Role of c-miR-21, c-miR-126, Redox Status, and Inflammatory Conditions as Potential Predictors of Vascular Damage in T2DM Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Setting
2.2. Biochemical Analysis
2.3. Circulating miRNAs Profiling and Data Analysis
2.4. Measurement of Plasma Cytokines
2.5. Measurement of AOPP and LPO Levels
2.6. Measurement of GSSG and GSH Levels
2.7. Measurement of CAT, GPx, GRd, G6PD, and SOD Activities
2.8. Statistical Analysis
3. Results
3.1. Characteristics of the Studied Subjects
3.2. Plasma miRNA Expression in Studied Samples
3.3. Oxidative Status and Markers of Inflammation in Studied Samples
3.4. Diagnostic Accuracy of Study Biomarkers for Diabetes and Vascular Complications
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Diabetes Federation. IDF Diabetes Atlas, 9th ed.; International Diabetes Federation: Brussels, Belgium, 2019; ISBN 9782930229874. [Google Scholar]
- Kaur, R.; Kaur, M.; Singh, J. Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: Molecular insights and therapeutic strategies. Cardiovasc. Diabetol. 2018, 17, 121. [Google Scholar] [CrossRef]
- Hayward, R.A.; Reaven, P.D.; Wiitala, W.L.; Bahn, G.D.; Reda, D.J.; Ge, L.; McCarren, M.; Duckworth, W.C.; Emanuele, N.V. Follow-up of Glycemic Control and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2015, 372, 2197–2206. [Google Scholar] [CrossRef]
- Zhang, H.N.; Xu, Q.Q.; Thakur, A.; Alfred, M.O.; Chakraborty, M.; Ghosh, A.; Yu, X.B. ben Endothelial dysfunction in diabetes and hypertension: Role of microRNAs and long non-coding RNAs. Life Sci. 2018, 213, 258–268. [Google Scholar] [CrossRef]
- Kaur, P.; Kotru, S.; Singh, S.; Behera, B.S.; Munshi, A. Role of miRNAs in the pathogenesis of T2DM, insulin secretion, insulin resistance, and β cell dysfunction: The story so far. J. Physiol. Biochem. 2020, 76, 485–502. [Google Scholar] [CrossRef]
- Rovira-Llopis, S.; Apostolova, N.; Bañuls, C.; Muntané, J.; Rocha, M.; Victor, V.M. Mitochondria, the NLRP3 inflammasome, and sirtuins in type 2 diabetes: New therapeutic targets. Antioxid. Redox Signal. 2018, 29, 749–791. [Google Scholar] [CrossRef]
- Kotani, K.; Tashiro, J.; Yamazaki, K.; Nakamura, Y.; Miyazaki, A.; Bujo, H.; Saito, Y.; Kanno, T.; Maekawa, M. Investigation of MDA-LDL (malondialdehyde-modified low-density lipoprotein) as a prognostic marker for coronary artery disease in patients with type 2 diabetes mellitus. Clin. Chim. Acta 2015, 450, 145–150. [Google Scholar] [CrossRef]
- Malik, A.; Morya, R.K.; Saha, S.; Singh, P.K.; Bhadada, S.K.; Rana, S.V. Oxidative stress and inflammatory markers in type 2 diabetic patients. Eur. J. Clin. Investig. 2020, 50, 2–7. [Google Scholar] [CrossRef]
- Zampetaki, A.; Kiechl, S.; Drozdov, I.; Willeit, P.; Mayr, U.; Prokopi, M.; Mayr, A.; Weger, S.; Oberhollenzer, F.; Bonora, E.; et al. Plasma MicroRNA profiling reveals loss of endothelial MiR-126 and other MicroRNAs in type 2 diabetes. Circ. Res. 2010, 107, 810–817. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, X.; Icli, B.; Feinberg, M.W. Emerging roles for microRNAs in diabetic microvascular disease: Novel targets for therapy. Endocr. Rev. 2017, 38, 145–168. [Google Scholar] [CrossRef]
- MacFarlane, L.A.; R Murphy, P. MicroRNA: Biogenesis, Function and Role in Cancer. Curr. Genom. 2010, 11, 537–561. [Google Scholar] [CrossRef] [Green Version]
- Párrizas, M.; Novials, A. Circulating microRNAs as biomarkers for metabolic disease. Best Pract. Res. Clin. Endocrinol. Metab. 2016, 30, 591–601. [Google Scholar] [CrossRef] [PubMed]
- Rusanova, I.; Diaz-Casado, M.E.; Fernández-Ortiz, M.; Aranda-Martínez, P.; Guerra-Librero, A.; García-García, F.J.; Escames, G.; Mañas, L.; Acuña-Castroviejo, D. Analysis of Plasma MicroRNAs as Predictors and Biomarkers of Aging and Frailty in Humans. Oxid. Med. Cell. Longev. 2018, 2018, 7671850. [Google Scholar] [CrossRef]
- Rusanova, I.; Fernández-Martínez, J.; Fernández-Ortiz, M.; Aranda-Martínez, P.; Escames, G.; García-García, F.J.; Mañas, L.; Acuña-Castroviejo, D. Involvement of plasma miRNAs, muscle miRNAs and mitochondrial miRNAs in the pathophysiology of frailty. Exp. Gerontol. 2019, 124, 110637. [Google Scholar] [CrossRef]
- Organization for Economic Cooperation and Development. Health at a Glance 2017, OECD Indicators; Organization for Economic Cooperation and Development: Paris, France, 2017. [Google Scholar]
- Care, D.; Suppl, S.S. 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2021. Diabetes Care 2021, 44, S15–S33. [Google Scholar]
- Witko-Sarsat, V.; Friedlander, M.; Capeillère-Blandin, C.; Nguyen-Khoa, T.; Nguyen, A.T.; Zingraff, J.; Jungers, P.; Descamps-Latscha, B. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 1996, 49, 1304–1313. [Google Scholar] [CrossRef]
- Esterbauer, H.; Cheeseman, K.H. Determination of aldehydic lipid peroxidation products: Malonaldehyde and 4-hydroxynonenal. Methods Enzymol. 1990, 186, 407–421. [Google Scholar]
- Hissin, P.J.; Hilf, R. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal. Biochem. 1976, 74, 214–226. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro assay methods. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1984. [Google Scholar]
- Jaskot, R.H.; Charlet, E.G.; Grose, E.C.; Grady, M.A.; Roycroft, J.H.; Roycroft, J.H. An Automated Analysis of Glutathione Peroxidase, S-Transferase, and Reductase Activity in Animal Tissue. J. Anal. Toxicol. 1983, 7, 86–88. [Google Scholar] [CrossRef]
- Misra, H.P.; Fridovich, I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 1972, 247, 3170–3175. [Google Scholar] [CrossRef]
- Xue, Z.; Xi, Q.; Liu, H.; Guo, X.; Zhang, J.; Zhang, Z.; Li, Y.; Yang, G.; Zhou, D.; Yang, H.; et al. miR-21 promotes NLRP3 inflammasome activation to mediate pyroptosis and endotoxic shock. Cell Death Dis. 2019, 10, 461. [Google Scholar] [CrossRef]
- Yazdanpanah, Z.; Kazemipour, N.; Kalantar, S.M.; Vahidi Mehrjardi, M.Y. Plasma miR-21 as a potential predictor in prediabetic individuals with a positive family history of type 2 diabetes mellitus. Physiol. Rep. 2022, 10, e15163. [Google Scholar] [CrossRef]
- Jiang, Q.; Lyu, X.M.; Yuan, Y.; Wang, L. Plasma miR-21 expression: An indicator for the severity of Type 2 diabetes with diabetic retinopathy. Biosci. Rep. 2017, 37, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.; Jing, N.; Shen, A.; Guo, F.; Song, Y.; Pan, M.; Ma, X.; Zhao, L.; Zhang, H.; Wu, L.; et al. MiR-21-5p in macrophage-derived extracellular vesicles affects podocyte pyroptosis in diabetic nephropathy by regulating A20. J. Endocrinol. Investig. 2021, 44, 1175–1184. [Google Scholar] [CrossRef]
- Sims, E.K.; Lakhter, A.J.; Anderson-Baucum, E.; Kono, T.; Tong, X.; Evans-Molina, C. MicroRNA 21 targets BCL2 mRNA to increase apoptosis in rat and human beta cells. Diabetologia 2017, 60, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
- Olivieri, F.; Rippo, M.R.; Procopio, A.D.; Fazioli, F. Circulating inflamma-miRs in aging and age-related diseases. Front. Genet. 2013, 4, 121. [Google Scholar] [CrossRef]
- La Sala, L.; Mrakic-Sposta, S.; Micheloni, S.; Prattichizzo, F.; Ceriello, A. Glucose-sensing microRNA-21 disrupts ROS homeostasis and impairs antioxidant responses in cellular glucose variability Cardiovascular Diabetology. Cardiovasc. Diabetol. 2018, 17, 105. [Google Scholar] [CrossRef]
- Li, J.X.; Li, Y.; Xia, T.; Rong, F.Y. miR-21 Exerts Anti-proliferative and Pro-apoptotic Effects in LPS-induced WI-38 Cells via Directly Targeting TIMP3. Cell Biochem. Biophys. 2021, 79, 781–790. [Google Scholar] [CrossRef]
- De Melo, P.; Pineros Alvarez, A.R.; Ye, X.; Blackman, A.; Alves-Filho, J.C.; Medeiros, A.I.; Rathmell, J.; Pua, H.; Serezani, C.H. Macrophage-Derived MicroRNA-21 Drives Overwhelming Glycolytic and Inflammatory Response during Sepsis via Repression of the PGE 2 /IL-10 Axis. J. Immunol. 2021, 207, 902–912. [Google Scholar] [CrossRef]
- Olivieri, F.; Spazzafumo, L.; Bonafè, M.; Recchioni, R.; Prattichizzo, F.; Marcheselli, F.; Micolucci, L.; Mensà, E.; Giuliani, A.; Santini, G.; et al. MiR-21-5p and miR-126a-3p levels in plasma and circulating angiogenic cells: Relationship with type 2 diabetes complications. Oncotarget 2015, 6, 35372. [Google Scholar] [CrossRef]
- Meng, S.; Cao, J.T.; Zhang, B.; Zhou, Q.; Shen, C.X.; Wang, C.Q. Downregulation of microRNA-126 in endothelial progenitor cells from diabetes patients, impairs their functional properties, via target gene Spred-1. J. Mol. Cell. Cardiol. 2012, 53, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Li, L.; Shang, Q.; Lv, C.F.; Wang, C.Y.; Su, B. Circulating miR-126 is a potential biomarker to predict the onset of type 2 diabetes mellitus in susceptible individuals. Biochem. Biophys. Res. Commun. 2015, 463, 60–63. [Google Scholar] [CrossRef]
- Harris, T.A.; Yamakuchi, M.; Ferlito, M.; Mendell, J.T.; Lowenstein, C.J. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc. Natl. Acad. Sci. USA 2008, 105, 1516–1521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chistiakov, D.A.; Orekhov, A.N.; Bobryshev, Y.V. The role of miR-126 in embryonic angiogenesis, adult vascular homeostasis, and vascular repair and its alterations in atherosclerotic disease. J. Mol. Cell. Cardiol. 2016, 97, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Gora, I.M.; Ciechanowska, A.; Ladyzynski, P. Nlrp3 inflammasome at the interface of inflammation, endothelial dysfunction, and type 2 diabetes. Cells 2021, 10, 314. [Google Scholar] [CrossRef] [PubMed]
- Venkat, P.; Cui, C.; Chopp, M.; Zacharek, A.; Wang, F.; Landschoot-Ward, J.; Shen, Y.; Chen, J. MiR-126 mediates brain endothelial cell exosome treatment–induced neurorestorative effects after stroke in type 2 diabetes mellitus mice. Stroke 2019, 50, 2865–2874. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Y.; Kong, Y. Exosomes derived from mesenchymal stem cells modulate miR-126 to ameliorate hyperglycemia-induced retinal inflammation via targeting HMGB1. Investig. Ophthalmol. Vis. Sci. 2019, 60, 294–303. [Google Scholar] [CrossRef]
- Liang, M.; Wang, J.; Xie, C.; Yang, Y.; Tian, J.W.; Xue, Y.M.; Hou, F.F. Increased plasma advanced oxidation protein products is an early marker of endothelial dysfunction in type 2 diabetes patients without albuminuria. J. Diabetes 2014, 6, 417–426. [Google Scholar] [CrossRef]
- Potra, A.R.; Kacso, T.P.; Gavrilas, A.M.; Rusu, C.C.; Rusu, C.C.; Rusu, C.C.; Moldovan, D.; Bondor, C.I.; Tirinescu, D.; Coman, L.A.; et al. SP457Adiponectin Is Related to Markers of Endothelial Dysfunction and Neoangiogenesis in Diabetic Patients. Nephrol. Dial. Transplant. 2018, 33, i501. [Google Scholar] [CrossRef]
- Chawla, D.; Bansal, S.; Banerjee, B.D.; Madhu, S.V.; Kalra, O.P.; Tripathi, A.K. Role of advanced glycation end product (AGE)-induced receptor (RAGE) expression in diabetic vascular complications. Microvasc. Res. 2014, 95, 1–6. [Google Scholar] [CrossRef]
- Heidari, F.; Rabizadeh, S.; Ali Mansournia, M.; Mirmiranpoor, H.; Salehi, S.S.; Akhavan, S.; Esteghamati, A.; Nakhjavani, M. Inflammatory, oxidative stress and anti-oxidative markers in patients with endometrial carcinoma and diabetes. Cytokine 2019, 120, 186–190. [Google Scholar] [CrossRef]
- Li, X.; Zhang, T.; Geng, J.; Wu, Z.; Xu, L.; Liu, J.; Tian, J.; Zhou, Z.; Nie, J.; Bai, X. Advanced oxidation protein products promote lipotoxicity and tubulointerstitial fibrosis via CD36/β-Catenin pathway in diabetic nephropathy. Antioxid. Redox Signal. 2019, 31, 521–538. [Google Scholar] [CrossRef]
- Gunawardena, H.P.; Silva, R.; Sivakanesan, R.; Ranasinghe, P.; Katulanda, P. Poor Glycaemic Control Is Associated with Increased Lipid Peroxidation and Glutathione Peroxidase Activity in Type 2 Diabetes Patients. Oxid. Med. Cell. Longev. 2019, 2019, 9471697. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Osorio, A.S.; Picazo, A.; González-Reyes, S.; Barrera-Oviedo, D.; Rodríguez-Arellano, M.E.; Pedraza-Chaverri, J. Nrf2 and Redox Status in Prediabetic and Diabetic Patients. Int. J. Mol. Sci. 2014, 15, 20290–20305. [Google Scholar] [CrossRef]
- Huang, M.; Que, Y.; Shen, X. Correlation of the plasma levels of soluble RAGE and endogenous secretory RAGE with oxidative stress in prediabetic patients. J. Diabetes Complicat. 2015, 29, 422–426. [Google Scholar] [CrossRef]
- Strom, A.; Kaul, K.; Brüggemann, J.; Ziegler, I.; Rokitta, I.; Püttgen, S.; Szendroedi, J.; Müssig, K.; Roden, M.; Ziegler, D. Lower serum extracellular superoxide dismutase levels are associated with polyneuropathy in recent-onset diabetes. Exp. Mol. Med. 2017, 49, e394. [Google Scholar] [CrossRef]
- Muniroh, M.; Nindita, Y.; Karlowee, V.; Purwoko, Y.; Rahmah, N.D.; Widyowati, R.; Suryono, S. Effect of garcinia mangostana pericarp extract on glial nf-κb levels and expression of serum inflammation markers in an obese-type 2 diabetes mellitus animal model. Biomed. Rep. 2021, 15, 63. [Google Scholar] [CrossRef]
- Gaetani, G.F.; Ferraris, A.M.; Rolfo, M.; Mangerini, R.; Arena, S.; Kirkman, H.N. Predominant Role of Catalase in the Disposal of Hydrogen Peroxide Within Human Erythrocytes. Blood 1996, 87, 1595–1599. [Google Scholar] [CrossRef]
- Bhatia, S.; Shukla, R.; Madhu, S.V.; Gambhir, J.K.; Prabhu, K.M. Antioxidant status, lipid peroxidation and nitric oxide end products in patients of type 2 diabetes mellitus with nephropathy. Clin. Biochem. 2003, 36, 557–562. [Google Scholar] [CrossRef]
- Hadwan, M.H.; Altuhafi, A.; Altun, M. The Correlation between Selenium-Dependent Glutathione Peroxidase Activity and Oxidant/Antioxidant Balance in Sera of Diabetic Patients with Nephropathy. Rep. Biochem. Mol. Biol. 2021, 10, 164. [Google Scholar]
- Bigagli, E.; Lodovici, M. Circulating Oxidative Stress Biomarkers in Clinical Studies on Type 2 Diabetes and Its Complications. Oxid. Med. Cell. Longev. 2019, 2019, 5953685. [Google Scholar] [CrossRef]
- Gawlik, K.; Naskalski, J.W.; Fedak, D.; Pawlica-Gosiewska, D.; Grudzien, U.; Dumnicka, P.; Mabecki, M.T.; Solnica, B. Markers of Antioxidant Defense in Patients with Type 2 Diabetes. Oxid. Med. Cell. Longev. 2016, 2016, 2352361. [Google Scholar] [CrossRef] [PubMed]
- Picu, A.; Petcu, L.; Stefan, S.; Mitu, M.; Lixandru, D.; Ionescu-Tîrgoviste, C.; Pîrcalabioru, G.G.; Ciulu-Costinescu, F.; Bubulica, M.V.; Chifiriuc, M.C. Markers of oxidative stress and antioxidant defense in romanian patients with type 2 diabetes mellitus and obesity. Molecules 2017, 22, 714. [Google Scholar] [CrossRef] [PubMed]
- Agarkov, A.A.; Popova, T.N.; Verevkin, A.N.; Matasova, L.V. Activity of the glutathione antioxidant system and NADPH-generating enzymes in blood serum of rats with type 2 diabetes mellitus after administration of melatonin-correcting drugs. Bull. Exp. Biol. Med. 2014, 157, 198–201. [Google Scholar] [CrossRef]
- Seo, J.A.; Jung, S.H.; Jeon, H.Y.; Lee, Y.J.; Lee, J.Y.; Han, E.T.; Park, W.S.; Hong, S.H.; Kim, Y.M.; Ha, K.S. Activity-expression profiling of glucose-6-phosphate dehydrogenase in tissues of normal and diabetic mice. Biochem. Biophys. Res. Commun. 2020, 524, 750–755. [Google Scholar] [CrossRef]
- Lai, Y.K.; Lai, N.M.; Lee, S.W.H. Glucose-6-phosphate dehydrogenase deficiency and risk of diabetes: A systematic review and meta-analysis. Ann. Hematol. 2017, 96, 839–845. [Google Scholar] [CrossRef] [PubMed]
- Darwish, N.M.; Elnahas, Y.M.; AlQahtany, F.S. Diabetes induced renal complications by leukocyte activation of nuclear factor κ-B and its regulated genes expression. Saudi J. Biol. Sci. 2021, 28, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Rehman, K.; Akash, M.S.H.; Liaqat, A.; Kamal, S.; Qadir, M.I.; Rasul, A. Role of interleukin-6 in development of insulin resistance and type 2 diabetes mellitus. Crit. Rev. Eukaryot. Gene Expr. 2017, 27, 229–236. [Google Scholar] [CrossRef]
- Wang, Y.; Zhai, W.L.; Yang, Y.W. Association between NDRG2/IL-6/STAT3 signaling pathway and diabetic retinopathy in rats. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 3476–3484. [Google Scholar]
- Shinouchi, R.; Shibata, K.; Hashimoto, T.; Jono, S.; Hasumi, K.; Nobe, K. SMTP-44D improves diabetic neuropathy symptoms in mice through its antioxidant and anti-inflammatory activities. Pharmacol. Res. Perspect. 2020, 8, e00648. [Google Scholar] [CrossRef]
Parameters | CG (n = 30) | T2DM NC (n = 26) | T2DM + C (n = 26) | p-Value |
---|---|---|---|---|
Age (years) | 49.64 ± 1.78 | 53.54 ± 2.00 | 55.31 ± 1.91 | |
Gender (women/men) | 14/16 | 7/19 | 14/12 | |
Weight (kg) | 77.61 ± 3.57 | 87.50 ± 3.77 | 78.12 ± 3.19 | |
BMI (kg/m2) | 27.90 ± 0.77 | 30.57 ± 1.25 | 29.49 ± 1.28 | |
Waist circumference (cm) | 94.5 ± 3.03 | 104.96 ± 2.78 | 103.34 ± 2.21 | |
Systolic pressure | 121.44 ± 2.9 | 132.69 ± 3.9 | 139.65 ± 5.1 b | bp < 0.01 |
Diastolic pressure | 78.1 ± 1.4 | 85.3 ± 2.1 | 84.8 ± 2.7 | |
Years of diabetes | - | 7.85 ± 0.76 | 11.69 ± 1.5 | |
HbA1c (%) | 5.28 ± 0.09 | 7.68 ± 0.37 a | 8.49 ± 0.44 b | a,bp < 0.001 |
Glucose (mg/dL) | 92.95 ± 2.02 | 154.87 ± 10.01 a | 197.47 ± 17.10 b,c | a,bp < 0.001 c p < 0.05 |
Insulin (mU/L) | 9.22 ± 0.87 | 12.77 ± 1.61 | 10.77 ± 1.37 | |
HOMA-IR Index | 1.71 ± 0.20 | 4.09 ± 0.66 a | 5.16 ± 0.84 b | ap < 0.05 b p < 0.001 |
Total cholesterol (mg/dL) | 204.75 ± 6.55 | 194.12 ± 7.24 | 197.83 ± 9.30 | |
TG (mg/dL) | 144.52 ± 14.83 | 165.08 ± 15.62 | 167.88 ± 15.7 |
Drug Therapy | Retinopathy (n = 4) | Nephropathy (n = 3) | Neuropathy (n = 14) | CVD (n = 5) |
---|---|---|---|---|
15.4% | 11.5% | 53.8% | 19.2% | |
Glucose-lowering medication: Antihyperglycemic agents * | 100.0% | 100.0% | 92.8% | 60.0% |
Insulin therapy | 50.0% | 0.0% | 57.1% | 80.0% |
Antihypertensive drugs | 50.0% | 66.6% | 50.0% | 40.0% |
Cholesterol-lowering therapy | 25.0% | 0.0% | 21.4% | 0.0% |
Anticonvulsants | 0.0% | 0.0% | 28.6% | 20.0% |
Glucose | HbA1c | HOMA-IR | TG | Urea | IL-6 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | r | p | r | p | |
GSSG/GSH | 0.240 | 0.054 | 0.295 | 0.244 | 0.244 | 0.056 | 0.338 | 0.006 | 0.142 | 0.258 | 0.253 | 0.053 |
GRd | −0.348 | 0.008 | −0.358 | 0.007 | −0.227 | 0.102 | −0.216 | 0.110 | −0.024 | 0.858 | −0.233 | 0.100 |
Catalase | 0.200 | 0.115 | 0.261 | 0.039 | 0.262 | 0.047 | 0.207 | 0.104 | −0.048 | 0.707 | 0.074 | 0.584 |
SOD | −0.283 | 0.024 | −0.396 | −0.001 | −0.163 | 0.212 | −0.289 | 0.021 | −0.173 | 0.175 | −0.189 | 0.158 |
G6PD | −0.219 | 0.102 | −0.408 | 0.002 | 0.029 | 0.835 | −0.270 | 0.042 | −0.261 | 0.050 | −0.182 | 0.196 |
AOPP | 0.283 | 0.012 | 0.236 | 0.038 | 0.226 | 0.053 | 0.506 | 0.000 | 0.204 | 0.073 | 0.093 | 0.452 |
LPO | 0.174 | 0.162 | 0.176 | 0.157 | 0.126 | 0.333 | 0.031 | 0.805 | 0.110 | 0.378 | 0.338 | 0.009 |
miRNA | Oxidative Stress Parameters | r-Value | p-Value |
---|---|---|---|
All participants | |||
miR-21 | SOD | −0.325 | 0.001 |
GPx | 0.443 | 0.001 | |
AOPP | 0.342 | 0.019 | |
miR-126 | SOD | 0.282 | 0.030 |
CAT | −0.359 | 0.007 | |
LPO | −0.287 | 0.027 | |
All participants adjusted for sex, age, and BMI | |||
miR-21 | GPx | 0.558 | <0.0001 |
miR-126 | IL-6 | −0.480 | 0.004 |
Diabetic patients | |||
miR-21 | GPx | 0.412 | 0.014 |
miR-126 | GPx | 0.360 | 0.039 |
GSSG/GSH | 0.320 | 0.041 | |
Diabetic patients adjusted for sex, age, and BMI | |||
miR-21 | GPx | 0.419 | 0.047 |
IL-10 | −0.453 | 0.020 | |
miR-126 | IL-6 | −0.466 | 0.016 |
GSSG/GSH | 0.493 | 0.017 |
AUC | 95% Confidence Interval | p-Value | ||
---|---|---|---|---|
Min | Max | |||
HbA1c | 0.957 | 0.902 | 1.000 | 0.000 |
HOMA IR | 0.769 | 0.626 | 0.911 | 0.027 |
Urea | 0.587 | 0.462 | 0.712 | 0.194 |
miR-21 | 0.877 | 0.772 | 0.983 | 0.000 |
miR-126 | 0.245 | 0.078 | 0.411 | 0.034 |
GSSG/GSH | 0.721 | 0.488 | 0.953 | 0.069 |
AOPP | 0.792 | 0.642 | 0.941 | 0.003 |
LPO | 0.775 | 0.561 | 0.990 | 0.023 |
Catalase | 0.913 | 0.830 | 1.000 | 0.000 |
GRd | 0.249 | 0.104 | 0.394 | 0.004 |
G6PD | 0.277 | 0.147 | 0.408 | 0.010 |
SOD | 0.125 | 0.036 | 0.214 | 0.000 |
GPx | 0.796 | 0.549 | 0.897 | 0.023 |
IL-6 | 0.778 | 0.470 | 0.811 | 0.150 |
IL-10 | 0.487 | 0.209 | 0.766 | 0.917 |
IL-18 | 0.597 | 0.353 | 0.840 | 0.426 |
TNF-A | 0.557 | 0.303 | 0.811 | 0.640 |
AUC | 95% Confidence Interval | p-Value | ||
---|---|---|---|---|
Min | Max | |||
HbA1c | 0.633 | 0.390 | 0.875 | 0.281 |
Urea | 0.578 | 0.374 | 0.853 | 0.332 |
miR-21 | 0.520 | 0.355 | 0.685 | 0.810 |
miR-126 | 0.325 | 0.133 | 0.517 | 0.101 |
Catalase | 0.371 | 0.131 | 0.612 | 0.295 |
IL-6 | 0.708 | 0.490 | 0.927 | 0.040 |
IL-18 | 0.720 | 0.507 | 0.932 | 0.074 |
AOPP | 0.511 | 0.261 | 0.762 | 0.926 |
GPx | 0.796 | 0.549 | 0.897 | 0.023 |
G6PD | 0.402 | 0.200 | 0.604 | 0.357 |
SOD | 0.650 | 0.443 | 0.856 | 0.161 |
AUC, (95%) | Exp (B) = OR | Chi 2 | p | |
---|---|---|---|---|
Glucose, years since Dx, HbA1c | 0.860 (0.782–0.937) | 0.464 | 33.192 | 0.001 |
Glucose, years since Dx, urea | 0.888 (0.820–0.956) | 0.464 | 38.394 | 0.001 |
miR-126, IL-6 | 0.793 (0.673–0.913) | 0.579 | 18.880 | 0.041 |
miR-126, years since Dx | 0.868 (0.785–0.950) | 0.523 | 30.655 | 0.012 |
miR-21, IL-6 | 0.810 (0.701–0.920) | 0.600 | 17.879 | 0.048 |
miR-21, IL-6, AOPP | 0.801 (0.687–0.915) | 0.600 | 19.522 | 0.048 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Armas, G.C.; Yessenbekova, A.; González-Castañeda, R.E.; Arellano-Arteaga, K.J.; Guerra-Librero, A.; Ablaikhanova, N.; Florido, J.; Escames, G.; Acuña-Castroviejo, D.; Rusanova, I. Role of c-miR-21, c-miR-126, Redox Status, and Inflammatory Conditions as Potential Predictors of Vascular Damage in T2DM Patients. Antioxidants 2022, 11, 1675. https://doi.org/10.3390/antiox11091675
López-Armas GC, Yessenbekova A, González-Castañeda RE, Arellano-Arteaga KJ, Guerra-Librero A, Ablaikhanova N, Florido J, Escames G, Acuña-Castroviejo D, Rusanova I. Role of c-miR-21, c-miR-126, Redox Status, and Inflammatory Conditions as Potential Predictors of Vascular Damage in T2DM Patients. Antioxidants. 2022; 11(9):1675. https://doi.org/10.3390/antiox11091675
Chicago/Turabian StyleLópez-Armas, Gabriela C., Arailym Yessenbekova, Rocío E. González-Castañeda, Kevin J. Arellano-Arteaga, Ana Guerra-Librero, Nurzhanyat Ablaikhanova, Javier Florido, Germaine Escames, Darío Acuña-Castroviejo, and Iryna Rusanova. 2022. "Role of c-miR-21, c-miR-126, Redox Status, and Inflammatory Conditions as Potential Predictors of Vascular Damage in T2DM Patients" Antioxidants 11, no. 9: 1675. https://doi.org/10.3390/antiox11091675
APA StyleLópez-Armas, G. C., Yessenbekova, A., González-Castañeda, R. E., Arellano-Arteaga, K. J., Guerra-Librero, A., Ablaikhanova, N., Florido, J., Escames, G., Acuña-Castroviejo, D., & Rusanova, I. (2022). Role of c-miR-21, c-miR-126, Redox Status, and Inflammatory Conditions as Potential Predictors of Vascular Damage in T2DM Patients. Antioxidants, 11(9), 1675. https://doi.org/10.3390/antiox11091675