Constant–Current Coulometry with Electrogenerated Titrants as a Novel Tool for the Essential Oils Screening Using Total Antioxidant Parameters
Abstract
:1. Introduction
- No need to prepare a standard solution of the reagents i.e., the standardization stage is excluded;
- Titration is an absolute that excludes usage of calibration plots (in fact, an electron acts as a titrant);
- No effect of sample dilution;
- Coverage of almost all types of antioxidants based on titrants’ reactivity;
- Ease of calculation and the possibility of using different standard antioxidants;
- High sensitivity, reliability, and reproducibility of the measurements;
- Possibility of automation for routine applications.
2. Materials and Methods
2.1. Reagents and Samples under Investigation
2.2. Constant–Current Coulometry
2.3. GC-MS Identification of Essential Oil Components
2.4. Antioxidant Activity Assay
2.5. Total Phenolics Assay
2.6. Statistics and Correlation Analysis
3. Results and Discussion
3.1. Essential Oils Characterization by GC-MS
3.2. Reactions of Individual Antioxidants with Electrogenerated Titrants
3.2.1. Reactivity of Essential Oils Antioxidants towards Electrogenerated Bromine
3.2.2. Reactivity of Essential Oils Antioxidants towards Electrogenerated Ferricyianide Ions
3.3. Evaluation of Total Antioxidant Parameters of Essential Oils
3.4. Correlation of Essential Oils TAC and FRP with Standard Antioxidant Parameters
- Instability of the reagent solution under light exposure;
- Necessity to use toxic methanol;
- Limited range of antioxidants reacting with the DPPH•;
- Certain antioxidants interact with DPPH• slowly and/or reversibly that leads to distortion of results and their incorrect interpretation;
- Necessity to prepare a blank solution for each sample makes the method more tedious.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zuzarte, M.; Salgueiro, L. Essential oils chemistry. In Bioactive Essential Oils and Cancer; de Sousa, D.P., Ed.; Springer: Cham, Switzerland, 2015; pp. 19–61. [Google Scholar] [CrossRef]
- Esposito, E.R.; Bystrek, M.V.; Klein, J.S. An elective course in aromatherapy science. Am. J. Pharm. Educ. 2014, 78, 79. [Google Scholar] [CrossRef] [PubMed]
- Ali, B.; Al-Wabel, N.A.; Shams, S.; Ahamad, A.; Khan, S.A.; Anwar, F. Essential oils used in aromatherapy: A systemic review. Asian Pac. J. Trop. Biomed. 2015, 5, 601–611. [Google Scholar] [CrossRef]
- Fernández-López, J.; Viuda-Martos, M. Introduction to the special issue: Application of essential oils in food systems. Foods 2018, 7, 56. [Google Scholar] [CrossRef] [PubMed]
- Basavegowda, N.; Baek, K.-H. Synergistic antioxidant and antibacterial advantages of essential oils for food packaging applications. Biomolecules 2021, 11, 1267. [Google Scholar] [CrossRef]
- Schiller, C.; Schiller, D. 500 Formulas for Aromatherapy: Mixing Essential Oils for Every Use; Sterling Publications: New York, NY, USA, 1994; 158p. [Google Scholar]
- Wildwood, C. The Encyclopedia of Aromatherapy; Healing Arts Press: Rochester, NY, USA, 1996; 320p. [Google Scholar]
- Amorati, R.; Foti, M.C.; Valgimigli, L. Antioxidant activity of essential oils. J. Agric. Food Chem. 2013, 61, 10835–10847. [Google Scholar] [CrossRef]
- Anthony, K.P.; Deolu-Sobogun, S.A.; Saleh, M.A. Comprehensive assessment of antioxidant activity of essential oils. Food Sci. 2012, 77, C839–C843. [Google Scholar] [CrossRef]
- Olmedo, R.; Ribotta, P.; Grosso, N.R. Antioxidant activity of essential oils extracted from Aloysia triphylla and Minthostachys mollis that improve the oxidative stability of sunflower oil under accelerated storage conditions. Eur. J. Lipid Sci. Technol. 2018, 120, 1700374. [Google Scholar] [CrossRef]
- Sengun, I.Y.; Yucel, E.; Ozturk, B.; Kilic, G. Chemical compositions, total phenolic contents, antimicrobial and antioxidant activities of the extract and essential oil of Thymbra spicata L. growing wild in Turkey. Food Meas. 2021, 15, 386–393. [Google Scholar] [CrossRef]
- Torres-Martínez, R.; García-Rodríguez, Y.M.; Ríos-Chávez, P.; Saavedra-Molina, A.; López-Meza, J.E.; Ochoa-Zarzosa, A.; Garciglia, R.S. Antioxidant activity of the essential oil and its major terpenes of Satureja macrostema (Moc. and Sessé ex Benth.) Briq. Pharmacogn. Mag. 2017, 13, S875–S880. [Google Scholar]
- Hashemi, S.M.B.; Khorram, S.B.; Sohrabi, M. Antioxidant activity of essential oils in foods in essential oils in food processing. In Essential Oils in Food Processing: Chemistry, Safety and Applications; Hashemi, S.M.B., Mousavi Khaneghah, A., de Souza Sant’Ana, A., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2017; pp. 247–265. [Google Scholar] [CrossRef]
- Crespo, Y.A.; Sánchez, L.R.B.; Quintana, Y.G.; Cabrera, A.S.T.; del Sol, A.B.; Mayancha, D.M.G. Evaluation of the synergistic effects of antioxidant activity on mixtures of the essential oil from Apium graveolens L., Thymus vulgaris L. and Coriandrum sativum L. using simplex-lattice design. Helyon 2019, 5, e01942. [Google Scholar] [CrossRef]
- Boveiri Dehsheikh, A.; Mahmoodi Sourestani, M.; Boveiri Dehsheikh, P.; Vitalini, S.; Iriti, M.; Mottaghipisheh, J. A Comparative Study of Essential Oil Constituents and Phenolic Compounds of Arabian Lilac (Vitex trifolia var. Purpurea): An Evidence of Season Effects. Foods 2019, 8, 52. [Google Scholar] [CrossRef]
- Semiz, G.; Semiz, A.; Mercan-Doğan, N. Essential oil composition, total phenolic content, antioxidant and antibiofilm activities of four Origanum species from southeastern Turkey. Int. J. Food Prop. 2018, 21, 194–204. [Google Scholar] [CrossRef]
- Ziyatdinova, G.; Kozlova, E.; Morozova, E.; Budnikov, H. Chronocoulometric method for the evaluation of antioxidant capacity of medicinal plant tinctures. Anal. Methods 2018, 10, 4995–5003. [Google Scholar] [CrossRef]
- Ziyatdinova, G.; Snegureva, Y.; Budnikov, H. Novel approach for the voltammetric evaluation of antioxidant activity using DPPH•-modified electrode. Electrochim. Acta 2017, 247, 97–106. [Google Scholar] [CrossRef]
- Ziyatdinova, G.; Zelenova, Y.; Budnikov, H. Novel modified electrode with immobilized galvinoxyl radical for the voltammetric determination of antioxidant activity. J. Electroanal. Chem. 2020, 586, 113677. [Google Scholar] [CrossRef]
- Abdullin, I.F.; Turova, E.N.; Gaisina, G.K.; Budnikov, G.K. Use of electrogenerated bromine for estimating the total antioxidant capacity of plant raw materials and plant-based medicinal preparations. J. Anal. Chem. 2002, 57, 557–560. [Google Scholar] [CrossRef]
- Abdullin, I.F.; Turova, E.N.; Budnikov, G.K.; Ziyatdinova, G.K.; Gajsina, G.K. Electrogenerated bromine-reagent for determination of antioxidant capacity of juices and extracts. Zavod. Lab. Diagn. Mater. 2002, 68, 12–15. [Google Scholar]
- Ziyatdinova, G.K.; Zakharova, S.P.; Budnikov, H.C. Reactions of phenolic antioxidants with electrogenerated superoxide anion radical and their analytical application. Uch. Zap. Kazan. Univ. Ser. Estestv. Nauki 2015, 157, 129–142. [Google Scholar]
- Ghiaba, Z.; Yousfi, M.; Hadjadj, M.; Saidi, M.; Dakmouche, M. Study of antioxidant properties of five algerian date (Phoenix dactylifera L.) cultivars by cyclic voltammetric technique. Int. J. Electrochem. Sci. 2014, 9, 909–920. [Google Scholar]
- Gonçalves, R.S.; Battistin, A.; Pauletti, G.; Rota, L.; Serafini, L.A. Antioxidant properties of essential oils from Mentha species evidenced by electrochemical methods. Rev. Bras. Plantas Med. 2009, 11, 372–382. [Google Scholar] [CrossRef]
- Ziyatdinova, G.; Budnikov, H. Analytical capabilities of coulometric sensor systems in the antioxidants analysis. Chemosensors 2021, 9, 91. [Google Scholar] [CrossRef]
- Abdullin, I.F.; Budnikov, G.K. Coulometric analysis of organic compounds (review). Ind. Lab. 1998, 64, 1–11. [Google Scholar]
- Abdullin, I.F.; Budnikov, G.K.; Gorbunova, T.S. Electrochemical generation of hypohalogenite ions and their application to determining pharmaceuticals. J. Anal. Chem. 1997, 52, 264–268. [Google Scholar]
- Howes, M.-J.R.; Simmonds, M.S.J.; Kite, G.C. Evaluation of the quality of sandalwood essential oils by gas chromatography–mass spectrometry. J. Chromatogr. A 2004, 1028, 307–312. [Google Scholar] [CrossRef]
- Kupriyanova, O.V.; Shevyrin, V.A.; Shafran, Y.M.; Lebedev, A.T.; Milyukov, V.A.; Rusinov, V.L. Synthesis and determination of analytical characteristics and differentiation of positional isomers in the series of N-(2-methoxybenzyl)-2-(dimethoxyphenyl)ethanamine using chromatography–mass spectrometry. Drug Test. Anal. 2020, 12, 1154–1170. [Google Scholar] [CrossRef]
- GOST 31665-2012; Vegetable Oils and Animal Fats. Preparation of Methyl Esters of Fatty Acids. Standartinform: Moscow, Russia, 2013; 6p.
- Toivo, J.; Piironen, V.; Kalo, P.; Varo, P. Gas chromatographic determination of major sterols in edible oils and fats using solid-phase extraction in sample preparation. Chromatographia 1998, 48, 745–750. [Google Scholar] [CrossRef]
- Babushok, V.I.; Linstrom, P.J.; Zenkevich, I.G. Retention indices for frequently reported compounds of plant essential oils. J. Phys. Chem. Ref. Data 2011, 40, 043101. [Google Scholar] [CrossRef]
- Tkachev, A.V. Issledovanie Letuchikh Veshchestv Rastenii; Study of Volatile Compounds of Plants; Ofset: Novosibirsk, Russia, 2008; pp. 230–781. [Google Scholar]
- NIST: National Institute of Standards and Technologies, Mass Spectra Libraries. Available online: http://www.sisweb.com/software/nist-gc-library.htm (accessed on 26 August 2017).
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Parthasarathy, V.A.; Chempakam, B.; Zachariah, T.J. (Eds.) Chemistry of Spices; CABI International: London, UK, 2008; 445p. [Google Scholar]
- Hüsnü, K.; Başer, K.H.C.; Demirci, F. Chemistry of essential oils. In Flavours and Fragrances; Berger, R.G., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 43–86. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Pub Corp: Carol Stream, IL, USA, 2007; 804p. [Google Scholar]
- Sabuzi, F.; Churakova, E.; Galloni, P.; Wever, R.; Hollmann, F.; Floris, B.; Conte, V. Thymol bromination—A comparison between enzymatic and chemical catalysis. Eur. J. Inorg. Chem. 2015, 2015, 3519–3525. [Google Scholar] [CrossRef]
- Günay, T.; Çimen, Y.; Karabacak, R.B.; Türk, H. Oxidation of thymol and carvacrol to thymoquinone with KHSO5 catalyzed by iron phthalocyanine tetrasulfonate in a methanol–water mixture. Catal. Lett. 2016, 146, 2306–2312. [Google Scholar] [CrossRef]
- Ziyatdinova, G.; Salikhova, I.; Budnikov, H. Coulometric titration with electrogenerated oxidants as a tool for evaluation of cognac and brandy antioxidant properties. Food Chem. 2014, 150, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Ziyatdinova, G.; Nizamova, A.; Budnikov, H. Novel coulometric approach to evaluation of total free polyphenols in tea and coffee beverages in presence of milk proteins. Food Anal. Methods 2011, 4, 334–340. [Google Scholar] [CrossRef]
- Ziyatdinova, G.K.; Cong, F.N.; Budnikov, H.C. Assessment of the antioxidant properties of micellar spice extracts by galvanostatic coulometry with electrogenerated hexacyanoferrate(III) ions. J. Anal. Chem. 2015, 70, 974–982. [Google Scholar] [CrossRef]
- Ziyatdinova, G.; Ziganshina, E.; Cong, P.N.; Budnikov, H. Ultrasound-assisted micellar extraction of phenolic antioxidants from spices and antioxidant properties of the extracts based on coulometric titration data. Anal. Meth. 2016, 8, 7150–7157. [Google Scholar] [CrossRef]
- Haro-González, J.N.; Castillo-Herrera, G.A.; Martínez-Velázquez, M.; Espinosa-Andrews, H. Clove essential oil (Syzygium aromaticum L. Myrtaceae): Extraction, chemical composition, food applications, and essential bioactivity for human health. Molecules 2021, 26, 6387. [Google Scholar] [CrossRef]
- Barra, A. Factors affecting chemical variability of essential oils: A review of recent developments. Nat. Prod. Commun. 2009, 4, 1147–1154. [Google Scholar] [CrossRef] [Green Version]
- Archdeacon, T.J. Correlation and Regression Analysis: A Historian’s Guide, 1st ed.; University of Wisconsin Press: Madison, WI, USA, 1994; 352p. [Google Scholar]
Sample No. | Plant Material | Botanical Name of the Plant | Morphological Characteristics |
---|---|---|---|
1 | Clove | Eugenia caryophyllus Spreng. | Leaves |
2 | Cinnamon | Cinnamomum zeylanicum Blume | Leaves |
3 | Nutmeg | Myristica fragrans Houtt | Fruits |
4 | Lavender | Lavandula angustifolia Mill. | Flowers |
5 | Ginger | Zingiber officinale Rosc. | Rhizomes |
6 | Anise | Pimpinella anisum L. | Fruits |
7 | Basil | Ocimum basilicum L. | Herb |
8 | Bergamot | Citrus aurantium subsp. bergamia | Fruits |
9 | Jasmine | Jasminum officinale L. | Flowers |
10 | Ylang-Ylang | Cananga odorata (Lam.) Hook. F. & Thomson | Flowers |
11 | Marjoram | Origanum majorana L. | Flowers |
12 | Neroli | Citrus aurantium subsp. amara | Flowers |
13 | Rosemary | Rosmarinus officinalis L. | Twigs and flowers |
14 | Thyme | Thymus vulgaris L. | Flowers |
15 | Clary sage | Salvia sclarea L. | Herb |
RI | Component | m/z | Essential Oils | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |||
885 | Cyclofenchene | 136 | + | ||||||||||||||
893 | Styrene | 104 | + | + | |||||||||||||
898 | 2,5-Diethyltetrahydrofuran | 128 | + | ||||||||||||||
901 | Nonane | 128 | + | ||||||||||||||
903 | 2-Bornene | 136 | + | ||||||||||||||
909 | 4-Octene, 2,6-dimethyl-, [S-(E)]- | 140 | + | ||||||||||||||
917 | 5,5-Dimethyl-1-vinylbicyclo[2.1.1]hexane | 136 | + | + | + | ||||||||||||
918 | Tricyclene | 136 | + | + | + | + | + | + | + | + | + | + | + | ||||
924 | α-Thujene | 136 | + | + | + | + | + | + | + | + | + | + | |||||
931 | α-Pinene | 136 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
935 | 2,2-Dimethyl-5-methylenebicyclo[2.2.1]heptane | 136 | + | + | |||||||||||||
945 | Camphene | 136 | + | + | + | + | + | + | + | + | + | + | + | + | |||
952 | Thuja-2,4(10)-diene | 134 | + | + | + | + | |||||||||||
957 | Benzaldehyde | 106 | + | + | |||||||||||||
969 | Sabinene | 136 | + | + | + | + | + | + | |||||||||
973 | β-Pinene | 136 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
978 | 1-Octen-3-ol | 128 | + | ||||||||||||||
979 | trans-Carane | 138 | + | ||||||||||||||
985 | 3-Octanone | 128 | + | ||||||||||||||
987 | Sulcatone | 126 | + | + | |||||||||||||
996 | 3-Octanol | 130 | + | ||||||||||||||
990 | Myrcene | 136 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
1001 | Pseudolimonene | 136 | + | ||||||||||||||
1002 | α-Phellandrene | 136 | + | + | + | + | + | + | + | ||||||||
1007 | 3-Carene | 136 | + | + | + | + | + | + | + | + | |||||||
1014 | α-Terpinene | 136 | + | + | + | + | + | + | + | ||||||||
1014 | Hexyl acetate | 144 | + | ||||||||||||||
1018 | p-Methylanisole | 122 | + | ||||||||||||||
1021 | p-Menth-1-ene | 138 | + | ||||||||||||||
1022 | p-Cymene | 134 | + | ||||||||||||||
1022 | m-Cymene | 134 | + | + | + | + | + | + | + | + | + | + | |||||
1025 | Limonene | 136 | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
1028 | Eucalyptol | 154 | + | + | + | + | + | + | + | + | + | + | |||||
1036 | cis-β-Ocimene | 136 | + | + | + | ||||||||||||
1039 | Benzyl alcohol | 108 | + | + | |||||||||||||
1042 | 2-Propanol, 1,1′-oxybis- | 134 | + | ||||||||||||||
1044 | Benzeneacetaldehyde | 120 | + | ||||||||||||||
1046 | trans-β-Ocimene | 136 | + | + | + | + | + | + | + | + | + | + | |||||
1048 | 1-Propanol, 2-(2-hydroxypropoxy)- | 134 | + | ||||||||||||||
1056 | γ-Terpinene | 136 | + | + | + | + | + | + | + | + | + | + | + | ||||
1063 | cis-Sabinene hydrate | 154 | + | + | + | + | |||||||||||
1071 | 1-Octanol | 130 | + | + | |||||||||||||
1072 | cis-Linalool oxide (furanoid) | 170 | + | + | + | + | |||||||||||
1074 | p-Mentha-3,8-diene | 136 | + | + | + | + | |||||||||||
1076 | Benzyl formate | 136 | + | ||||||||||||||
1082 | Isoterpinolene | 136 | + | ||||||||||||||
1084 | Fenchone | 152 | + | ||||||||||||||
1085 | Terpinolene | 136 | + | + | + | + | + | + | + | + | + | + | |||||
1086 | trans-Linalool oxide (furanoid) | 170 | + | + | |||||||||||||
1089 | 2-Nonanone | 142 | + | ||||||||||||||
1093 | Methyl benzoate | 136 | + | ||||||||||||||
1094 | α-Pinene oxide | 152 | + | + | + | + | + | ||||||||||
1095 | Benzoic acid, ME derivative | 136 | + | ||||||||||||||
1096 | trans-Sabinene hydrate | 154 | + | + | + | ||||||||||||
1100 | Linalool | 154 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
1103 | Nonanal | 142 | + | ||||||||||||||
1104 | cis-Thujone | 152 | + | ||||||||||||||
1113 | Fenchol | 154 | + | + | + | ||||||||||||
1113 | 2-Methoxy-1,7,7-trimethylbicyclo[2.2.1]heptane | 168 | + | ||||||||||||||
1114 | 1,3,8-p-Menthatriene | 134 | + | ||||||||||||||
1114 | β-Thujone | 152 | + | ||||||||||||||
1116 | Phenethyl alcohol | 122 | + | + | |||||||||||||
1116 | 4,8-Dimethyl-1,3(E),7-nonatriene | 150 | + | ||||||||||||||
1120 | trans-p-Mentha-2,8-diene-1-ol | 152 | + | + | |||||||||||||
1121 | cis-p-Menth-2-en-1-ol | 154 | + | + | |||||||||||||
1126 | Octanoic acid, ME derivative | 158 | + | + | |||||||||||||
1127 | 4-trans,6-cis-Alloocimene | 136 | + | + | |||||||||||||
1127 | α-Campholenal | 152 | + | ||||||||||||||
1131 | cis-Limonene oxide | 152 | + | + | + | ||||||||||||
1132 | 1,2-Dihydrolinalool | 156 | + | + | + | ||||||||||||
1133 | 4-trans,6-trans-Alloocimene | 152 | + | ||||||||||||||
1134 | cis-p-Mentha-2,8-diene-1-ol | 152 | + | + | + | + | |||||||||||
1135 | trans-Pinocarveol | 152 | + | + | + | ||||||||||||
1135 | trans-Limonene oxide | 152 | + | + | |||||||||||||
1136 | Terpineol-1 | 154 | + | + | |||||||||||||
1137 | trans-p-Menth-2-en-1-ol | 154 | + | ||||||||||||||
1140 | cis-Verbenol | 152 | + | ||||||||||||||
1142 | trans-Verbenol | 152 | + | + | + | ||||||||||||
1144 | Camphor | 152 | + | + | + | + | + | + | |||||||||
1150 | trans-Menthone | 154 | + | ||||||||||||||
1151 | β-Pinene oxide | 152 | + | ||||||||||||||
1151 | Camphene hydrate | 154 | + | ||||||||||||||
1153 | Isoborneol | 154 | + | + | + | + | |||||||||||
1156 | Citronellal | 154 | + | + | |||||||||||||
1157 | α-Pinocarvone | 150 | + | + | |||||||||||||
1159 | Benzenepropanal | 154 | + | ||||||||||||||
1159 | α-Dihydroterpineol | 156 | + | ||||||||||||||
1162 | Borneol | 154 | + | + | + | + | + | + | + | ||||||||
1165 | Endo-borneol | 154 | + | ||||||||||||||
1164 | δ-Terpineol | 154 | + | + | |||||||||||||
1167 | Benzyl acetate | 150 | + | + | |||||||||||||
1168 | Isoneral | 152 | + | ||||||||||||||
1170 | Menthol | 156 | + | ||||||||||||||
1173 | (−)-Terpinen-4-ol | 154 | + | + | + | + | + | + | + | + | + | ||||||
1179 | Phenylacetic acid, ME derivative | 150 | + | ||||||||||||||
1181 | Cryptone | 138 | + | ||||||||||||||
1184 | p-Cymen-8-ol | 150 | + | + | + | ||||||||||||
1186 | Isogeranial | 152 | + | ||||||||||||||
1188 | α-Terpineol | 154 | + | + | + | + | + | + | + | + | + | + | + | + | |||
1192 | Myrtenal | 150 | + | ||||||||||||||
1192 | Hexyl butanoate | 172 | + | ||||||||||||||
1194 | Myrtenol | 152 | + | + | |||||||||||||
1196 | Estragole | 148 | + | + | |||||||||||||
1196 | γ-Terpineol | 154 | + | + | + | + | |||||||||||
1206 | trans-p-Menth-1-en-3-ol | 154 | + | ||||||||||||||
1204 | Verbenone | 150 | + | + | + | + | + | ||||||||||
1208 | Decanal | 156 | + | + | |||||||||||||
1215 | Isopropyl benzoate | 164 | + | ||||||||||||||
1216 | cis-Cinnamaldehyde | 132 | + | ||||||||||||||
1216 | trans-Carveol | 152 | + | + | + | ||||||||||||
1218 | Fenchyl acetate | 196 | + | + | + | ||||||||||||
1226 | Nonanoic acid, ME | 172 | + | ||||||||||||||
1227 | Bornyl formate | 182 | + | ||||||||||||||
1228 | cis-Carveol | 152 | + | + | + | + | |||||||||||
1228 | cis-Geraniol | 154 | + | + | + | + | + | ||||||||||
1232 | Citronellol | 156 | + | + | |||||||||||||
1236 | Isogeraniol | 154 | + | ||||||||||||||
1239 | β-Citral | 152 | + | + | + | + | |||||||||||
1240 | Cuminaldehyde | 148 | + | + | |||||||||||||
1240 | Carvone | 150 | + | + | + | + | |||||||||||
1241 | Carvacrol, ME derivative | 164 | + | ||||||||||||||
1250 | cis-Anethole | 148 | + | ||||||||||||||
1256 | Linalyl acetate | 196 | + | + | + | + | + | + | + | + | |||||||
1257 | Geraniol | 154 | + | + | + | + | |||||||||||
1269 | α-Citral | 152 | + | + | + | + | + | + | |||||||||
1271 | trans-Ascaridol glycol | 170 | + | ||||||||||||||
1273 | trans-p-Menth-2-ene-1,4-diol | 170 | + | ||||||||||||||
1276 | trans-Cinnamaldehyde | 132 | + | ||||||||||||||
1278 | β-Terpinyl acetate | 196 | + | + | |||||||||||||
1282 | Bornyl acetate | 196 | + | + | + | + | + | + | + | + | |||||||
1283 | trans-Anethole | 148 | + | + | + | ||||||||||||
1284 | Safrole | 162 | + | ||||||||||||||
1290 | Indole | 117 | + | ||||||||||||||
1290 | trans-Sabinyl acetate | 194 | + | ||||||||||||||
1290 | Lavandulyl acetate | 196 | + | ||||||||||||||
1291 | Thymol | 150 | + | + | + | ||||||||||||
1293 | Menthyl acetate | 198 | + | ||||||||||||||
1294 | 2-Undecanone | 170 | + | ||||||||||||||
1299 | 2-Cyclohexen-1-ol, 3-methyl-6-(1-methylethyl)-, acetate | 196 | + | ||||||||||||||
1300 | Carvacrol | 150 | + | + | |||||||||||||
1305 | 1-Methoxy-4-pentylbenzene | 178 | + | ||||||||||||||
1311 | δ-Terpinyl acetate | 196 | + | + | |||||||||||||
1313 | 2-Propen-1-ol, 3-phenyl-, (E)- | 134 | + | + | |||||||||||||
1320 | Chavicol, TMS derivative | 134 | + | ||||||||||||||
1324 | Myrtenyl acetate | 194 | + | ||||||||||||||
1325 | Decanoic acid, ME derivative | 186 | + | + | |||||||||||||
1329 | (−)-trans-p-Menth-8-en-2-ol, acetate | 196 | + | ||||||||||||||
1335 | 2-Propen-1-ol, 3-phenyl-, formate | 162 | + | ||||||||||||||
1335 | δ-EIemene | 204 | + | + | |||||||||||||
1337 | Linalyl propionate | 210 | + | + | |||||||||||||
1344 | Anthranilic acid, ME derivative | 151 | + | ||||||||||||||
1346 | α-Terpinyl acetate | 196 | + | + | + | + | + | ||||||||||
1347 | α-Cubebene | 204 | + | + | + | + | + | + | |||||||||
1350 | p-Acetylanisole | 150 | + | ||||||||||||||
1354 | Citronellol acetate | 198 | + | ||||||||||||||
1357 | Eugenol | 164 | + | + | + | + | + | + | |||||||||
1358 | Triacetin | 218 | + | ||||||||||||||
1363 | Cyclosativene | 204 | + | ||||||||||||||
1364 | Neryl acetate | 196 | + | + | + | + | + | + | + | ||||||||
1370 | Carvacrol acetate | 192 | + | ||||||||||||||
1370 | α-Copaene | 204 | + | + | + | + | + | + | + | + | + | + | + | ||||
1380 | p-Acetonylanisole | 164 | + | ||||||||||||||
1380 | Daucene | 204 | + | ||||||||||||||
1381 | β-Bourbonene | 204 | + | + | + | + | |||||||||||
1382 | Geranyl acetate | 196 | + | + | + | + | + | + | + | + | |||||||
1385 | Cinnamic acid, ME | 162 | + | ||||||||||||||
1387 | epi-Sesquithujene | 204 | + | ||||||||||||||
1390 | β-Elemene | 204 | + | + | + | + | + | + | + | + | + | + | |||||
1400 | Longifolene | 204 | + | + | + | + | + | ||||||||||
1401 | Methyleugenol | 178 | + | + | |||||||||||||
1401 | Isocaryophyllene | 204 | + | + | |||||||||||||
1402 | Sesquithujene | 204 | + | ||||||||||||||
1403 | cis-β-Caryophyllene | 204 | + | + | + | ||||||||||||
1406 | α-Gurjunene | 204 | + | ||||||||||||||
1407 | Decyl acetate | 200 | + | ||||||||||||||
1407 | α-Cedrene | 204 | + | ||||||||||||||
1411 | cis-α-Bergamotene | 204 | + | ||||||||||||||
1413 | trans-β-Caryophyllene | 204 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
1427 | cis-Thujopsene | 204 | + | + | |||||||||||||
1428 | β -Copaene | 204 | + | + | + | + | + | + | |||||||||
1429 | γ-Elemene | 204 | + | + | |||||||||||||
1431 | trans-α-Bergamotene | 204 | + | + | + | + | + | + | |||||||||
1435 | 10,10-Dimethyl-2,6-dimethylenebicyclo[7.2.0]undecane | 204 | + | + | |||||||||||||
1436 | Aromandendrene | 204 | + | + | + | + | + | ||||||||||
1437 | α-Guaiene | 204 | + | + | |||||||||||||
1438 | α-Maaliene | 204 | + | ||||||||||||||
1438 | β-Humulene | 204 | + | ||||||||||||||
1440 | cis-β-Farnesene | 204 | + | ||||||||||||||
1443 | Epi-β-Santalene | 204 | + | ||||||||||||||
1445 | Coumarin | 146 | + | ||||||||||||||
1446 | Cinnamyl acetate | 176 | + | ||||||||||||||
1449 | α-Humulene | 204 | + | + | + | + | + | + | + | + | + | + | + | ||||
1455 | Alloaromadendrene | 204 | + | + | + | + | + | ||||||||||
1455 | trans-β-Farnesene | 204 | + | + | + | + | + | ||||||||||
1473 | γ-Muurolene | 204 | + | + | + | + | + | + | + | + | + | + | |||||
1475 | Bicyclo[4.3.0]nonane, 7-methylene-2,4,4-trimethyl-2-vinyl- | 204 | + | ||||||||||||||
1476 | 4-epi-α-Acoradiene | 204 | + | ||||||||||||||
1477 | Germacrene D | 204 | + | + | + | + | + | ||||||||||
1480 | α-Curcumene | 202 | + | + | |||||||||||||
1486 | Naphthalene, 1,2,4a,5,6,8a-hexahydro-4,7-dimethyl-1-(1-methylethyl)- | 204 | + | ||||||||||||||
1487 | β-Selinene | 204 | + | + | + | + | |||||||||||
1488 | Valencene | 204 | + | + | |||||||||||||
1489 | α-Selinene | 204 | + | + | |||||||||||||
1490 | Bicyclogermacrene | 204 | + | + | |||||||||||||
1492 | Leden | 204 | + | + | + | + | |||||||||||
1496 | Epizonarene | 204 | + | ||||||||||||||
1496 | α-Muurolene | 204 | + | + | + | + | + | + | + | + | + | + | |||||
1499 | Zingiberene | 204 | + | ||||||||||||||
1503 | Cuparene | 202 | + | ||||||||||||||
1503 | cis-α-Bisabolene | 204 | + | ||||||||||||||
1508 | trans-α-Farnesene | 204 | + | + | + | ||||||||||||
1507 | β-Bisabolene | 204 | + | + | + | + | + | + | + | + | |||||||
1511 | γ-Cadinene | 204 | + | + | + | + | + | + | + | + | |||||||
1515 | 2,4-Di-tert-butylphenol | 206 | + | + | |||||||||||||
1515 | Bornyl 3-methylbutanoate | 238 | + | ||||||||||||||
1519 | Myristicine | 192 | + | ||||||||||||||
1518 | β-Cadinene | 204 | + | + | + | + | |||||||||||
1520 | δ-Cadinene | 204 | + | + | + | + | + | + | |||||||||
1521 | β-Sesquiphellandrene | 204 | + | + | |||||||||||||
1523 | Lilial | 204 | + | ||||||||||||||
1523 | Dodecanoic acid, ME derivative | 214 | + | ||||||||||||||
1524 | Lauric acid, ME derivative | 214 | + | ||||||||||||||
1528 | γ-Bisabolene | 204 | + | ||||||||||||||
1528 | Cubenene | 204 | + | + | + | ||||||||||||
1528 | Eugenol acetate | 206 | + | ||||||||||||||
1529 | cis-psi-Ionone | 192 | + | + | |||||||||||||
1533 | cis-Nerolidol | 222 | + | + | |||||||||||||
1535 | α-Cadinene | 204 | + | + | + | ||||||||||||
1537 | Selina-3,7(11)-diene | 204 | + | ||||||||||||||
1544 | α-Calacorene | 200 | + | ||||||||||||||
1545 | Elemol | 222 | + | ||||||||||||||
1550 | Germacrene B | 204 | + | + | |||||||||||||
1554 | Diepicedrene-1-oxide | 220 | + | ||||||||||||||
1556 | Elemicin | 208 | + | ||||||||||||||
1560 | Methyl N-formylanthranilate, ME derivative | 179 | + | ||||||||||||||
1561 | trans-Nerolidol | 222 | + | + | + | + | + | ||||||||||
1563 | Palustrol | 222 | + | ||||||||||||||
1564 | Ledol | 222 | + | ||||||||||||||
1566 | 7-Methyl-1-naphthol | 158 | + | ||||||||||||||
1566 | p-Menth-6-en-2-one, 8-hydroxy-, acetate | 210 | + | ||||||||||||||
1570 | Caryophyllene alcohol | 222 | + | ||||||||||||||
1574 | Spathulenol | 220 | + | + | + | + | + | ||||||||||
1578 | Globulol | 222 | + | ||||||||||||||
1577.5 | Caryophyllene oxide I | 220 | + | + | + | + | + | + | + | + | + | + | + | ||||
1581.5 | psi-Ionone | 192 | + | + | |||||||||||||
1587 | trans-Sesquisabinene hydrate | 222 | + | ||||||||||||||
1587 | Viridiflorol | 222 | + | + | + | + | |||||||||||
1594 | α-Cedrol | 222 | + | + | |||||||||||||
1595 | Rosifoliol | 222 | + | + | |||||||||||||
1602 | Methoxyeugenol | 194 | + | ||||||||||||||
1602 | Humulene-1,2-epoxide | 220 | + | ||||||||||||||
1605 | Humulene oxide II | 220 | + | + | + | + | + | + | + | + | |||||||
1611 | Zingiberenol | 222 | + | ||||||||||||||
1618 | Isopropyl laurate | 242 | + | ||||||||||||||
1624 | 1-epi-Cubenol | 222 | + | + | |||||||||||||
1627 | γ-Eudesmol | 222 | + | ||||||||||||||
1636 | Isospathulenol | 220 | + | ||||||||||||||
1636 | Caryophylla-4(12),8(13)-dien-5α-ol | 220 | + | + | + | + | + | + | |||||||||
1637 | α-epi-Muurolol | 222 | + | + | + | + | |||||||||||
1637 | α-epi-Cadinol | 222 | + | + | + | + | |||||||||||
1640 | 10,10-Dimethyl-2,6-dimethylenebicyclo[7.2.0]undecan-5β-ol | 220 | + | ||||||||||||||
1643 | 11,11-Dimethyl-4,8-dimethylenebicyclo[7.2.0]undecan-3-ol | 220 | + | + | |||||||||||||
1643 | δ-Cadinol | 222 | + | ||||||||||||||
1646 | β-Eudesmol | 222 | + | + | + | + | + | + | |||||||||
1650 | α-Cadinol | 222 | + | + | + | + | + | ||||||||||
1654 | α-Eudesmol | 222 | + | + | |||||||||||||
1674 | Aromadendrene oxide-(2) | 220 | + | + | + | ||||||||||||
1681 | 1-(3-Methyl-2-butenoxy)-4-(1-propenyl)benzene | 202 | + | ||||||||||||||
1683 | Heptadecene | 238 | + | ||||||||||||||
1684 | α-Bisabolol | 222 | + | + | + | + | |||||||||||
1693 | trans-Stilbene | 180 | + | ||||||||||||||
1713 | 2-trans,6-cis-Farnesol | 222 | + | ||||||||||||||
1726 | Myristic acid, ME derivative | 242 | + | + | |||||||||||||
1746 | α-Hexylcinnamaldehyde | 216 | + | + | + | ||||||||||||
1766 | Benzyl benzoate | 212 | + | + | + | + | |||||||||||
1791 | Ethyl myristate | 256 | + | ||||||||||||||
1820 | Phenylacetic acid, benzyl ester | 226 | + | ||||||||||||||
1828 | Isopropyl myristate | 270 | + | + | + | + | + | + | |||||||||
1841 | Phenylacetic acid, 2-methylphenyl ester | 226 | + | ||||||||||||||
1844 | Hexahydrofarnesyl acetone | 268 | + | ||||||||||||||
1845 | 6,10,14-Trimethyl-2-pentadecanone | 268 | + | ||||||||||||||
1852 | Benzoic acid, 2-phenylethyl ester | 226 | + | ||||||||||||||
1859 | Myristic acid, TMS derivative | 300 | + | + | |||||||||||||
1895 | Propyl myristate | 270 | + | ||||||||||||||
1902 | Isopimara-9(11),15-diene | 272 | + | ||||||||||||||
1903 | Nonadecane | 268 | + | ||||||||||||||
1913 | Phenylacetic acid, phenethyl ester | 240 | + | ||||||||||||||
1928 | Palmitic acid, ME derivative | 270 | + | + | + | + | + | + | + | ||||||||
1953 | m-Camphorene | 272 | + | + | + | + | + | ||||||||||
1966 | Geranyl benzoate | 258 | + | ||||||||||||||
1971 | Palmitic acid | 256 | + | ||||||||||||||
1984 | p-Camphorene | 272 | + | + | + | + | |||||||||||
1995 | Palmitic acid, ethyl ester | 284 | + | ||||||||||||||
2025 | Isopropyl palmitate | 298 | + | ||||||||||||||
2045 | Palmitic acid, TMS derivative | 328 | + | ||||||||||||||
2048 | Dehydroabietane | 270 | + | ||||||||||||||
2051 | Epimanool | 290 | + | ||||||||||||||
2066 | 13-Hexyloxacyclotridec-10-en-2-one | 280 | + | ||||||||||||||
2078 | Abieta-7,13-diene | 272 | + | ||||||||||||||
2081 | Isoeugenol, benzyl ether | 254 | + | ||||||||||||||
2093 | Linoleic acid, ME derivative | 294 | + | + | + | + | + | + | |||||||||
2094 | trans-Cinnamyl benzoate | 238 | + | ||||||||||||||
2098 | 13-Octadecenoic acid, ME derivative | 296 | + | + | + | ||||||||||||
2103 | Heneicosane | 296 | + | ||||||||||||||
2105 | Elaidic acid, ME derivative | 296 | + | ||||||||||||||
2107 | 10-Octadecenoic acid, ME derivative | 296 | + | ||||||||||||||
2108 | 6-Methyl-4,6-bis(4-methylpent-3-en-1-yl)cyclohexa-1,3-dienecarbaldehyde | 286 | + | ||||||||||||||
2108 | trans-Vaccenic acid, ME derivative | 296 | + | ||||||||||||||
2111 | Phytol | 296 | + | ||||||||||||||
2128 | Stearic acid, ME derivative | 298 | + | + | + | ||||||||||||
2167 | Linoleic acid, ethyl ester | 308 | + | ||||||||||||||
2177 | Ethyl Oleate | 310 | + | ||||||||||||||
2196 | Isopropyl 9-octadecenoate | 324 | + | ||||||||||||||
2301 | 11-Eicosenoic acid, ME derivative | 324 | + | ||||||||||||||
2329 | Eicosanoic acid, ME derivative | 326 | + | + | |||||||||||||
2370 | 9-Octadecenoic acid, 12-hydroxy-, ethyl ester, [R-(Z)]- | 326 | + | ||||||||||||||
2442 | Cinnamyl cinnamate | 264 | + | ||||||||||||||
2528 | Behenic acid, ME derivative | 354 | + | + | |||||||||||||
2729 | Lignoceric acid, ME derivative | 382 | + | ||||||||||||||
3494 | Decanoic acid, 1,2,3-propanetriyl ester | 554 | + |
Essential Oil | Sample * | TAC (C mL−1) | RSD (%) | FRP (C mL−1) | RSD (%) |
---|---|---|---|---|---|
Clove | 1a | 2600 ± 100 | 4.2 | 11.5 ± 0.6 | 3.3 |
1b | 2400 ± 100 | 3.4 | 20.6 ± 0.8 | 2.9 | |
1c | 2570 ± 40 | 1.4 | 9.5 ± 0.5 | 4.6 | |
Cinnamon | 2a | 740 ± 30 | 3.5 | 3.2 ± 0.1 | 3.0 |
2b | 770 ± 30 | 3.0 | 3.2 ± 0.1 | 3.0 | |
2c | 660 ± 30 | 4.1 | 3.3 ± 0.1 | 2.9 | |
Nutmeg | 3 | 320 ± 20 | 4.1 | 3.9 ± 0.3 | 2.9 |
Lavender | 4a | 143 ± 3 | 1.5 | — | |
4b | 104 ± 2 | 0.77 | — | ||
Ginger | 5 | 190 ± 9 | 4.7 | — | |
Anise | 6a | 127 ± 6 | 2.0 | — | |
6b | 459 ± 20 | 3.5 | — | ||
Basil | 7a | 145 ± 6 | 1.7 | 1.50 ± 0.06 | 3.9 |
Bergamot | 8a | 200 ± 10 | 4.6 | — | |
8b | 123 ± 4 | 2.5 | — | ||
8c | 230 ± 7 | 2.6 | — | ||
Jasmine | 9a | 191 ± 8 | 3.2 | 1.6 ± 0.1 | 3.7 |
9b | 510 ± 13 | 1.6 | 1.45 ± 0.08 | 4.2 | |
9c | 174 ± 3 | 1.1 | 2.4 ± 0.1 | 2.1 | |
Ylang-Ylang | 10 | 220 ± 9 | 3.3 | — | |
Marjoram | 11a | 139 ± 7 | 4.2 | 3.0 ± 0.2 | 4.7 |
11b | 515 ± 8 | 0.59 | 2.4 ± 0.1 | 3.9 | |
Neroli | 12 | 1220 ± 28 | 1.8 | — | |
Rosemary | 13a | 93 ± 5 | 4.6 | — | |
13b | 83 ± 3 | 3.3 | — | ||
Thyme | 14 | 1540 ± 20 | 0.97 | 4.8 ± 0.2 | 3.7 |
Clary sage | 15 | 71 ± 2 | 1.4 | 1.7 ± 0.1 | 5.6 |
Essential Oil | Sample * | Antioxidant Activity (%) | RSD (%) | Total Phenolic Contents (mg Eugenol mL−1) | RSD (%) |
---|---|---|---|---|---|
Clove | 1a | 94.4 ± 0.7 | 0.30 | 738 ± 43 | 2.4 |
1b | 94.6 ± 0.6 | 0.45 | 789 ± 6 | 0.32 | |
1c | 94.8 ± 0.2 | 0.079 | 694 ± 42 | 2.5 | |
Cinnamon | 2a | 60.4 ± 0.5 | 0.36 | 41 ± 2 | 2.4 |
2b | 63 ± 2 | 1.6 | 39 ± 2 | 2.6 | |
2c | 61.8 ± 0.4 | 0.24 | 45 ± 5 | 4.4 | |
Nutmeg | 3 | 11.3 ± 0.5 | 1.9 | 4.3 ± 0.1 | 2.0 |
Lavender | 4a | 2.3 ± 0.1 | 3.9 | — | |
4b | 1.80 ± 0.08 | 4.1 | — | ||
Ginger | 5 | 2.4 ± 0.4 | 6.0 | — | |
Anise | 6a | 1.4 ± 0.1 | 6.9 | — | |
6b | 40 ± 2 | 4.7 | — | ||
Basil | 7a | 3.5 ± 0.2 | 5.5 | — | |
Bergamot | 8a | 2.2 ± 0.1 | 4.3 | — | |
8b | 2.1 ± 0.1 | 4.4 | — | ||
8c | 2.7 ± 0.2 | 6.8 | — | ||
Jasmine | 9a | 4.5 ± 0.3 | 6.2 | — | |
9b | 58 ± 1 | 1.5 | — | ||
9c | 12.6 ± 0.7 | 5.2 | — | ||
Ylang-Ylang | 10 | 2.5 ± 0.1 | 3.8 | — | |
Marjoram | 11a | 2.6 ± 0.1 | 3.5 | — | |
11b | 40.8 ± 0.2 | 0.45 | — | ||
Neroli | 12 | 0.81 ± 0.04 | 4.8 | — | |
Rosemary | 13a | 1.9 ± 0.1 | 5.1 | — | |
13b | 0.50 ± 0.03 | 5.8 | — | ||
Thyme | 14 | 37 ± 3 | 2.8 | 125 ± 12 | 4.0 |
Clary sage | 15 | 1.45 ± 0.09 | 6.0 | — |
Antioxidant Parameter Based on Coulometry | Antioxidant Activity towards DPPH• (%) | Total Phenolic Contents (mg Eugenol mL−1) | ||
---|---|---|---|---|
r | rcritical | r | rcritical | |
TAC (C mL−1) | 0.8379 | 0.3809 | 0.9558 | 0.7067 |
FRP (C mL−1) | 0.7051 | 0.5140 | 0.8886 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziyatdinova, G.; Kalmykova, A.; Kupriyanova, O. Constant–Current Coulometry with Electrogenerated Titrants as a Novel Tool for the Essential Oils Screening Using Total Antioxidant Parameters. Antioxidants 2022, 11, 1749. https://doi.org/10.3390/antiox11091749
Ziyatdinova G, Kalmykova A, Kupriyanova O. Constant–Current Coulometry with Electrogenerated Titrants as a Novel Tool for the Essential Oils Screening Using Total Antioxidant Parameters. Antioxidants. 2022; 11(9):1749. https://doi.org/10.3390/antiox11091749
Chicago/Turabian StyleZiyatdinova, Guzel, Alena Kalmykova, and Olga Kupriyanova. 2022. "Constant–Current Coulometry with Electrogenerated Titrants as a Novel Tool for the Essential Oils Screening Using Total Antioxidant Parameters" Antioxidants 11, no. 9: 1749. https://doi.org/10.3390/antiox11091749
APA StyleZiyatdinova, G., Kalmykova, A., & Kupriyanova, O. (2022). Constant–Current Coulometry with Electrogenerated Titrants as a Novel Tool for the Essential Oils Screening Using Total Antioxidant Parameters. Antioxidants, 11(9), 1749. https://doi.org/10.3390/antiox11091749