Placental OLAH Levels Are Altered in Fetal Growth Restriction, Preeclampsia and Models of Placental Dysfunction
Abstract
:1. Introduction
2. Materials and Methods
2.1. FOX Study
2.2. Placental Tissue Collection
2.3. Collection and Culture of Placental Explants
2.4. Primary Cytotrophoblast Isolation and Hypoxia Treatment
2.5. Silencing OLAH in Primary Cytotrophoblast Cells
2.6. MTS Cell Viability Assay
2.7. Real Time Polymerase Chain Reaction (RT-PCR)
2.8. Western Blot Analysis
2.9. Enzyme Linked Immunosorbent Assay (ELISA)
2.10. Statistical Analysis
3. Results
3.1. Circulating OLAH Transcripts Are Not Significantly Altered between Cases of Normotensive Fetal Growth Restriction, Compared to Cases of Preeclampsia with Growth Restriction
3.2. OLAH Expression across Gestation
3.3. OLAH Levels Are Significantly Altered in Placental Tissue from Cases of Preterm Preeclampsia and Fetal Growth Restriction
3.4. OLAH Expression Is Upregulated in Placental Explant Tissue Cultured under Hypoxia
3.5. Silencing OLAH in Primary Cytotrophoblast Cells Does Not Alter Cell Survival
3.6. Silencing Cytotrophoblast OLAH Does Not Alter sFLT1 Secretion
3.7. Effect of Silencing Cytotrophoblast OLAH on Expression of Apoptosis, Growth, Inflammation, and Oxidative Stress Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- AIHW. Stillbirths and Neonatal Deaths in Australia 2017–2018; AIHW: Canberra, Australia, 2021. [Google Scholar]
- Brown, M.A.; Magee, L.A.; Kenny, L.C.; Karumanchi, S.A.; McCarthy, F.P.; Saito, S.; Hall, D.R.; Warren, C.E.; Adoyi, G.; Ishaku, S. The hypertensive disorders of pregnancy: ISSHP classification, diagnosis & management recommendations for international practice. Pregnancy Hypertens. 2018, 13, 291–310. [Google Scholar] [CrossRef] [PubMed]
- Brosens, I.; Pijnenborg, R.; Vercruysse, L.; Romero, R. The “Great Obstetrical Syndromes” are associated with disorders of deep placentation. Am. J. Obstet. Gynecol. 2011, 204, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Hannan, N.J.; Stock, O.; Spencer, R.; Whitehead, C.; David, A.L.; Groom, K.; Petersen, S.; Henry, A.; Said, J.M.; Seeho, S.; et al. Circulating mRNAs are differentially expressed in pregnancies with severe placental insufficiency and at high risk of stillbirth. BMC Med. 2020, 18, 145. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, C.; Teh, W.T.; Walker, S.P.; Leung, C.; Mendis, S.; Larmour, L.; Tong, S. Quantifying circulating hypoxia-induced RNA transcripts in maternal blood to determine in utero fetal hypoxic status. BMC Med. 2013, 11, 256. [Google Scholar] [CrossRef]
- Whitehead, C.L.; McNamara, H.; Walker, S.P.; Alexiadis, M.; Fuller, P.J.; Vickers, D.K.; Hannan, N.J.; Hastie, R.; Tuohey, L.; Kaitu’u-Lino, T.u.J.; et al. Original Research: Identifying late-onset fetal growth restriction by measuring circulating placental RNA in the maternal blood at 28 weeks’ gestation. Am. J. Obstet. Gynecol. 2016, 214, 521.e1–521.e8. [Google Scholar] [CrossRef]
- Ritchie, M.K.; Johnson, L.C.; Clodfelter, J.E.; Pemble, C.W.t.; Fulp, B.E.; Furdui, C.M.; Kridel, S.J.; Lowther, W.T. Crystal Structure and Substrate Specificity of Human Thioesterase 2: Insights into the molecular basis for the modulation of fatty acid synthase. J. Biol. Chem. 2016, 291, 3520–3530. [Google Scholar] [CrossRef]
- Smith, S.; Pasco, D.; Pawlak, J.; Thompson, B.J.; Stampfer, M.; Nandi, S. Thioesterase II, a New Marker Enzyme for Human Cells of Breast Epithelial Origin. JNCI J. Natl. Cancer Inst. 1984, 73, 323–329. [Google Scholar] [CrossRef]
- Nakamura, N.; Shimaoka, Y.; Tougan, T.; Onda, H.; Okuzaki, D.; Zhao, H.; Fujimori, A.; Yabuta, N.; Nagamori, I.; Tanigawa, A.; et al. Isolation and Expression Profiling of Genes Upregulated in Bone Marrow-Derived Mononuclear Cells of Rheumatoid Arthritis Patients. DNA Res. 2006, 13, 169–183. [Google Scholar] [CrossRef]
- Armstrong, D.L.; McGowen, M.R.; Weckle, A.; Pantham, P.; Caravas, J.; Agnew, D.; Benirschke, K.; Savage-Rumbaugh, S.; Nevo, E.; Kim, C.J.; et al. The core transcriptome of mammalian placentas and the divergence of expression with placental shape. Placenta 2017, 57, 71–78. [Google Scholar] [CrossRef]
- Roberts, J.M.; August, P.A.; Bakris, G.; Barton, J.R.; Bernstein, I.M.; Druzin, M.; Gaiser, R.R.; Granger, J.R.; Jeyabalan, A.; Johnson, D.D.; et al. Hypertension in Pregnancy: Executive Summary. Obstet. Gynecol. 2013, 122, 1122–1131. [Google Scholar] [CrossRef]
- Dobbins, T.A.; Sullivan, E.A.; Roberts, C.L.; Simpson, J.M. Australian national birthweight percentiles by sex and gestational age, 1998–2007. Med. J. Aust. 2012, 197, 291–294. [Google Scholar] [CrossRef] [PubMed]
- Kaitu’u-Lino, T.u.J.; Tong, S.; Beard, S.; Hastie, R.; Tuohey, L.; Brownfoot, F.; Onda, K.; Hannan, N.J. Characterization of protocols for primary trophoblast purification, optimized for functional investigation of sFlt-1 and soluble endoglin. Pregnancy Hypertens. 2014, 4, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Maynard, S.E.; Min, J.-Y.; Merchan, J.; Lim, K.-H.; Li, J.; Mondal, S.; Libermann, T.A.; Morgan, J.P.; Sellke, F.W.; Stillman, I.E.; et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J. Clin. Investig. 2003, 111, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Kaitu’u-Lino, T.U.J.; MacDonald, T.M.; Cannon, P.; Nguyen, T.-V.; Hiscock, R.J.; Haan, N.; Myers, J.E.; Hastie, R.; Dane, K.M.; Middleton, A.L.; et al. Circulating SPINT1 is a biomarker of pregnancies with poor placental function and fetal growth restriction. Nat. Commun. 2020, 11, 2411. [Google Scholar] [CrossRef]
- Whitehead, C.L.; Tong, S. Measuring hypoxia-induced RNA in maternal blood: A new way to identify critically hypoxic fetuses in utero? Expert Rev. Mol. Diagn. 2014, 14, 509–511. [Google Scholar] [CrossRef]
- Labarthe, F.; Gélinas, R.; Des Rosiers, C. Medium-chain Fatty Acids as Metabolic Therapy in Cardiac Disease. Cardiovasc. Drugs Ther. 2008, 22, 97–106. [Google Scholar] [CrossRef]
- Mikheev, A.M.; Nabekura, T.; Kaddoumi, A.; Bammler, T.K.; Govindarajan, R.; Hebert, M.F.; Unadkat, J.D. Profiling gene expression in human placentae of different gestational ages: An OPRU Network and UW SCOR Study. Reprod. Sci. 2008, 15, 866–877. [Google Scholar] [CrossRef]
- Wiznitzer, A.; Mayer, A.; Novack, V.; Sheiner, E.; Gilutz, H.; Malhotra, A.; Novack, L. Association of lipid levels during gestation with preeclampsia and gestational diabetes mellitus: A population-based study. Am. J. Obstet. Gynecol. 2009, 201, 482.e1–482.e8. [Google Scholar] [CrossRef]
- Alvino, G.; Cozzi, V.; Radaelli, T.; Ortega, H.; Herrera, E.; Cetin, I. Maternal and Fetal Fatty Acid Profile in Normal and Intrauterine Growth Restriction Pregnancies With and Without Preeclampsia. Pediatric Res. 2008, 64, 615–620. [Google Scholar] [CrossRef]
- Shekhawat, P.; Bennett, M.J.; Sadovsky, Y.; Nelson, D.M.; Rakheja, D.; Strauss, A.W. Human placenta metabolizes fatty acids: Implications for fetal fatty acid oxidation disorders and maternal liver diseases. Am. J. Physiol.-Endocrinol. Metab. 2003, 284, E1098–E1105. [Google Scholar] [CrossRef] [Green Version]
- Kolahi, K.S.; Valent, A.M.; Thornburg, K.L. Real-time microscopic assessment of fatty acid uptake kinetics in the human term placenta. Placenta 2018, 72–73, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bobiński, R.; Mikulska, M. The ins and outs of maternal-fetal fatty acid metabolism. Acta Biochim. Pol. 2015, 62, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Bobiński, R.; Mikulska, M.; Mojska, H.; Simon, M. Comparison of the fatty acid composition of maternal blood and cord blood of mothers who delivered healthy full-term babies, preterm babies, and full-term small for gestational age infants. J. Matern.-Fetal Neonatal Med. 2013, 26, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Gormley, M.J.; Hunkapiller, N.M.; Kapidzic, M.; Stolyarov, Y.; Feng, V.; Nishida, M.; Drake, P.M.; Bianco, K.; Wang, F.; et al. Reversal of gene dysregulation in cultured cytotrophoblasts reveals possible causes of preeclampsia. J. Clin. Investig. 2013, 123, 2862–2872. [Google Scholar] [CrossRef]
- Lorentzen, B.; Drevon, C.A.; Endresen, M.J.; Henriksen, T. Fatty acid pattern of esterified and free fatty acids in sera of women with normal and pre-eclamptic pregnancy. BJOG Int. J. Obstet. Gynaecol. 1995, 102, 530–537. [Google Scholar] [CrossRef]
- Enquobahrie, D.A.; Williams, M.A.; Butler, C.L.; Frederick, I.O.; Miller, R.S.; Luthy, D.A. Maternal plasma lipid concentrations in early pregnancy and risk of preeclampsia. Am. J. Hypertens. 2004, 17, 574–581. [Google Scholar] [CrossRef]
- Gallos, I.; Sivakumar, K.; Kilby, M.; Coomarasamy, A.; Thangaratinam, S.; Vatish, M. Pre-eclampsia is associated with, and preceded by, hypertriglyceridaemia: A meta-analysis. BJOG Int. J. Obstet. Gynaecol. 2013, 120, 1321–1332. [Google Scholar] [CrossRef]
- Korkes, H.A.; Sass, N.; Moron, A.F.; Câmara, N.O.S.; Bonetti, T.; Cerdeira, A.S.; Da Silva, I.D.C.G.; De Oliveira, L. Lipidomic Assessment of Plasma and Placenta of Women with Early-Onset Preeclampsia. PLoS ONE 2014, 9, e110747. [Google Scholar] [CrossRef]
- Brown, S.H.J.; Eather, S.R.; Freeman, D.J.; Meyer, B.J.; Mitchell, T.W. A Lipidomic Analysis of Placenta in Preeclampsia: Evidence for Lipid Storage. PLoS ONE 2016, 11, e0163972. [Google Scholar] [CrossRef]
- Jebbink, J.; Keijser, R.; Veenboer, G.; van der Post, J.; Ris-Stalpers, C.; Afink, G. Expression of placental FLT1 transcript variants relates to both gestational hypertensive disease and fetal growth. Hypertension 2011, 58, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Palmer, K.R.; Kaitu’u-Lino, T.J.; Hastie, R.; Hannan, N.J.; Ye, L.; Binder, N.; Cannon, P.; Tuohey, L.; Johns, T.G.; Shub, A.; et al. Placental-Specific sFLT-1 e15a Protein Is Increased in Preeclampsia, Antagonizes Vascular Endothelial Growth Factor Signaling, and Has Antiangiogenic Activity. Hypertension 2015, 66, 1251–1259. [Google Scholar] [CrossRef] [PubMed]
- Kale, J.; Osterlund, E.J.; Andrews, D.W. BCL-2 family proteins: Changing partners in the dance towards death. Cell Death Differ. 2018, 25, 65–80. [Google Scholar] [CrossRef] [PubMed]
- Sibley, C.P.; Coan, P.M.; Ferguson-Smith, A.C.; Dean, W.; Hughes, J.; Smith, P.; Reik, W.; Burton, G.J.; Fowden, A.L.; Constância, M. Placental-specific insulin-like growth factor 2 (Igf2) regulates the diffusional exchange characteristics of the mouse placenta. Proc. Natl. Acad. Sci. USA 2004, 101, 8204–8208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Alwis, N.; Beard, S.; Binder, N.K.; Pritchard, N.; Kaitu’u-Lino, T.J.; Walker, S.P.; Stock, O.; Groom, K.; Petersen, S.; Henry, A.; et al. Placental OLAH Levels Are Altered in Fetal Growth Restriction, Preeclampsia and Models of Placental Dysfunction. Antioxidants 2022, 11, 1677. https://doi.org/10.3390/antiox11091677
de Alwis N, Beard S, Binder NK, Pritchard N, Kaitu’u-Lino TJ, Walker SP, Stock O, Groom K, Petersen S, Henry A, et al. Placental OLAH Levels Are Altered in Fetal Growth Restriction, Preeclampsia and Models of Placental Dysfunction. Antioxidants. 2022; 11(9):1677. https://doi.org/10.3390/antiox11091677
Chicago/Turabian Stylede Alwis, Natasha, Sally Beard, Natalie K. Binder, Natasha Pritchard, Tu’uhevaha J. Kaitu’u-Lino, Susan P. Walker, Owen Stock, Katie Groom, Scott Petersen, Amanda Henry, and et al. 2022. "Placental OLAH Levels Are Altered in Fetal Growth Restriction, Preeclampsia and Models of Placental Dysfunction" Antioxidants 11, no. 9: 1677. https://doi.org/10.3390/antiox11091677
APA Stylede Alwis, N., Beard, S., Binder, N. K., Pritchard, N., Kaitu’u-Lino, T. J., Walker, S. P., Stock, O., Groom, K., Petersen, S., Henry, A., Said, J. M., Seeho, S., Kane, S. C., Tong, S., Hui, L., & Hannan, N. J. (2022). Placental OLAH Levels Are Altered in Fetal Growth Restriction, Preeclampsia and Models of Placental Dysfunction. Antioxidants, 11(9), 1677. https://doi.org/10.3390/antiox11091677