F.; Ignatova, S. Laguncularia racemosa phenolics profiling by three-phase solvent system step-gradient using high-performance countercurrent chromatography with off-line. Molecules 2021, 26, 2284. [Google Scholar] [CrossRef]
- Das Neves Costa, F.; Borges, R.M.; Leitão, G.G.; Jerz, G. Preparative mass-spectrometry profiling of minor concentrated metabolites in Salicornia gaudichaudiana Moq by high-speed countercurrent chromatography. J. Sep. Sci. 2019, 42, 1477–1658. [Google Scholar]
- Ziani, B.E.C.; Barros, L.; Boumehira, A.Z.; Bachari, K.; Heleno, S.A.; Alves, M.J.; Ferreira, I.C. Profiling polyphenol composition by HPLC-DAD-ESI/MSn and the antibacterial activity of infusion preparations obtained from four medicinal plants. Food Funct. 2018, 9, 149. [Google Scholar] [CrossRef] [Green Version]
- De Freitas Laiber Pascoalag, G.; de Almeida Sousa Cruza, M.A.; de Abreu, J.P.; Santos, M.C.B.; Fanaro, G.B.; Maróstica, M.R., Jr.; Silva, O.F.; Moreira, R.F.A.; Cameron, L.C.; Ferreira, M.S.L.; et al. Evaluation of the antioxidant capacity, volatile composition and phenolic content of hybrid Vitis vinifera L. varieties sweet sapphire and sweet surprise. J. Food Chem. 2022, 366, 130644. [Google Scholar]
- Marchi, R.C.; Campos, I.A.S.; Santana, V.T.; Carlos, R.M. Chemical implications and considerations on techniques used to assess the in vitro antioxidant activity of coordination compounds. Coord. Chem. Rev. 2022, 451, 214275. [Google Scholar] [CrossRef]
- Da Silva, D.V.T.; dos Santos Baião, D.; de Oliveira Silva, F.; Alves, G.; Perrone, D.; Del Aguila, E.M.; Paschoalin, V.M.F. Betanin, a natural food additive: Stability, bioavailability, antioxidant and preservative ability assessments. Molecules 2019, 24, 458. [Google Scholar] [CrossRef] [PubMed]
- Esatbeyoglu, T.; Wagner, A.E.; Schini-Kerth, V.B.; Rimbach, G. Betanin—A food colorant with biological activity. Mol. Nutr. Food Res. 2015, 59, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, P.; Xia, C.; Cheng, Y.; Guo, X.; Li, Y. Effects of malic acid and citric acid on growth performance, antioxidant capacity, haematology and immune response of Carassius auratus gibelio. Aquac. Res. 2020, 51, 2766–2776. [Google Scholar] [CrossRef]
- Fiume, Z. Final report on the safety assessment of malic acid and sodium malate. Int. J. Toxicol. 2001, 20, 47–55. [Google Scholar]
- Aluko, R.E. Amino acids, peptides, and proteins as antioxidants for food preservation. In Preservation; Woodhead Publishing: Sawston, UK, 2015; pp. 105–140. [Google Scholar]
- Velika, B.; Kron, I. Antioxidant properties of benzoic acid derivatives against superoxide radical. Free Radic. 2012, 2, 62–67. [Google Scholar] [CrossRef]
- Teixeira, J.; Gaspar, A.; Garrido, E.M.; Garrido, J.; Borges, F. Hydroxycinnamic acid antioxidants: An electrochemical overview. Biomed Res. Int. 2013, 2013, 1–11. [Google Scholar] [CrossRef]
- Adomako-Bonsu, A.G.; Chan, S.L.; Pratten, M.; Fry, J.R. Antioxidant activity of rosmarinic acid and its principal metabolites in chemical and cellular systems: Importance of physico-chemical characteristics. Toxicol. In Vitro 2017, 40, 248–255. [Google Scholar] [CrossRef]
- Sahakyan, N.; Bartoszek, A.; Jacob, C.; Petrosyan, M.; Trchounian, A. Bioavailability of tannins and other oligomeric polyphenols: A still to be studied phenomenon. Curr. Pharmacol. Rep. 2020, 6, 131–136. [Google Scholar] [CrossRef]
- Maki, K.C.; Orloff, D.G.; Nicholls, S.J.; Dunbar, R.L.; Roth, E.M.; Curcio, D.; Johnson, J.; Kling, D.; Davidson, M.H. A highly bioavailable omega-3 free fatty acid formulation improves the cardiovascular risk profile in high-risk, statin-treated patients with residual hypertriglyceridemia (the ESPRIT trial). Clin. Ther. 2013, 35, 1400–1411. [Google Scholar] [CrossRef]
- Mohadjerani, M.; Tavakoli, R.; Hosseinzadeh, R. Fatty acid composition, antioxidant and antibacterial activities of Adonis wolgensis L. extract. Avicenna J. Phytomed. 2014, 4, 24. [Google Scholar]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thilakarathna, S.H.; Rupasinghe, H.V. Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients 2013, 5, 3367–3387. [Google Scholar] [CrossRef] [PubMed]
- Pankey, G.A.; Sabath, L.D. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin. Infect. Dis. 2004, 38, 864–870. [Google Scholar] [CrossRef] [PubMed]
- Ercisli, S.; Coruh, I.; Gormez, A.; Sengul, M. ntioxidant and antibacterial activities of Portulaca oleracea L. grown wild in Turkey. Ital. J. Food Sci. 2008, 20, 533–542. [Google Scholar]
- Parthasarathy, A.; Borrego, E.J.; Savka, M.A.; Dobson, R.C.; Hudson, A.O. Amino acid–derived defense metabolites from plants: A potential source to facilitate novel antimicrobial development. J. Biol. Chem. 2021, 296, 100438. [Google Scholar] [CrossRef]
- Herald, P.J.; Davidson, P.M. Antibacterial activity of selected hydroxycinnamic acids an effect of positional isomerism of benzoic acid derivatives on antibacterial activity against Escherichia coli. J. Food Sci. 1983, 48, 1378–1379. [Google Scholar] [CrossRef]
- Shamsudin, N.F.; Ahmed, Q.U.; Mahmood, S.; Ali Shah, S.A.; Khatib, A.; Mukhtar, S.; Alsharif, M.A.; Parveen, H.; Zakaria, Z.A. Antibacterial effects of flavonoids and their structure-activity relationship study: A comparative interpretation. Molecules 2022, 27, 1149. [Google Scholar] [CrossRef]
- Geran, R.I.; Greenberg, N.H.; Macdonald, M.M.; Schumacher, A.M.; Abbott, B.J. Protocols for screening chemical agents and natural products against animal tumors and other biological systems. Cancer Chemother. Rep. 1972, 3, 17–19. [Google Scholar]
- Zengin, G.; Mahomoodally, M.F.; Rocchetti, G.; Lucini, L.; Sieniawska, E.; Świątek, Ł.; Rajtar, B.; Polz-Dacewicz, M.; Senkardes, I.; Aktümsek, A.; et al. Chemical characterization and bioactive properties of different extracts from Fibigia clypeata, an unexplored plant food. Foods 2020, 9, 705. [Google Scholar] [CrossRef]
No. | Betalains | Content of Individual Betalains (mg/100 g DE) ** | ||||
---|---|---|---|---|---|---|
Yellow | Orange | Red | Purple | Fisher’ LSD | ||
Betaxanthins | ||||||
1 | Histidine-Bx | 7.7 ± 0.25 d | 7.5 ± 0.18 c | 5.6 ± 0.28 b | 4.4 ± 0.18 a | 0.099 |
2 | Asparagine-Bx | 1.8 ± 0.07 b | 4.1 ± 0.17 c | 0.91 ± 0.05 a | 6.6 ± 0.26 d | 0.079 |
3 | Histamine-Bx * | 5.4 ± 0.21 b | 10.7 ± 0.30 d | 2.5 ± 0.13 a | 7.1 ± 0.29 c | 0.076 |
4 | Glutamine-Bx | 15.4 ± 0.23 c | 33.6 ± 0.34 d | 14.5 ± 0.35 b | 7.1 ± 0.29 a | 0.074 |
5 | Ethanolamine-Bx | 9.3 ± 0.22 b | 23.6 ± 0.24 d | 3.4 ± 0.16 a | 11.0 ± 0.23 c | 0.136 |
6 | Threonine-Bx | 6.2 ± 0.17 c | 14.5 ± 0.29 d | 3.2 ± 0.14 a | 6.0 ± 0.24 b | 0.101 |
7 | Glutamic acid-Bx | 6.9 ± 0.22 c | 20.0 ± 0.40 d | 2.3 ± 0.10 a | 3.6 ± 0.14 b | 0.095 |
8 | Alanine-Bx | 5.8 ± 0.22 c | 9.6 ± 0.39 d | 2.5 ± 0.12 a | 4.4 ± 0.18 b | 0.090 |
9 | γ-Aminobutyric acid-Bx | 23.1 ± 0.32 c | 71.7 ± 0.93 d | 11.2 ± 0.28 a | 19.2 ± 0.58 b | 0.094 |
10 | Proline-IBx | 19.3 ± 0.39 c | 137 ± 5.50 d | 11.4 ± 0.28 b | 11.0 ± 0.33 a | 0.122 |
11 | Proline-Bx | 154 ± 1.50 c | 330 ± 9.90 d | 46.0 ± 0.83 a | 79.9 ± 1.40 b | 0.119 |
12 | Dopa-Bx | 10.0 ± 0.19 b | 18.9 ± 0.68 d | 5.8 ± 0.27 a | 16.5 ± 0.33 c | 0.086 |
13 | Dopamine-Bx | 10.8 ± 0.19 b | 34.4 ± 0.69 d | 9.8 ± 0.27 a | 32.9 ± 0.66 c | 0.061 |
14 | Tyrosine-Bx | 46.2 ± 0.46 d | 43.8 ± 0.88 c | 12.5 ± 0.50 a | 38.4 ± 0.79 b | 0.049 |
15 | Methionine-Bx | 4.4 ± 0.18 b | 5.5 ± 0.28 c | 1.1 ± 0.06 a | 1.1 ± 0.05 a | 0.027 |
16 | Valine-Bx | 29.0 ± 0.43 b | 71.5 ± 0.89 d | 12.0 ± 0.24 a | 30.2 ± 0.91 c | 0.091 |
17 | Isoleucine-Bx | 29.3 ± 0.38 c | 77.3 ± 0.98 d | 10.3 ± 0.21 a | 23.7 ± 0.71 b | 0.015 |
18 | Leucine-Bx | 20.8 ± 0.37 c | 48.2 ± 0.77 d | 6.8 ± 0.34 a | 13.7 ± 0.41 b | 0.049 |
19 | Phenylalanine-Bx | 11.9 ± 0.14 c | 19.2 ± 0.31 d | 0.28 ± 0.01 a | 6.0 ± 0.33 b | 0.049 |
Betacyanins | ||||||
20 | Betanin | 54.3 ± 0.04 a | 82.8 ± 0.02 b | 109 ± 0.01 c | 484 ± 0.01 d | 0.090 |
21 | Isobetanin | 10.7 ± 0.02 a | 61.6 ± 0.01 c | 40.3 ± 0.02 b | 166 ± 0.02 d | 0.076 |
Total betaxanthin mass (mg/100 g DE) | 417 ± 5.4 c | 982 ± 12.8 d | 162 ± 3.4 a | 323 ± 6.1 b | 0.060 | |
Total betacyanin mass (mg/100 g DE) | 64.3 ± 0.99 a | 144 ± 5.8 b | 150 ± 5.7 c | 650 ± 6.9 d | 0.012 |
No. | Metabolite | Molecular Formula | tR [min] | m/z [M+H]+exp | m/z [M+H]+caled | Δ [ppm] | m/z from MS2 of [M+H]+ | References |
---|---|---|---|---|---|---|---|---|
Betaxanthins | ||||||||
1 | Histidine-Bx (muscaaurin VII) | C15H16N4O6 | 4.3 | 349.1150 | 349.1143 | −2.12 | 305.1278 | [36] |
2 | Asparagine-Bx (vulgaxanthin III) | C13H15N3O7 | 4.9 | 326.0990 | 326.0983 | −2.23 | - | [36] |
3 | Histamine-Bx | C14H16N4O4 | 5.4 | 305.1248 | 305.1244 | −1.21 | - | [37] |
4 | Glutamine-Bx (vulgaxanthin I) | C14H17N3O7 | 6.4 | 340.1145 | 340.1139 | −1.69 | 323.0905 | [38] |
5 | Ethanolamine-Bx | C11H14N2O5 | 7.5 | 255.0972 | 255.0975 | 1.37 | - | [39] |
6 | Threonine-Bx | C13H16N2O7 | 8.5 | 313.1033 | 313.1030 | −0.87 | 269.1061 | [36] |
7 | Glutamic acid-Bx (vulgaxanthin II) | C14H16N2O8 | 9.0 | 341.0983 | 341.0979 | −1.05 | 297.1100 | [36] |
8 | Alanine-Bx | C12H14N2O6 | 11.4 | 283.0928 | 283.0925 | −1.2 | - | [37] |
9 | γ-Aminobutyric acid-Bx | C13H16N2O6 | 12.9 | 297.1085 | 297.1081 | 0.04 | - | [39] |
10 | Proline-IBx (isoindicaxanthin) | C14H16N2O6 | 14.0 | 309.1083 | 309.1081 | −0.61 | 265.1550 | [40] |
11 | Proline-Bx (indicaxanthin) | C14H16N2O6 | 14.4 | 309.1085 | 309.1081 | −1.26 | 265.1541 | [40] |
12 | Dopa-Bx (dopaxanthin) | C18H18N2O8 | 15.9 | 391.1139 | 391.1136 | −0.79 | 347.1568 | [36] |
13 | Dopamine-Bx (miraxanthin V) | C17H18N2O6 | 18.0 | 347.1244 | 347.1238 | −1.84 | 303.1230 | [36] |
14 | Tyrosine-Bx (portulacaxanthin II) | C18H18N2O7 | 18.3 | 375.1179 | 375.1187 | 2.08 | 329.0998; 239.0896 | [41] |
15 | Methionine-Bx | C14H18N2O6S | 18.4 | 343.0966 | 343.0958 | −2.24 | 299.1032 | [36] |
16 | Valine-Bx | C14H18N2O6 | 19.6 | 311.1244 | 311.1238 | −2.05 | 267.0984 | [36] |
17 | Isoleucine-Bx | C15H20N2O6 | 21.9 | 325.1398 | 325.1394 | −1.19 | 191.1427; 235.1437; 279.1353 | [41] |
18 | Leucine-Bx (vulgaxanthin IV) | C15H20N2O6 | 22.1 | 325.1396 | 325.1394 | −0.58 | 191.1547; 235.1490; 279.1412 | [41] |
19 | Phenylalanine-Bx | C18H18N2O6 | 22.3 | 359.1243 | 359.1238 | −1.5 | 313.1235; 223.1258; 131.1101 | [41] |
Betacyanins | ||||||||
20 | Betanidin-5-O-ß-glucoside (Betanin) | C24H26N2O13 | 16.6 | 551.1510 | 551.1508 | −0.43 | 389.1850 | [40] |
21 | Isobetanidin-5-O-ß-glucoside (Isobetanin) | C24H26N2O13 | 17.4 | 551.1513 | 551.1508 | −0.97 | 389.1880 | [40] |
m/z [M-H]−exp | m/z [M-H]−caled | m/z from MS2 of [M-H]− | ||||||
Organic acids and their derivatives | ||||||||
22 | Malic acid | C4H6O5 | 1.7 | 133.0138 | 133.0142 | 3.33 | 115.0033 | [42] |
23 | Gluconic acid | C6H12O7 | 1.8 | 195.0502 | 195.0510 | 4.21 | 177.0392; 129.0192 | [42] |
24 | Citric acid | C6H8O7 | 2.4 | 191.0188 | 191.0197 | 4.82 | 111.0080 | [43] |
25 | 2-Hydroxyquinoline-3-carboxylic acid | C10H7NO3 | 9.5 | 188.0344 | 188.0353 | 4.85 | 170.9705; 144.0456 | [42] |
26 | Benzoic acid | C7H6O2 | 13.5 | 121.0295 | 121.0295 | 0.02 | 109.0656 | [44] |
27 | Feruloylmalic acid | C14H14O8 | 24.0 | 309.0612 | 309.0616 | 1.26 | 193.0507; 178.0272; 149.1213; 134.0366; 117.0305 | [42] |
28 | Carnosic acid | C20H28O4 | 42.8 | 331.1915 | 331.1915 | −0.05 | 290.9496; 259.2061; 236.9202; 201.0325 | [44] |
Amino acids and their derivatives | ||||||||
29 | Tryptophan | C11H12N2O2 | 5.5 | 203.0830 | 203.0826 | −1.95 | 142.0667; 116.0525 | [45] |
30 | N-Benzoylaspartic acid | C11H11NO5 | 13.1 | 236.0565 | 236.0564 | −0.23 | 192.0683; 174.0560; 148.0765; 120.0464 | [42] |
31 | N-(Carboxyacetyl) phenylalanine | C12H13NO5 | 14.2 | 250.0722 | 250.0721 | −0.41 | 206.0824;91.0552 | [42] |
Hydroxybenzoic acids and their derivatives | ||||||||
32 | Dihydroxybenzoic acid | C7H6O4 | 7.4 | 153.0197 | 153.0193 | 0.21 | 109.0312 | [44] |
33 | 4-Hydroxybenzoic acid | C7H6O3 | 9.9 | 137.0248 | 137.0244 | −2.77 | 109.0268 | [44] |
34 | Vanillic acid hexoside | C14H18O9 | 15.4 | 329.0877 | 329.0878 | 0.32 | 167.0353; 123.0438 | [44] |
Hydroxycinnamic acids and their derivatives | ||||||||
35 | Caffeic acid hexoside | C15H18O9 | 10.2 | 341.0882 | 341.0878 | −1.15 | 179.0335; 161.0250 | [46] |
36 | Ferulic acid hexose I | C16H20O9 | 12.2 | 355.1036 | 355.1035 | −0.40 | 193.0508; 178.0362; 134.0358; 149.0584 | [42] |
37 | Chlorogenic acid I | C16H18O9 | 13.4 | 353.0873 | 353.0878 | 1.54 | 191.0557; 179.0422; 173.0533; 135.0454 | [45] |
38 | Ferulic acid hexose II | C16H20O9 | 13.7 | 355.1029 | 355.1035 | 1.56 | 193.0505; 178.0358; 134.0365; 149.0591 | [42] |
39 | Chlorogenic acid II | C16H18O9 | 14.9 | 353.0885 | 353.0878 | −1.96 | 191.0561; 179.0365; 173.0446; 135.0485 | [45] |
40 | 4-p-Coumaroylquinic acid I | C16H18O8 | 17.5 | 337.0920 | 377.0929 | 2.64 | 190.9935; 163.0414 | [44] |
41 | Feruloylquinic acid | C17H20O9 | 18.9 | 367.1042 | 367.1035 | −2.02 | 191.0554; 175.0499 | [44] |
42 | 1-O-Sinapoyl-beta-D-glucose | C17H22O10 | 19.1 | 385.1154 | 385.1140 | −3.57 | 175.0403; 223.0148 | [47] |
43 | 4-p-Coumaroylquinic acid II | C16H18O8 | 19.2 | 337.0934 | 377.0929 | −1.51 | 190.9928; 163.0407 | [44] |
44 | p-Coumaric acid | C9H8O3 | 23.1 | 163.0399 | 163.0401 | 1.02 | 119.0478 | [42] |
45 | Rosmarinic acid | C18H16O8 | 26.7 | 359.0772 | 359.0772 | 0.11 | 197.0424; 179.0445; 161.1013; 135.0527 | [44] |
Hydrolysable tannins and their derivatives | ||||||||
46 | Galloyl hexoside | C13H16O10 | 11.8 | 331.0663 | 331.0671 | 2.32 | 169.0089; 125.0223 | [48] |
Fatty acid and their derivatives | ||||||||
47 | Tuberonic acid hexoside | C18H28O9 | 13.7 | 387.1675 | 387.1661 | −3.72 | 207.1041; 163.0432; 101.0227 | [44] |
48 | Tuberonic acid | C12H18O4 | 16.0 | 225.1135 | 225.1132 | −1.18 | 163.0460; 174.0846 | [44] |
49 | Trihydroxyoctadecadienoic acid | C18H32O5 | 32.0 | 327.2173 | 327.2177 | 1.21 | 314.7395; 299.3326; 271.2080; 229.1379; 171.1009 | [44] |
50 | Dihydroxyhexadecanoic acid | C16H32O4 | 41.4 | 287.2242 | 287.2228 | −4.92 | 228.0024 | [44] |
51 | Hydroperoxyoctadecadienoic acid | C18H32O4 | 44.7 | 311.2232 | 311.2228 | −1.34 | 293.1788; 223.1338; 161.0425 | [44] |
52 | Hydroxyoctadecatrienoic acid I | C18H30O3 | 46.0 | 293.2121 | 293.2122 | 0.40 | 275.2007; 183.1436; 171.0992; 121.1022 | [44] |
53 | Hydroxyoctadecatrienoic acid II | C18H30O3 | 46.8 | 293.2118 | 293.2122 | 1.42 | 275.2007; 183.1435; 171.0992; 121.1021 | [44] |
54 | Hydroxyoctadecatrienoic acid III | C18H30O3 | 47.1 | 293.2128 | 293.2122 | −1.98 | 275.1915; 183.1427; 171.0987; 121.1018 | [44] |
55 | Hydroxyoctadecadienoic acid I | C18H32O3 | 49.4 | 295.2279 | 295.2279 | −0.11 | 277.2162; 181.0419; 171.9458 | [44] |
56 | Hydroxyoctadecadienoic acid II | C18H32O3 | 49.5 | 295.2273 | 295.2279 | 1.92 | 277.2162; 181.0410; 171.9480 | [44] |
Flavones and their derivatives | ||||||||
57 | Luteolin-6,8-C-dihexose | C27H30O16 | 20.6 | 609.1462 | 609.1461 | −0.15 | 285.0370; 255.1022 | [49] |
Flavonoid and their derivatives | ||||||||
58 | Quercetin-O-hexoside I | C21H20O12 | 23.0 | 463.0886 | 463.0882 | −0.86 | 301.0333 | [43] |
59 | Luteolin-7-O-rutinoside I | C27H30O15 | 23.4 | 593.1521 | 593.1512 | −1.53 | 285.0356 | [46] |
60 | Quercetin-O-hexoside II | C21H20O12 | 23.9 | 463.0877 | 463.0882 | 1.08 | 301.0324 | [43] |
61 | Luteolin-7-O-rutinoside II | C27H30O15 | 24.2 | 593.1520 | 593.1512 | −1.36 | 285.0391 | [50] |
62 | Luteolin-7-O-rutinoside III | C27H30O15 | 24.6 | 593.1523 | 593.0561 | −1.86 | 285.0375 | [46] |
63 | Luteolin-O-hexoside | C21H20O11 | 25.4 | 447.0934 | 447.0933 | −0.26 | 285.0373 | [44] |
64 | Genistein-4′-O-glucoside | C21H20O10 | 25.8 | 431.0980 | 431.0984 | 0.86 | 431.0980; 269.1377 | [42] |
65 | Apigenin I | C15H10O5 | 28.9 | 269.0461 | 269.0455 | −2.05 | 151.1127; 127.0782 | [44] |
66 | Luteolin | C15H10O6 | 31.0 | 285.0404 | 285.0405 | 0.22 | 267.0259; 257.0436; 243.0286; 241.0500; 217.0480; 199.0380; 197.0569; 175.0380; 151.0016; 133.0285 | [48] |
67 | Naringenin | C15H12O5 | 33.5 | 271.0612 | 271.0612 | −0.01 | 227.2072; 177.0298; 151.0005; 119.0365 | [44] |
68 | Apigenin II | C15H10O5 | 34.0 | 269.0455 | 269.0455 | 0.17 | 151.1149; 127.0725 | [44] |
69 | Cirsimaritin | C17H14O6 | 34.1 | 313.0707 | 313.0718 | 3.38 | 298.9546; 283.0735; 255.0615 | [44] |
70 | Sorbifolin | C16H12O6 | 34.2 | 299.0557 | 299.0561 | 1.37 | 284.0365; 271.0601 | [44] |
71 | Kaempferol | C15H10O6 | 34.4 | 285.0407 | 285.0405 | −0.83 | 257.0438; 151.0030 | [48] |
Antioxidant Activity | ABTS | FRAP | DPPH |
---|---|---|---|
(mM TE/g DE) * | |||
Yellow | 0.079 ± 0.015 a | 0.066 ± 0.010 a | 0.078 ± 0.016 a |
Orange | 0.112 ± 0.017 b | 0.067 ± 0.012 a | 0.111 ± 0.064 b |
Red | 0.176 ± 0.020 d | 0.160 ± 0.005 b | 0.174 ± 0.057 d |
Purple | 0.135 ± 0.016 c | 0.077 ± 0.004 c | 0.125 ± 0.035 c |
Ascorbic acid | 7.19 ± 0.025 c | 3.36 ± 0.005 c | 8.07 ± 0.035 c |
Fisher’ LSD | 0.001 | 0.002 | 0.002 |
Correlation | |||
Betaxanthins | |||
Histidine-Bx | −0.495 | −0.020 | −0.440 |
Asparagine-Bx | −0.035 | −0.466 | −0.136 |
Histamine-Bx | −0.546 | −0.884 | −0.606 |
Glutamine-Bx | −0.214 | −0.056 | −0.124 |
Ethanolamine-Bx | −0.562 | −0.840 | −0.585 |
Threonine-Bx | −0.579 | −0.792 | −0.581 |
Glutamic acid-Bx | −0.584 | −0.635 | −0.545 |
Alanine-Bx | −0.852 | −0.920 | −0.848 |
γ-Aminobutyric acid-Bx | −0.482 | −0.631 | −0.458 |
Proline-IBx | −0.295 | −0.416 | −0.254 |
Proline-Bx | −0.726 | −0.736 | −0.691 |
Dopa-Bx | −0.275 | −0.688 | −0.365 |
Dopamine-Bx | 0.040 | −0.443 | −0.049 |
Tyrosine-Bx | −0.844 | −0.865 | −0.893 |
Methionine-Bx | −0.869 | −0.615 | −0.812 |
Valine-Bx | −0.591 | −0.822 | −0.600 |
Isoleucine-Bx | −0.606 | −0.750 | −0.591 |
Leucine-Bx | −0.687 | −0.759 | −0.662 |
Phenylalanine-Bx | −0.916 | −0.917 | −0.906 |
Betacyanins | |||
Betanidin-5-O-ß-glucoside | 0.273 | −0.122 | 0.170 |
Isobetanidin-5-O-ß-glucoside | −0.296 | −0.536 | −0.435 |
Organic acids and their derivatives | |||
Malic acid | 0.878 | 0.652 | 0.824 |
Gluconic acid | −0.315 | 0.102 | −0.292 |
Citric acid | −0.628 | −0.422 | −0.551 |
2-Hydroxyquinoline-3-carboxylic acid | 0.114 | −0.245 | 0.009 |
Benzoic acid | 0.157 | −0.229 | 0.052 |
Feruloylmalic acid | 0.078 | −0.308 | 0.063 |
Carnosic acid | −0.182 | −0.032 | −0.229 |
Amino acids and their derivatives | |||
Tryptophan | −0.120 | −0.161 | −0.199 |
N-Benzoylaspartic acid | −0.030 | 0.428 | 0.068 |
N-(Carboxyacetyl) phenylalanine | 0.977 | 0.958 | 0.993 |
Hydroxybenzoic acids and their derivatives | |||
Dihydroxybenzoic acid | −0.821 | −0.746 | −0.862 |
Hydroxybenzoic acid | 0.530 | 0.098 | 0.440 |
Vanillic acid hexoside | −0.421 | 0.048 | −0.330 |
Hydroxycinnamic acids and their derivatives | |||
Caffeic acid hexoside | −0.874 | −0.597 | −0.868 |
Ferulic acid hexose I | −0.291 | 0.076 | −0.188 |
Chlorogenic acid I | −0.508 | −0.103 | −0.415 |
Ferulic acid hexose II | −0.583 | −0.141 | −0.500 |
Chlorogenic acid II | −0.214 | −0.606 | −0.312 |
4-p-Coumaroylquinic acid I | −1.000 | −0.968 | −0.990 |
Feruloylquinic acid | 0.806 | 0.754 | 0.767 |
1-O-Sinapoyl-beta-D-glucose | −0.127 | −0.307 | −0.093 |
4-p-Coumaroylquinic acid II | −0.061 | −0.480 | −0.094 |
p-Coumaric acid | −0.225 | −0.276 | −0.167 |
Rosmarinic acid | 0.756 | 0.978 | 0.799 |
Hydrolysable tannins and their derivatives | |||
Galloyl hexoside | 0.775 | 0.919 | 0.838 |
Fatty acids and their derivatives | |||
Tuberonic acid hexoside | 0.531 | 0.160 | 0.521 |
Tuberonic acid | 0.172 | −0.156 | 0.068 |
Trihydroxyoctadecadienoic acid | 0.731 | 0.845 | 0.722 |
Dihydroxyhexadecanoic acid | 0.642 | 0.396 | 0.563 |
Hydroperoxyoctadecadienoic acid | 0.769 | 0.841 | 0.753 |
Hydroxyoctadecatrienoic acid I | 0.919 | 0.828 | 0.890 |
Hydroxyoctadecatrienoic acid II | 0.469 | 0.471 | 0.414 |
Hydroxyoctadecatrienoic acid III | 0.496 | 0.298 | 0.413 |
Hydroxyoctadecadienoic acid I | 0.349 | 0.065 | 0.251 |
Hydroxyoctadecadienoic acid II | 0.193 | 0.622 | 0.286 |
Flavones and their derivatives | |||
Luteolin-6,8-C-dihexose | 0.371 | 0.325 | 0.436 |
Flavonoids and their derivatives | |||
Quercetin-O-hexoside I | 0.836 | 0.995 | 0.879 |
Luteolin-7-O-rutinoside I | −0.837 | −0.465 | −0.789 |
Quercetin-O-hexoside II | 0.912 | 0.650 | 0.904 |
Luteolin-7-O-rutinoside II | 0.522 | 0.659 | 0.605 |
Luteolin-7-O-rutinoside III | −0.919 | −0.932 | −0.913 |
Luteolin-O-hexoside | −0.350 | −0.242 | −0.405 |
Genistein-4′-O-glucoside | 0.252 | 0.353 | 0.339 |
Apigenin I | 0.055 | −0.138 | 0.092 |
Luteolin | 0.803 | 0.745 | 0.763 |
Naringenin | 0.415 | 0.783 | 0.500 |
Apigenin II | 0.419 | 0.754 | 0.510 |
Cirsimaritin | 0.935 | 0.810 | 0.903 |
Sorbifolin | 0.591 | 0.850 | 0.610 |
Kaempferol | 0.327 | 0.452 | 0.288 |
Gram-Positive Bacteria | Gram-Negative Bacteria | Fungal (Yeasts) Strains | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Microorganism/ Metabolite | S. aureus ATCC 29213 | S. aureus ATCC 25923 | S. aureus ATCC 6538 | S. aureus ATCC BAA-1707 | S. epidermidis ATCC 12228 | M. luteus ATCC 10240 | B. subtilis ATCC 6633 | B. cereus ATCC 10876 | E. coli ATCC 25922 | S. typhimurium ATCC 14028 | P. aeruginosa ATCC 27853 | C. albicans ATCC 10231 | C. glabrata ATCC 90030 | C. krusei ATCC 14243 |
(MIC;MBC) | (MIC;MBC) | (MIC;MFC) | ||||||||||||
Yellow | 8;32 | 8;32 | 8;32 | 8;32 | 8;32 | 4;16 | 4;16 | 8;16 | 16;16 | 16;16 | 16;16 | 32;32 | 32;32 | 32;32 |
Orange | 8;32 | 8;32 | 8;32 | 8;32 | 8;32 | 4;16 | 4;16 | 8;16 | 16;32 | 16;16 | 16;16 | 32;32 | 32;32 | 32;32 |
Red | 16;32 | 32;32 | 32;32 | 32;32 | 32;32 | 16;16 | 16;16 | 16;16 | 16;32 | 16;16 | 16;16 | 32;32 | 32;32 | 32;32 |
Purple | >32;>32 | 32;32 | 32;32 | >32;>32 | >32;>32 | 32;32 | 16;16 | 32;32 | 16;32 | 16;32 | 16;32 | 32;32 | 32;32 | 32;32 |
Correlation | ||||||||||||||
Betaxanthins | ||||||||||||||
Histidine-Bx | −0.609 | −0.467 | −0.467 | −0.466 | −0.466 | −0.495 | −0.233 | −0.609 | −0.079 | −0.478 | −0.940 | −0.651 | −0.534 | −0.885 |
Asparagine-Bx | 0.811 | 0.339 | 0.340 | 0.339 | 0.339 | 0.750 | 0.280 | 0.811 | 0.016 | 0.163 | 0.679 | 0.806 | 0.760 | 0.933 |
Histamine-Bx | 0.232 | −0.340 | −0.340 | −0.341 | −0.341 | 0.138 | −0.415 | 0.232 | 0.653 | 0.644 | 0.682 | 0.228 | 0.993 | 0.656 |
Glutamine-Bx | −0.878 | −0.696 | −0.696 | −0.696 | −0.696 | −0.930 | −0.800 | −0.878 | 0.689 | 0.643 | 0.017 | −0.849 | −0.043 | −0.501 |
Ethanolamine-Bx | −0.103 | −0.568 | −0.568 | −0.568 | −0.568 | −0.218 | −0.693 | −0.103 | 0.886 | 0.882 | 0.692 | −0.092 | 0.933 | 0.457 |
Threonine-Bx | −0.288 | −0.679 | −0.679 | −0.680 | −0.680 | −0.401 | −0.809 | −0.288 | 0.957 | 0.933 | 0.619 | −0.273 | 0.842 | 0.299 |
Glutamic acid-Bx | −0.623 | −0.840 | −0.840 | −0.841 | −0.841 | −0.718 | −0.953 | −0.623 | 0.990 | 0.909 | 0.378 | −0.605 | 0.573 | −0.059 |
Alanine-Bx | −0.425 | −0.855 | −0.855 | −0.855 | −0.855 | −0.496 | −0.880 | −0.425 | 0.937 | 0.740 | 0.298 | −0.433 | 0.751 | 0.057 |
γ-Aminobutyric acid-Bx | −0.467 | −0.721 | −0.721 | −0.722 | −0.722 | −0.581 | −0.874 | −0.467 | 0.976 | 0.972 | 0.557 | −0.442 | 0.679 | 0.133 |
Proline-IBx | −0.534 | −0.648 | −0.648 | −0.648 | −0.648 | −0.649 | −0.831 | −0.534 | 0.910 | 0.966 | 0.538 | −0.499 | 0.512 | 0.050 |
Proline-Bx | −0.640 | −0.911 | −0.911 | −0.912 | −0.912 | −0.719 | −0.978 | −0.641 | 0.990 | 0.833 | 0.269 | −0.634 | 0.586 | −0.115 |
Dopa-Bx | 0.606 | 0.055 | 0.055 | 0.055 | 0.055 | 0.528 | −0.010 | 0.605 | 0.297 | 0.378 | 0.712 | 0.600 | 0.911 | 0.864 |
Dopamine-Bx | 0.721 | 0.284 | 0.284 | 0.283 | 0.283 | 0.626 | 0.150 | 0.721 | 0.177 | 0.400 | 0.862 | 0.733 | 0.829 | 0.979 |
Tyrosine-Bx | 0.080 | −0.440 | −0.440 | −0.440 | −0.440 | 0.095 | −0.293 | 0.080 | 0.325 | 0.022 | −0.067 | 0.033 | 0.578 | 0.142 |
Methionine-Bx | −0.835 | −0.986 | −0.986 | −0.985 | −0.985 | −0.834 | −0.904 | −0.836 | 0.743 | 0.391 | −0.309 | −0.855 | 0.183 | −0.574 |
Valine-Bx | −0.229 | −0.652 | −0.652 | −0.653 | −0.653 | −0.342 | −0.776 | −0.229 | 0.938 | 0.913 | 0.636 | −0.216 | 0.878 | 0.348 |
Isoleucine-Bx | −0.439 | −0.769 | −0.769 | −0.769 | −0.769 | −0.545 | −0.890 | −0.439 | 0.991 | 0.935 | 0.518 | −0.424 | 0.745 | 0.146 |
Leucine-Bx | −0.549 | −0.856 | −0.856 | −0.856 | −0.857 | −0.640 | −0.945 | −0.549 | 0.999 | 0.883 | 0.384 | −0.539 | 0.671 | 0.007 |
Phenylalanine-Bx | −0.487 | −0.900 | −0.900 | −0.900 | −0.900 | −0.539 | −0.886 | −0.487 | 0.900 | 0.646 | 0.156 | −0.502 | 0.670 | −0.060 |
Betacyanins | ||||||||||||||
Betanidin-5-O-ß-glucoside | 0.971 | 0.660 | 0.661 | 0.660 | 0.660 | 0.941 | 0.619 | 0.971 | −0.350 | −0.140 | 0.540 | 0.968 | 0.465 | 0.897 |
Isobetanidin-5-O-ß-glucoside | 0.890 | 0.375 | 0.375 | 0.374 | 0.374 | 0.836 | 0.375 | 0.890 | −0.141 | −0.141 | 0.549 | 0.890 | 0.616 | 0.971 |
Organic acids and their derivatives | ||||||||||||||
Malic acid | 0.817 | 0.993 | 0.993 | 0.993 | 0.993 | 0.824 | 0.924 | 0.817 | −0.782 | −0.442 | 0.249 | 0.835 | −0.241 | 0.524 |
Gluconic acid | −0.242 | −0.119 | −0.119 | −0.118 | −0.118 | −0.106 | 0.148 | −0.242 | −0.419 | −0.771 | −0.955 | −0.292 | −0.589 | −0.695 |
Citric acid | −0.926 | −0.944 | −0.944 | −0.944 | −0.944 | −0.960 | −0.960 | −0.926 | 0.825 | 0.605 | −0.121 | −0.921 | 0.136 | −0.551 |
2-Hydroxyquinoline-3-carboxylic acid | 0.934 | 0.562 | 0.562 | 0.562 | 0.562 | 0.916 | 0.561 | 0.934 | −0.313 | −0.179 | 0.452 | 0.921 | 0.501 | 0.845 |
Benzoic acid | 0.942 | 0.577 | 0.577 | 0.576 | 0.576 | 0.914 | 0.552 | 0.942 | −0.288 | −0.121 | 0.521 | 0.934 | 0.527 | 0.885 |
Feruloylmalic acid | 0.082 | −0.122 | −0.122 | −0.123 | −0.123 | −0.061 | −0.375 | 0.082 | 0.629 | 0.900 | 0.936 | 0.127 | 0.707 | 0.621 |
Carnosic acid | 0.388 | 0.278 | 0.278 | 0.278 | 0.278 | 0.502 | 0.518 | 0.388 | −0.608 | −0.833 | −0.584 | 0.334 | −0.238 | −0.093 |
Amino acids and their derivatives | ||||||||||||||
Tryptophan | 0.666 | 0.411 | 0.411 | 0.411 | 0.411 | 0.740 | 0.590 | 0.665 | −0.550 | −0.669 | −0.235 | 0.619 | 0.060 | 0.286 |
N-Benzoylaspartic acid | −0.805 | −0.356 | −0.357 | −0.356 | −0.356 | −0.731 | −0.266 | −0.805 | −0.047 | −0.237 | −0.757 | −0.807 | −0.773 | −0.967 |
N-(Carboxyacetyl)-phenylalanine | 0.204 | 0.795 | 0.795 | 0.795 | 0.796 | 0.204 | 0.795 | 0.205 | −0.992 | −0.511 | 0.205 | 0.250 | −0.606 | 0.063 |
Hydroxybenzoic acids and their derivatives | ||||||||||||||
Dihydroxybenzoic acid | 0.035 | −0.404 | −0.404 | −0.404 | −0.404 | 0.082 | −0.208 | 0.034 | 0.176 | −0.176 | −0.285 | −0.020 | 0.377 | −0.025 |
Hydroxybenzoic acid | 0.950 | 0.771 | 0.771 | 0.770 | 0.770 | 0.898 | 0.656 | 0.950 | −0.369 | −0.039 | 0.667 | 0.965 | 0.375 | 0.922 |
Vanillic acid hexoside | −0.902 | −0.649 | −0.649 | −0.649 | −0.649 | −0.831 | −0.514 | −0.902 | 0.201 | −0.122 | −0.773 | −0.919 | −0.527 | −0.975 |
Hydroxycinnamic acids and their derivatives | ||||||||||||||
Caffeic acid hexoside | −0.378 | −0.628 | −0.628 | −0.627 | −0.627 | −0.305 | −0.401 | −0.378 | 0.231 | −0.210 | −0.594 | −0.431 | 0.071 | −0.465 |
Ferulic acid hexose I | −0.983 | −0.696 | −0.696 | −0.696 | −0.696 | −0.965 | −0.674 | −0.983 | 0.424 | 0.228 | −0.465 | −0.976 | −0.396 | −0.855 |
Chlorogenic acid I | −0.980 | −0.797 | −0.797 | −0.796 | −0.796 | −0.943 | −0.712 | −0.980 | 0.441 | 0.141 | −0.585 | −0.989 | −0.332 | −0.892 |
Ferulic acid hexose II | −0.910 | −0.765 | −0.765 | −0.765 | −0.764 | −0.848 | −0.623 | −0.910 | 0.330 | −0.032 | −0.719 | −0.932 | −0.367 | −0.921 |
Chlorogenic acid II | 0.720 | 0.190 | 0.190 | 0.189 | 0.189 | 0.664 | 0.160 | 0.720 | 0.113 | 0.184 | 0.610 | 0.707 | 0.812 | 0.861 |
4-p-Coumaroylquinic acid I | −0.162 | −0.768 | −0.768 | −0.768 | −0.769 | −0.267 | −0.768 | −0.162 | 0.900 | 0.900 | 0.964 | −0.162 | 0.938 | 0.523 |
Feruloylquinic acid | 0.693 | 0.960 | 0.960 | 0.961 | 0.961 | 0.753 | 0.986 | 0.693 | −0.959 | −0.740 | −0.132 | 0.694 | −0.522 | 0.220 |
1-O-Sinapoyl-beta-D-glucose | −0.417 | −0.497 | −0.497 | −0.497 | −0.497 | −0.542 | −0.715 | −0.417 | 0.830 | 0.967 | 0.643 | −0.374 | 0.503 | 0.161 |
4-p-Coumaroylquinic acid II | 0.182 | −0.145 | −0.145 | −0.146 | −0.146 | 0.042 | −0.370 | 0.182 | 0.650 | 0.877 | 0.957 | 0.217 | 0.847 | 0.719 |
p-Coumaric acid | −0.640 | −0.646 | −0.646 | −0.646 | −0.646 | −0.742 | −0.823 | −0.640 | 0.852 | 0.904 | 0.421 | −0.602 | 0.343 | −0.100 |
Rosmarinic acid | −0.008 | 0.563 | 0.563 | 0.563 | 0.563 | 0.067 | 0.587 | −0.008 | −0.749 | −0.621 | −0.480 | 0.006 | −0.931 | −0.424 |
Hydrolysable tannins and their derivatives | ||||||||||||||
Galloyl hexoside | −0.199 | 0.382 | 0.382 | 0.382 | 0.382 | −0.181 | 0.296 | −0.199 | −0.410 | −0.194 | −0.188 | −0.163 | −0.759 | −0.365 |
Fatty acids and their derivatives | ||||||||||||||
Tuberonic acid hexoside | 0.237 | 0.267 | 0.266 | 0.266 | 0.266 | 0.114 | −0.007 | 0.237 | 0.244 | 0.644 | 0.865 | 0.293 | 0.359 | 0.601 |
Tuberonic acid | 0.954 | 0.629 | 0.629 | 0.629 | 0.629 | 0.950 | 0.645 | 0.954 | −0.419 | −0.288 | 0.370 | 0.938 | 0.399 | 0.796 |
Trihydroxyoctadecadienoic acid | 0.434 | 0.820 | 0.820 | 0.820 | 0.820 | 0.526 | 0.898 | 0.434 | −0.983 | −0.861 | −0.429 | 0.429 | −0.766 | −0.114 |
Dihydroxyhexadecenoic acid | 0.388 | 0.278 | 0.278 | 0.278 | 0.278 | 0.502 | 0.518 | 0.388 | −0.608 | −0.833 | −0.584 | 0.334 | −0.238 | −0.093 |
Hydroperoxyoctadecadienoic acid | 0.949 | 0.946 | 0.946 | 0.946 | 0.946 | 0.970 | 0.939 | 0.949 | −0.778 | −0.530 | 0.210 | 0.948 | −0.070 | 0.619 |
Hydroxyoctadecatrienoic acid I | 0.497 | 0.865 | 0.865 | 0.865 | 0.865 | 0.581 | 0.927 | 0.497 | −0.984 | −0.831 | −0.353 | 0.495 | −0.718 | −0.033 |
Hydroxyoctadecatrienoic acid II | 0.647 | 0.968 | 0.968 | 0.968 | 0.968 | 0.684 | 0.936 | 0.647 | −0.886 | −0.594 | −0.002 | 0.662 | −0.512 | 0.255 |
Hydroxyoctadecatrienoic acid III | 0.717 | 0.816 | 0.816 | 0.817 | 0.817 | 0.807 | 0.941 | 0.717 | −0.942 | −0.885 | −0.312 | 0.693 | −0.415 | 0.177 |
HydroxyOctadecadienoic acid I | 0.936 | 0.879 | 0.879 | 0.879 | 0.879 | 0.975 | 0.925 | 0.936 | −0.792 | −0.627 | 0.084 | 0.922 | −0.068 | 0.555 |
Hydroxyoctadecadienoic acid II | 0.980 | 0.776 | 0.777 | 0.776 | 0.776 | 0.993 | 0.801 | 0.980 | −0.607 | −0.444 | 0.265 | 0.966 | 0.193 | 0.718 |
Flavones and their derivatives | ||||||||||||||
Luteolin−6.8-C-dihexose | −0.445 | −0.150 | −0.150 | −0.151 | −0.151 | −0.528 | −0.368 | −0.445 | 0.384 | 0.618 | 0.370 | −0.390 | −0.082 | −0.105 |
Flavonoids and their derivatives | ||||||||||||||
Quercetin-O-hexoside I | 0.008 | 0.584 | 0.583 | 0.584 | 0.584 | 0.059 | 0.556 | 0.008 | −0.678 | −0.482 | −0.322 | 0.032 | −0.859 | −0.329 |
Luteolin-7-O-rutinoside I | −0.715 | −0.806 | −0.806 | −0.806 | −0.806 | −0.652 | −0.616 | −0.716 | 0.378 | −0.059 | −0.661 | −0.756 | −0.091 | −0.723 |
Quercetin-O-hexoside II | 0.413 | 0.685 | 0.685 | 0.685 | 0.685 | 0.351 | 0.472 | 0.413 | −0.313 | 0.126 | 0.541 | 0.464 | −0.132 | 0.448 |
Luteolin-7-O-rutinoside II | −0.501 | 0.003 | 0.002 | 0.002 | 0.002 | −0.523 | −0.132 | −0.501 | 0.024 | 0.199 | −0.046 | −0.457 | −0.535 | −0.423 |
Luteolin-7-O-rutinoside III | −0.455 | −0.884 | −0.884 | −0.884 | −0.884 | −0.507 | −0.869 | −0.455 | 0.890 | 0.638 | 0.168 | −0.471 | 0.690 | −0.032 |
Luteolin-O-hexoside | 0.373 | 0.145 | 0.145 | 0.145 | 0.145 | 0.471 | 0.382 | 0.373 | −0.441 | −0.697 | −0.491 | 0.316 | −0.046 | −0.018 |
Genistein-4’-O-glucoside | −0.660 | −0.295 | −0.296 | −0.296 | −0.296 | −0.713 | −0.454 | −0.660 | 0.373 | 0.500 | 0.097 | −0.615 | −0.265 | −0.391 |
Apigenin I | −0.356 | −0.353 | −0.353 | −0.353 | −0.353 | −0.481 | −0.593 | −0.356 | 0.714 | 0.917 | 0.664 | −0.306 | 0.402 | 0.183 |
Luteolin | 0.703 | 0.963 | 0.963 | 0.963 | 0.963 | 0.762 | 0.988 | 0.703 | −0.957 | −0.737 | −0.123 | 0.704 | −0.510 | 0.233 |
Naringenin | −0.514 | 0.068 | 0.068 | 0.068 | 0.069 | −0.444 | 0.105 | −0.514 | −0.363 | −0.377 | −0.629 | −0.502 | −0.924 | −0.778 |
Apigenin II | −0.571 | 0.008 | 0.008 | 0.008 | 0.008 | −0.521 | 0.007 | −0.570 | −0.244 | −0.226 | −0.519 | −0.550 | −0.853 | −0.745 |
Cirsimaritin | 0.669 | 0.974 | 0.974 | 0.974 | 0.974 | 0.695 | 0.923 | 0.669 | −0.851 | −0.535 | 0.073 | 0.688 | −0.458 | 0.313 |
Sorbifolin | 0.143 | 0.604 | 0.604 | 0.604 | 0.604 | 0.255 | 0.722 | 0.143 | −0.903 | −0.883 | −0.662 | 0.133 | −0.920 | −0.417 |
Kaempferol | 0.527 | 0.663 | 0.663 | 0.663 | 0.664 | 0.642 | 0.842 | 0.527 | −0.924 | −0.971 | −0.542 | 0.493 | −0.540 | −0.062 |
Sample | Variety | Concentration (µg/mL) | Decrease of HHV-1 Infectious Titer (Δlog) * | Decrease of HHV-1 Viral Load (Δlog’) * | |
---|---|---|---|---|---|
P. grandiflora | yellow | 62 | 0.69 | ±0.22 | 0.44 |
orange | 0.45 | ±0.25 | 0.32 | ||
red | 0.5 | ±0.14 | 0.17 | ||
purple | 0.2 | ±0.07 | 0.22 | ||
Acyclovir | n/a | 60 | >3.5 | > 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spórna-Kucab, A.; Tekieli, A.; Grzegorczyk, A.; Świątek, Ł.; Rajtar, B.; Skalicka-Woźniak, K.; Starzak, K.; Nemzer, B.; Pietrzkowski, Z.; Wybraniec, S. Metabolite Profiling Analysis and the Correlation with Biological Activity of Betalain-Rich Portulaca grandiflora Hook. Extracts. Antioxidants 2022, 11, 1654. https://doi.org/10.3390/antiox11091654
Spórna-Kucab A, Tekieli A, Grzegorczyk A, Świątek Ł, Rajtar B, Skalicka-Woźniak K, Starzak K, Nemzer B, Pietrzkowski Z, Wybraniec S. Metabolite Profiling Analysis and the Correlation with Biological Activity of Betalain-Rich Portulaca grandiflora Hook. Extracts. Antioxidants. 2022; 11(9):1654. https://doi.org/10.3390/antiox11091654
Chicago/Turabian StyleSpórna-Kucab, Aneta, Anna Tekieli, Agnieszka Grzegorczyk, Łukasz Świątek, Barbara Rajtar, Krystyna Skalicka-Woźniak, Karolina Starzak, Boris Nemzer, Zbigniew Pietrzkowski, and Sławomir Wybraniec. 2022. "Metabolite Profiling Analysis and the Correlation with Biological Activity of Betalain-Rich Portulaca grandiflora Hook. Extracts" Antioxidants 11, no. 9: 1654. https://doi.org/10.3390/antiox11091654
APA StyleSpórna-Kucab, A., Tekieli, A., Grzegorczyk, A., Świątek, Ł., Rajtar, B., Skalicka-Woźniak, K., Starzak, K., Nemzer, B., Pietrzkowski, Z., & Wybraniec, S. (2022). Metabolite Profiling Analysis and the Correlation with Biological Activity of Betalain-Rich Portulaca grandiflora Hook. Extracts. Antioxidants, 11(9), 1654. https://doi.org/10.3390/antiox11091654