Genetic Variation in Antioxidant Response Modulates the Level of Oxidative Stress in Youth with Type 1 Diabetes and Poor Glycemic Control
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bebu, I.; Schade, D.; Braffett, B.; Kosiborod, M.; Lopes-Virella, M.; Soliman, E.Z.; Herman, W.H.; Bluemke, D.A.; Wallia, A.; DCCT/EDIC Research Group; et al. Risk Factors for First and Subsequent CVD Events in Type 1 Diabetes: The DCCT/EDIC Study. Diabetes Care 2020, 43, 867–874. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.G.; Anderson, S.J.; Costacou, T.; Sekikawa, A.; Orchard, T. Hemoglobin A1c Level and Cardiovascular Disease Incidence in Persons with Type 1 Diabetes: An Application of Joint Modeling of Longitudinal and Time-to-Event Data in the Pittsburgh Epidemiology of Diabetes Complications Study. Am. J. Epidemiol. 2018, 187, 1520–1529. [Google Scholar] [CrossRef] [PubMed]
- Vistisen, D.; Andersen, G.S.; Hansen, C.S.; Hulman, A.; Henriksen, J.E.; Bech-Nielsen, H.; Jørgensen, M.E. Prediction of First Cardiovascular Disease Event in Type 1 Diabetes Mellitus: The Steno Type 1 Risk Engine. Circulation 2016, 133, 1058–1066. [Google Scholar] [CrossRef]
- Rawshani, A.; Rawshani, A.; Sattar, N.; Franzén, S.; McGuire, D.K.; Eliasson, B.; Svensson, A.-M.; Zethelius, B.; Miftaraj, M.; Rosengren, A.; et al. Range of Risk Factor Levels, Control, Mortality, and Cardiovascular Outcomes in Type 1 Diabetes Mellitus. Circulation 2017, 135, 1522–1531. [Google Scholar] [CrossRef]
- Gimeno Orna, J.A.; Ortez Toro, J.J.; Peteiro Miranda, C.M. Evaluation and management of residual cardiovascular risk in patients with diabetes. Endocrinol. Diabetes Nutr. 2020, 67, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Negi, C.K.; Jena, G. Nrf2, a novel molecular target to reduce type 1 diabetes associated secondary complications: The basic considerations. Eur. J. Pharmacol. 2019, 843, 12–26. [Google Scholar] [CrossRef] [PubMed]
- Morandi, A.; Corradi, M.; Orsi, S.; Piona, C.; Zusi, C.; Costantini, S.; Marigliano, M.; Maffeis, C. Oxidative stress in youth with type 1 diabetes: Not only a matter of gender, age, and glycemic control. Diabetes Res. Clin. Pract. 2021, 179, 109007. [Google Scholar] [CrossRef] [PubMed]
- Robledinos-Antón, N.; Fernández-Ginés, R.; Manda, G.; Cuadrado, A. Activators and Inhibitors of NRF2: A Review of Their Potential for Clinical Development. Oxid. Med. Cell Longevivity 2019, 2019, 9372182. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zheng, Q.; Chen, R.; Dai, X.; Zhu, Y.; Ma, L. Association of NFE2L2 Gene Polymorphisms with Risk and Clinical Characteristics of Acute Type A Aortic Dissection in Han Chinese Population. Oxid. Med. Cell Longevivity 2021, 2021, 5173190. [Google Scholar] [CrossRef] [PubMed]
- Marczak, E.D.; Marzec, J.; Zeldin, D.C.; Kleeberger, S.R.; Brown, N.J.; Pretorius, M.; Lee, C.R. Polymorphisms in the transcription factor NRF2 and forearm vasodilator responses in humans. Pharm. Genom. 2012, 22, 620–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Sun, J.; Chang, X.; Wang, J.; Luo, M.; Wintergerst, K.A.; Miao, L.; Cai, L. Genetic variants of nuclear factor erythroid-derived 2-like 2 associated with the complications in Han descents with type 2 diabetes mellitus of Northeast China. J. Cell Mol. Med. 2016, 20, 2078–2088. [Google Scholar] [CrossRef] [PubMed]
- Gómez-García, E.F.; Cortés-Sanabria, L.; Cueto-Manzano, A.M.; Vidal-Martínez, M.A.; Medina-Zavala, R.S.; López-Leal, J.; Rentería-Padilla, J.; Mendoza-Carrera, F. Association of Variants of the NFE2L2 Gene with Metabolic and Kidney Function Parameters in Patients with Diabetes and/or Hypertension. Genet. Test. Mol. Biomark. 2022. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Adam, M.; Imboden, M.; Schaffner, E.; Boes, E.; Kronenberg, F.; Pons, M.; Bettschart, R.; Barthelemy, J.-C.; Schindler, C.; Probst-Hensch, N. The adverse impact of obesity on heart rate variability is modified by a NFE2L2 gene variant: The SAPALDIA cohort. Int. J. Cardiol. 2017, 228, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Siedlinski, M.; Postma, D.S.; Boer, J.; van der Steege, G.; Schouten, J.P.; Smit, H.A.; Boezen, H.M. Level and course of FEV1 in relation to polymorphisms in NFE2L2 and KEAP1 in the general population. Respir Res. 2009, 10, 73. [Google Scholar] [CrossRef] [PubMed]
- Marzec, J.M.; Christie, J.D.; Reddy, S.P.; Jedlicka, A.E.; Vuong, H.; Lanken, P.N.; Aplenc, R.; Yamamoto, T.; Yamamoto, M.; Cho, H.Y.; et al. Functional polymorphisms in the transcription factor NRF2 in humans increase the risk of acute lung injury. FASEB J. 2007, 21, 2237–2246. [Google Scholar] [CrossRef]
- Mortensen, H.B.; Hougaard, P.; Swift, P.; Hansen, L.; Holl, R.W.; Hoey, H.; Bjoerndalen, H.; de Beaufort, C.; Chiarelli, F.; Danne, T.; et al. New Definition for the Partial Remission Period in Children and Adolescents with Type 1 Diabetes. Diabetes Care 2009, 32, 1384–1390. [Google Scholar] [CrossRef]
- Onis, M.D.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef] [PubMed]
HbA1c < 8% | HbA1c ≥ 8% | P for HbA1c Category | P for Genotype | P for HbA1c Categories + Genotype | |||||
---|---|---|---|---|---|---|---|---|---|
Genotype at rs2364723 | Genotype at rs2364723 | ||||||||
GG + GC (n = 203) | CC (n = 15) | Total (n = 218) | GG+GC (n = 154) | CC (n = 12) | Total (n = 166) | ||||
d-ROMs (U-carr) | 368.3 (63.5) | 364.5 (43.6) | 368.1 (62.1) | 374.7 (65.7) | 421.1 (64.9) | 377.7 (66.5) | 0.12 | 0.15 | 0.019 |
Age (years) | 15.6 (3.7) | 15.8 (3.1) | 15.6 (3.7) | 15.8 (3.1) | 14.9 (4.0) | 15.7 (3.2) | 0.78 | 0.11 | 0.12 |
M/F | 115/88 | 10/5 | 125/93 | 76/78 | 6/6 | 82/84 | 0.15 | 0.35 | 0.72 |
z-BMI | 0.38 (1.0) | 0.23 (0.7) | 0.37 (0.9) | 0.38 (0.9) | 0.49 (0.9) | 0.39 (0.9) | 0.61 | 0.91 | 0.40 |
Disease duration (years) | 8.2 (4.2) | 8.1 (3.6) | 8.2 (4.1) | 8.4 (3.8) | 8.0 (3.6) | 8.4 (3.8) | 0.27 | 0.76 | 0.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morandi, A.; Corradi, M.; Zusi, C.; Piona, C.; Costantini, S.; Marigliano, M.; Maffeis, C. Genetic Variation in Antioxidant Response Modulates the Level of Oxidative Stress in Youth with Type 1 Diabetes and Poor Glycemic Control. Antioxidants 2022, 11, 1726. https://doi.org/10.3390/antiox11091726
Morandi A, Corradi M, Zusi C, Piona C, Costantini S, Marigliano M, Maffeis C. Genetic Variation in Antioxidant Response Modulates the Level of Oxidative Stress in Youth with Type 1 Diabetes and Poor Glycemic Control. Antioxidants. 2022; 11(9):1726. https://doi.org/10.3390/antiox11091726
Chicago/Turabian StyleMorandi, Anita, Massimiliano Corradi, Chiara Zusi, Claudia Piona, Silvia Costantini, Marco Marigliano, and Claudio Maffeis. 2022. "Genetic Variation in Antioxidant Response Modulates the Level of Oxidative Stress in Youth with Type 1 Diabetes and Poor Glycemic Control" Antioxidants 11, no. 9: 1726. https://doi.org/10.3390/antiox11091726
APA StyleMorandi, A., Corradi, M., Zusi, C., Piona, C., Costantini, S., Marigliano, M., & Maffeis, C. (2022). Genetic Variation in Antioxidant Response Modulates the Level of Oxidative Stress in Youth with Type 1 Diabetes and Poor Glycemic Control. Antioxidants, 11(9), 1726. https://doi.org/10.3390/antiox11091726