Evolutionary Conserved Short Linear Motifs Provide Insights into the Cellular Response to Stress
Abstract
:Highlights
- Hundreds of short linear motifs (SLiMs) that exhibit a high degree of sequence similarity to two biologically active sites of human alpha-fetoprotein (AFP) were identified.
- The SLiMs of interest are ubiquitously distributed and found in proteins of both eukaryotic and prokaryotic species.
- Proteins retrieved by sequence alignment belonged to various functional classes to be directly or indirectly involved in cellular response to stress.
- Our findings provide insights into the common functions of evolutionary conserved SLiMs and putative involvement of AFP in response to external and internal stimuli during cellular adaptation during embryonic development and cancer.
Abstract
1. Introduction
2. Materials and Methods
2.1. Mapping of AFP14–20-like and GIP-9-like Peptides
2.2. Search for Short Linear Motifs
2.3. Amino Acid Conservation Analysis
2.4. Functional Classification of Retrieved Proteins
2.5. Gene Set Enrichment Analysis
3. Results
3.1. Biologically Active Peptides Are Located on AFP Surface
3.2. Proteins Containing SLiMs of Interest Are Biologically Diverse
3.3. SLiMs of Interest Are Enriched in Conserved Residues
3.4. Retrieved Genes Ubiquitously Exist
3.5. Retrieved Proteins Are Functionally Diverse
3.6. Prokaryotic Genes Are Required for Stress Tolerance
3.7. Eukaryotic Genes Are Responsible for Stress and Defense Response
4. Discussion
4.1. AFP14–20-like Motif-Containing Proteins
4.2. GIP-9-like Motif-Containing Proteins
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Neduva, V.; Russell, R.B. Linear motifs: Evolutionary interaction switches. FEBS Lett. 2005, 579, 3342–3345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davey, N.E.; Van Roey, K.; Weatheritt, R.J.; Toedt, G.; Uyar, B.; Altenberg, B.; Budd, A.; Diella, F.; Dinkel, H.; Gibson, T.J. Attributes of short linear motifs. Mol. Biosyst. 2012, 8, 268–281. [Google Scholar] [CrossRef]
- Van Roey, K.; Davey, N.E. Motif co-regulation and co-operativity are common mechanisms in transcriptional, post-transcriptional and post-translational regulation. Cell Commun. Signal 2015, 13, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolodny, R. Searching protein space for ancient sub-domain segments. Curr. Opin. Struct. Biol. 2021, 68, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Nepomnyachiy, S.; Ben-Tal, N.; Kolodny, R. Global view of the protein universe. Proc. Natl. Acad. Sci. USA 2014, 111, 11691–11696. [Google Scholar] [CrossRef] [Green Version]
- Höcker, B. Design of proteins from smaller fragments-learning from evolution. Curr. Opin. Struct. Biol. 2014, 27, 56–62. [Google Scholar] [CrossRef]
- Romero Romero, M.L.; Rabin, A.; Tawfik, D.S. Functional proteins from short peptides: Dayhoff’s hypothesis turns 50. Angew. Chem. Int. Ed. Engl. 2016, 55, 15966–15971. [Google Scholar] [CrossRef]
- Eck, R.V.; Dayhoff, M.O. Evolution of the structure of ferredoxin based on living relics of primitive amino acid sequences. Science 1966, 152, 363–366. [Google Scholar] [CrossRef]
- Alva, V.; Söding, J.; Lupas, A.N. A vocabulary of ancient peptides at the origin of folded proteins. Elife 2015, 4, e09410. [Google Scholar] [CrossRef]
- Verschueren, E.; Vanhee, P.; van der Sloot, A.M.; Serrano, L.; Rousseau, F.; Schymkowitz, J. Protein design with fragment databases. Curr. Opin. Struct. Biol. 2011, 21, 452–459. [Google Scholar] [CrossRef]
- Kolodny, R.; Nepomnyachiy, S.; Tawfik, D.S.; Ben-Tal, N. Bridging themes: Short protein segments found in different architectures. Mol. Biol. Evol. 2021, 38, 2191–2208. [Google Scholar] [CrossRef] [PubMed]
- Sologova, S.S.; Zavadskiy, S.P.; Mokhosoev, I.M.; Moldogazieva, N.T. Short linear motifs orchestrate functioning of human proteins during embryonic development, redox regulation, and cancer. Metabolites 2022, 12, 464. [Google Scholar] [CrossRef] [PubMed]
- Terentiev, A.A.; Moldogazieva, N.T. Alpha-fetoprotein: A renaissance. Tumour. Biol. 2013, 34, 2075–2091. [Google Scholar] [CrossRef] [PubMed]
- Terentiev, A.A.; Moldogazieva, N.T. Structural and functional mapping of alpha-fetoprotein. Biochemistry 2006, 71, 120–132. [Google Scholar] [CrossRef]
- Muehlemann, M.; Miller, K.D.; Dauphinee, M.; Mizejewski, G.J. Review of growth inhibitory peptide as a biotherapeutic agent for tumor growth, adhesion, and metastasis. Cancer Metastasis Rev. 2005, 24, 441–467. [Google Scholar] [CrossRef]
- Mizejewski, G.J.; Eisele, L.; Maccoll, R. Anticancer versus antigrowth activities of three analogs of the growth-inhibitory peptide: Relevance to physicochemical properties. Anticancer Res. 2006, 26, 3071–3076. [Google Scholar]
- Jacobson, H.I.; Andersen, T.T.; Bennett, J.A. Development of an active site peptide analog of α-fetoprotein that prevents breast cancer. Cancer Prev. Res. 2014, 7, 565–573. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; West, G.R.; Wang, D.C.; Collins, A.B.; Xiao, H.; Bai, Q.; Mesfin, F.B.; Wakefield, M.R.; Fang, Y. AFP peptide (AFPep) as a potential growth factor for prostate cancer. Med. Oncol. 2021, 39, 2. [Google Scholar] [CrossRef]
- Butterstein, G.; Morrison, J.; Mizejewski, G.J. Effect of alpha-fetoprotein and derived peptides on insulin- and estrogen-induced fetotoxicity. Fetal. Diagn. Ther. 2003, 18, 360–369. [Google Scholar] [CrossRef]
- Moldogazieva, N.T.; Shaitan, K.V.; Antonov, M.Y.; Vinogradova, I.K.; Terentiev, A.A. Influence of intramolecular interactions on conformational and dynamic properties of analogs of heptapeptide AFP14-20. Biochemistry 2011, 76, 1321–1336. [Google Scholar] [CrossRef]
- Moldogazieva, N.T.; Shaitan, K.V.; Antonov, M.Y.; Mokhosoev, I.M.; Levtsova, O.V.; Terentiev, A.A. Human EGF-derived direct and reverse short linear motifs: Conformational dynamics insight into the receptor-binding residues. J. Biomol. Struct. Dyn. 2018, 36, 1286–1305. [Google Scholar] [CrossRef] [PubMed]
- Moldogazieva, N.T.; Terentiev, A.A.; Antonov, M.Y.; Kazimirsky, A.N.; Shaitan, K.V. Correlation between biological activity and conformational dynamics properties of tetra- and pentapeptides derived from fetoplacental proteins. Biochemistry 2012, 77, 469–484. [Google Scholar] [CrossRef] [PubMed]
- Terentiev, A.A.; Moldogazieva, N.T.; Levtsova, O.V.; Maximenko, D.M.; Borozdenko, D.A.; Shaitan, K.V. Modeling of three-dimensional structure of human alpha-fetoprotein complexed with diethylstilbestrol: Docking and molecular dynamics simulation study. J. Bioinform. Comput. Biol. 2012, 10, 1241012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moldogazieva, N.T.; Ostroverkhova, D.S.; Kuzmich, N.N.; Kadochnikov, V.V.; Terentiev, A.A.; Porozov, Y.B. Elucidating binding sites and affinities of ERα agonists and antagonists to human alpha-fetoprotein by in silico modeling and point mutagenesis. Int. J. Mol. Sci. 2020, 21, 893. [Google Scholar] [CrossRef] [Green Version]
- Rosignoli, S.; Paiardini, A. Boosting the full potential of PyMOL with structural biology plugins. Biomolecules 2022, 12, 1764. [Google Scholar] [CrossRef]
- Pearson, W.R. Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzymol. 1990, 183, 63–98. [Google Scholar] [CrossRef] [PubMed]
- Cantelli, G.; Bateman, A.; Brooksbank, C.; Petrov, A.I.; Malik-Sheriff, R.S.; Ide-Smith, M.; Hermjakob, H.; Flicek, P.; Apweiler, R.; Birney, E.; et al. The European Bioinformatics Institute (EMBL-EBI) in 2021. Nucleic. Acids. Res. 2022, 50, D11–D19. [Google Scholar] [CrossRef]
- UniProt Consortium. UniProt: The universal protein knowledgebase in 2021. Nucleic. Acids Res. 2021, 49, D480–D489. [CrossRef] [PubMed]
- Crooks, G.E.; Hon, G.; Chandonia, J.M.; Brenner, S.E. WebLogo: A sequence logo generator. Genome. Res. 2004, 14, 1188–1190. [Google Scholar] [CrossRef] [Green Version]
- Gene Ontology Consortium. The Gene Ontology resource: Enriching a GOld mine. Nucleic Acids Res. 2021, 49, D325–D334. [Google Scholar] [CrossRef] [PubMed]
- Blum, M.; Chang, H.Y.; Chuguransky, S.; Grego, T.; Kandasaamy, S.; Mitchell, A.; Nuka, G.; Paysan-Lafosse, T.; Qureshi, M.; Raj, S.; et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res. 2021, 49, D344–D354. [Google Scholar] [CrossRef]
- Mi, H.; Ebert, D.; Muruganujan, A.; Mills, C.; Albou, L.P.; Mushayamaha, T.; Thomas, P.D. PANTHER version 16: A revised family classification, tree-based classification tool, enhancer regions and extensive API. Nucleic Acids Res 2021, 49, D394–D403. [Google Scholar] [CrossRef]
- Ge, S.X.; Jung, D.; Yao, R. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics 2020, 36, 2628–2629. [Google Scholar] [CrossRef] [PubMed]
- Raudvere, U.; Kolberg, L.; Kuzmin, I.; Arak, T.; Adler, P.; Peterson, H.; Vilo, J. g:Profiler: A web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019, 47, W191–W198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreini, C.; Ciofi-Baffoni, S. Basic iron-sulfur centers. Met. Ions Life Sci. 2020, 20. [Google Scholar] [CrossRef]
- Pletnev, P.I.; Shulenina, O.; Evfratov, S.; Treshin, V.; Subach, M.F.; Serebryakova, M.V.; Osterman, I.A.; Paleskava, A.; Bogdanov, A.A.; Dontsova, O.A.; et al. Ribosomal protein S18 acetyltransferase RimI is responsible for the acetylation of elongation factor Tu. J. Biol. Chem. 2022, 298, 101914. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, Y.; Pang, Y.; Yu, H.; Zhang, W.; Zhao, X.; Yu, J. The distinct roles of zinc finger CCHC-type (ZCCHC) superfamily proteins in the regulation of RNA metabolism. RNA Biol. 2021, 18, 2107–2126. [Google Scholar] [CrossRef]
- Mailloux, R.J.; Young, A.; Chalker, J.; Gardiner, D.; O’Brien, M.; Slade, L.; Brosnan, J.T. Choline and dimethylglycine produce superoxide/hydrogen peroxide from the electron transport chain in liver mitochondria. FEBS Lett. 2016, 590, 4318–4328. [Google Scholar] [CrossRef]
- Potempa, J.; Madej, M.; Scott, D.A. The RagA and RagB proteins of Porphyromonas gingivalis. Mol. Oral. Microbiol. 2021, 36, 225–232. [Google Scholar] [CrossRef]
- Kameyama, S.; Mizuguchi, T.; Fukuda, H.; Moey, L.H.; Keng, W.T.; Okamoto, N.; Tsuchida, N.; Uchiyama, Y.; Koshimizu, E.; Hamanaka, K.; et al. Biallelic null variants in ZNF142 cause global developmental delay with familial epilepsy and dysmorphic features. J. Hum. Genet. 2022, 67, 169–173. [Google Scholar] [CrossRef]
- Fitzgerald, D.M.; Rosenberg, S.M. Biology before the SOS response-DNA damage mechanisms at chromosome fragile sites. Cells 2021, 10, 2275. [Google Scholar] [CrossRef]
- Mittl, P.R.; Schneider-Brachert, W. Sel1-like repeat proteins in signal transduction. Cell Signal. 2007, 19, 20–31. [Google Scholar] [CrossRef]
- Ishii, E.; Eguchi, Y. Diversity in sensing and signaling of bacterial sensor histidine kinases. Biomolecules 2021, 11, 1524. [Google Scholar] [CrossRef]
- Sushko, T.; Kavaleuski, A.; Grabovec, I.; Kavaleuskaya, A.; Vakhrameev, D.; Bukhdruker, S.; Marin, E.; Kuzikov, A.; Masamrekh, R.; Shumyantseva, V.; et al. A new twist of rubredoxin function in M. tuberculosis. Bioorg. Chem. 2021, 109, 104721. [Google Scholar] [CrossRef]
- Li, Z.; Wang, R.; Qiu, C.; Cao, C.; Zhang, J.; Ge, J.; Shi, Y. Role of DTL in hepatocellular carcinoma and its impact on the tumor microenvironment. Front. Immunol. 2022, 13, 834606. [Google Scholar] [CrossRef]
- Sjöholm, J.; Oliveira, P.; Lindblad, P. Transcription and regulation of the bidirectional hydrogenase in the cyanobacterium Nostoc sp. strain PCC 7120. Appl. Environ. Microbiol. 2007, 73, 5435–5446. [Google Scholar] [CrossRef] [Green Version]
- Xiu, M.X.; Liu, Y.M.; Kuang, B.H. The oncogenic role of Jagged1/Notch signaling in cancer. Biomed. Pharmacother. 2020, 129, 110416. [Google Scholar] [CrossRef] [PubMed]
- Tachibana, A.; Hamajima, R.; Tomizaki, M.; Kondo, T.; Nanba, Y.; Kobayashi, M.; Yamada, H.; Ikeda, M. HCF-1 encoded by baculovirus AcMNPV is required for productive nucleopolyhedrovirus infection of non-permissive Tn368 cells. Sci. Rep. 2017, 7, 3807. [Google Scholar] [CrossRef]
- Corbella, M.; Liao, Q.; Moreira, C.; Parracino, A.; Kasson, P.M.; Kamerlin, S.C.L. The N-terminal helix-turn-helix motif of transcription factors MarA and Rob drives DNA recognition. J. Phys. Chem. 2021, 125, 6791–6806. [Google Scholar] [CrossRef]
- Waghwani, H.K.; Douglas, T. Cytochrome c with peroxidase-like activity encapsulated inside the small DPS protein nanocage. J. Mater. Chem. B 2021, 9, 3168–3179. [Google Scholar] [CrossRef]
- Hong, G.; Kuek, V.; Shi, J.; Zhou, L.; Han, X.; He, W.; Tickner, J.; Qiu, H.; Wei, Q.; Xu, J. EGFL7: Master regulator of cancer pathogenesis, angiogenesis and an emerging mediator of bone homeostasis. J. Cell Physiol. 2018, 233, 8526–8537. [Google Scholar] [CrossRef] [PubMed]
- Cuthbertson, L.; Nodwell, J.R. The TetR family of regulators. Microbiol. Mol. Biol. Rev. 2013, 77, 440–475. [Google Scholar] [CrossRef] [Green Version]
- Imhoff, J.F.; Rahn, T.; Künzel, S.; Keller, A.; Neulinger, S.C. Osmotic adaptation and compatible solute biosynthesis of phototrophic bacteria as revealed from genome analyses. Microorganisms 2020, 9, 46. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Zeng, Y.; Zhu, Y.; Shen, J.; Ye, H.; Jiang, L. Plant Rho GTPase signaling promotes autophagy. Mol. Plant 2021, 14, 905–920. [Google Scholar] [CrossRef] [PubMed]
- Khamtorn, P.; Peigneur, S.; Amorim, F.G.; Quinton, L.; Tytgat, J.; Daduang, S. De novo transcriptome analysis of the venom of Latrodectus geometricus with the discovery of an insect-selective Na channel modulator. Molecules 2021, 27, 47. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Lu, W. Defensins: A double-edged sword in host immunity. Front. Immunol. 2020, 11, 764. [Google Scholar] [CrossRef]
- Loppin, B.; Dubruille, R.; Horard, B. The intimate genetics of Drosophila fertilization. Open. Biol. 2015, 5, 150076. [Google Scholar] [CrossRef] [Green Version]
- Imperial, J.S.; Kantor, Y.; Watkins, M.; Heralde, F.M., 3rd; Stevenson, B.; Chen, P.; Hansson, K.; Stenflo, J.; Ownby, J.P.; Bouchet, P.; et al. Venomous auger snail Hastula (Impages) hectica (Linnaeus, 1758): Molecular phylogeny, foregut anatomy and comparative toxicology. J. Exp. Zool. B Mol. Dev. Evol. 2007, 308, 744–756. [Google Scholar] [CrossRef]
- Gomez-Arrebola, C.; Solano, C.; Lasa, I. Regulation of gene expression by non-phosphorylated response regulators. Int. Microbiol. 2021, 24, 521–529. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, Y.J.; Guo, L.C.; Ji, C.; Hu, J.; Zhang, H.H.; Xu, Q.H.; Zhu, W.D.; Ming, Z.J.; Yuan, Y.S.; et al. Nucleus accumbens-associated protein-1 promotes glycolysis and survival of hypoxic tumor cells via the HDAC4-HIF-1α axis. Oncogene 2017, 36, 4171–4181. [Google Scholar] [CrossRef] [Green Version]
- Conlon, J.M.; Kolodziejek, J.; Mechkarska, M.; Coquet, L.; Leprince, J.; Jouenne, T.; Vaudry, H.; Nielsen, P.F.; Nowotny, N.; King, J.D. Host defense peptides from Lithobates forreri, Hylarana luctuosa, and Hylarana signata (Ranidae): Phylogenetic relationships inferred from primary structures of ranatuerin-2 and brevinin-2 peptides. Comp. Biochem. Physiol. Part D Genom. Proteom. 2017, 9, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.Q.; He, L.L.; Brône, B.; Martin-Eauclaire, M.F.; Van Kerkhove, E.; Zhou, Z.; Chi, C.W. A novel scorpion toxin blocking small conductance Ca2+ activated K+ channel. Toxicon 2004, 43, 961–971. [Google Scholar] [CrossRef] [PubMed]
- Leal, A.S.; Reich, L.A.; Moerland, J.A.; Zhang, D.; Liby, K.T. Potential therapeutic uses of rexinoids. Adv. Pharmacol. 2021, 91, 141–183. [Google Scholar] [CrossRef]
- Cheng, J.T.; Wang, Y.Y.; Zhu, L.Z.; Zhang, Y.; Cai, W.Q.; Han, Z.W.; Zhou, Y.; Wang, X.W.; Peng, X.C.; Xiang, Y.; et al. Novel transcription regulatory sequences and factors of the immune evasion protein ICP47 (US12) of herpes simplex viruses. Virol. J. 2020, 17, 101. [Google Scholar] [CrossRef]
- Ohnishi, T.; Ohnishi, S.T.; Salerno, J.C. Five decades of research on mitochondrial NADH-quinone oxidoreductase (complex I). Biol. Chem. 2018, 399, 1249–1264. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Wang, X. One new kind of phytohormonal signaling integrator: Up-and-coming GASA family genes. Plant. Signal Behav. 2017, 12, e1226453. [Google Scholar] [CrossRef] [Green Version]
- Dos Vultos, T.; Mestre, O.; Tonjum, T.; Gicquel, B. DNA repair in Mycobacterium tuberculosis revisited. FEMS Microbiol. Rev. 2009, 33, 471–487. [Google Scholar] [CrossRef] [Green Version]
- Almawi, A.W.; Matthews, L.A.; Guarné, A. FHA domains: Phosphopeptide binding and beyond. Prog. Biophys. Mol. Biol. 2017, 127, 105–110. [Google Scholar] [CrossRef]
- Jalal, A.S.B.; Le, T.B.K. Bacterial chromosome segregation by the ParABS system. Open Biol. 2020, 10, 200097. [Google Scholar] [CrossRef]
- Kang, S.M.; Kim, D.H.; Jin, C.; Ahn, H.C.; Lee, B.J. The crystal structure of AcrR from Mycobacterium tuberculosis reveals a one-component transcriptional regulation mechanism. FEBS Open. Bio 2019, 9, 1713–1725. [Google Scholar] [CrossRef] [Green Version]
- Gout, I. Coenzyme A, protein CoAlation and redox regulation in mammalian cells. Biochem. Soc. Trans. 2018, 46, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Geerlings, N.M.J.; Karman, C.; Trashin, S.; As, K.S.; Kienhuis, M.V.M.; Hidalgo-Martinez, S.; Vasquez-Cardenas, D.; Boschker, H.T.S.; De Wael, K.; Middelburg, J.J.; et al. Division of labor and growth during electrical cooperation in multicellular cable bacteria. Proc. Natl. Acad. Sci. USA 2020, 117, 5478–5485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.; Pan, C.; Feng, C.; Yan, C.; Yu, Y.; Chen, Z.; Guo, C.; Wang, X. Role of mitochondrial reactive oxygen species in homeostasis regulation. Redox Rep. 2022, 27, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Karlik, E. Potential stress tolerance roles of barley germins and GLPs. Dev. Genes. Evol. 2021, 231, 109–118. [Google Scholar] [CrossRef]
- Hu, Y.; Meng, J.; Shi, C.; Hervin, K.; Fratamico, P.M.; Shi, X. Characterization and comparative analysis of a second thermonuclease from Staphylococcus aureus. Microbiol. Res. 2013, 168, 174–182. [Google Scholar] [CrossRef]
- Pulido, R.; Lang, R. Dual specificity phosphatases: From molecular mechanisms to biological function. Int. J. Mol. Sci. 2019, 20, 4372. [Google Scholar] [CrossRef] [Green Version]
- Villalaín, J. Envelope E protein of dengue virus and phospholipid binding to the late endosomal membrane. Biochim. Biophys. Acta Biomembr. 2022, 1864, 183889. [Google Scholar] [CrossRef]
- Sellés Vidal, L.; Kelly, C.L.; Mordaka, P.M.; Heap, J.T. Review of NAD(P)H-dependent oxidoreductases: Properties, engineering and application. Biochim. Biophys. Acta Proteins Proteom. 2018, 1866, 327–347. [Google Scholar] [CrossRef]
- Katz, A.; Elgamal, S.; Rajkovic, A.; Ibba, M. Non-canonical roles of tRNAs and tRNA mimics in bacterial cell biology. Mol. Microbiol. 2016, 101, 545–558. [Google Scholar] [CrossRef] [Green Version]
- Sengupta, S.; Nechushtai, R.; Jennings, P.A.; Onuchich, J.N.; Padulla, P.A.; Azad, R.K.; Mittler, R. Phylogenetic analysis of the CDGSH iron-sulfur binding domain reveals its ancient origin. Sci. Rep. 2018, 8, 4840. [Google Scholar] [CrossRef]
- Ma, H.; Zhao, H.; Liu, Z.; Zhao, J. The phytocyanin gene family in rice (Oryza sativa L.): Genome-wide identification, classification and transcriptional analysis. PLoS ONE 2011, 6, e25184. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Wang, F.; Liu, B.; Xu, C.; He, Q.; Cheng, W.; Zhao, X.; Ding, Z.; Zhang, W.; Zhang, K.; et al. ZmSKS13, a cupredoxin domain-containing protein, is required for maize kernel development via modulation of redox homeostasis. New Phytol. 2021, 229, 2163–2178. [Google Scholar] [CrossRef] [PubMed]
- Svetlov, M.S. Ribosome-associated quality control in bacteria. Biochemistry 2021, 86, 942–951. [Google Scholar] [CrossRef]
- Prohaska, J.R. Role of copper transporters in copper homeostasis. Am J Clin Nutr. 2008, 88, 826S–829S. [Google Scholar] [CrossRef] [Green Version]
- Zhu, G.; Cai, H.; Yem, L.; Mo, Y.; Zhu, M.; Zeng, Y.; Song, X.; Yang, C.; Gao, X.; Wang, J.; et al. Small proline-rich protein 3 regulates IL-33/ILC2 axis to promote allergic airway inflammation. Front. Immunol. 2020, 12, 758829. [Google Scholar] [CrossRef] [PubMed]
- Bordes, P.; Sala, A.J.; Ayala, S.; Texier, P.; Slama, N.; Cirinesi, A.M.; Guillet, V.; Mourey, L.; Genevaux, P. Chaperone addiction of toxin-antitoxin systems. Nat. Commun. 2016, 7, 13339. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Wang, Y.; Hu, J.; Zhang, X.; Zhang, Y.W. CutA divalent cation tolerance homolog (Escherichia coli) (CUTA) regulates β-cleavage of β-amyloid precursor protein (APP) through interacting with β-site APP cleaving protein 1 (BACE1). J. Biol. Chem. 2012, 287, 11141–11150. [Google Scholar] [CrossRef] [Green Version]
- Hyjek, M.; Figiel, M.; Nowotny, M. RNases H: Structure and mechanism. DNA Repair. 2019, 84, 102672. [Google Scholar] [CrossRef]
- Mackeh, R.; Marr, A.K.; Fadda, A.; Kino, T. C2H2-type zinc finger proteins: Evolutionarily old and new partners of the nuclear hormone receptors. Nucl. Recept. Signal. 2018, 15, 1550762918801071. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Y.; Graves, D.T. FOXO transcription factors: Their clinical significance and regulation. Biomed. Res. Int. 2014, 2014, 925350. [Google Scholar] [CrossRef] [Green Version]
- Vaish, S.; Gupta, D.; Mehrotra, R.; Mehrotra, S.; Basantani, M.K. Glutathione S-transferase: A versatile protein family. 3 Biotech. 2020, 10, 321. [Google Scholar] [CrossRef] [PubMed]
- Davey, N.E.; Cyert, M.S.; Moses, A.M. Short linear motifs-ex nihilo evolution of protein regulation. Cell Commun. Signal. 2015, 13, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terentiev, A.A.; Moldogazieva, N.T. Cell adhesion proteins and alpha-fetoprotein. Similar structural motifs as prerequisites for common functions. Biochemistry 2007, 72, 920–935. [Google Scholar] [CrossRef] [PubMed]
- Kienast, A.; Preuss, M.; Winkler, M.; Dick, T.P. Redox regulation of peptide receptivity of major histocompatibility complex class I molecules by ERp57 and tapasin. Nat. Immunol. 2007, 8, 864–872. [Google Scholar] [CrossRef]
- Gursoy-Yuzugullu, O.; Ayrapetov, M.K.; Price, B.D. Histone chaperone Anp32e removes H2A.Z from DNA double-strand breaks and promotes nucleosome reorganization and DNA repair. Proc. Natl. Acad. Sci. USA 2015, 112, 7507–7512. [Google Scholar] [CrossRef] [Green Version]
- Moldogazieva, N.T.; Mokhosoev, I.M.; Mel’nikova, T.I.; Zavadskiy, S.P.; Kuz’menko, A.N.; Terentiev, A.A. Dual character of reactive oxygen, nitrogen, and halogen species: Endogenous sources, interconversions and neutralization. Biochemistry 2020, 85 (Suppl. S1), S56–S78. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Zhang, W.; Zhao, D.; Zhang, L.; Fan, J.; Li, J.; Zhan, Q. Membranous NOX5-derived ROS oxidizes and activates local Src to promote malignancy of tumor cells. Signal Transduct. Target. 2020, 5, 139. [Google Scholar] [CrossRef]
- García-Cerdán, J.G.; Furst, A.L.; McDonald, K.L.; Schünemann, D.; Francis, M.B.; Niyogi, K.K. A thylakoid membrane-bound and redox-active rubredoxin (RBD1) functions in de novo assembly and repair of photosystem II. Proc. Natl. Acad. Sci. USA 2019, 116, 16631–16640. [Google Scholar] [CrossRef] [Green Version]
- Graham, D.B.; Lefkovith, A.; Deelen, P.; de Klein, N.; Varma, M.; Boroughs, A.; Desch, A.N.; Ng, A.C.Y.; Guzman, G.; Schenone, M.; et al. TMEM258 is a component of the oligosaccharyltransferase complex controlling ER stress and intestinal inflammation. Cell Rep. 2016, 17, 2955–2965. [Google Scholar] [CrossRef] [Green Version]
- Fittipaldi, S.; Mercatelli, N.; Dimauro, I.; Jackson, M.J.; Paronetto, M.P.; Caporossi, D. Alpha B-crystallin induction in skeletal muscle cells under redox imbalance is mediated by a JNK-dependent regulatory mechanism. Free Radic. Biol. Med. 2015, 86, 331–342. [Google Scholar] [CrossRef]
Protein Name | Species | Entry Code | Gene Symbol | Alignment | Aa Positions | Identity Degree | E-Value | Biological Roles | Reference |
---|---|---|---|---|---|---|---|---|---|
Rubredoxin | Methanoregulaceae archaeon | TR: A0A1V5A688 | rub_2 | LDSYQCT MDSYQCT | 1–7 | 85.7% | 3.9 × 10−11 | Electron transfer, iron-binding, redox regulation | [35] |
Ribosomal protein S18-alanine N-acetyltransferase | Acinetobacter sp. | TR: A0A5C8C7V6 | rimI | LDSYQCT LDSYQCT | 1–7 | 100% | 1.5 × 10−9 | Translational regulation | [36] |
CCHC-type domain-containing protein | Crassostrea gigas | TR: K1QN18 | CGI | LDSYQCT MDSYQCS | 11–17 | 71.4% | 3.4 × 10−6 | Transcriptional regulation, response to environmental changes | [37] |
Choline dehydrogenase | Comamonadaceae bacterium | TR: A0A2H0JD95 | COW02_01535 | LDSYQCT LDSYQCT | 134–140 | 100% | 5.3 × 10−6 | Oxidative stress response | [38] |
RagB/SusD family nutrient uptake outer membrane protein | Ginsengibacter hankyongi | TR: A0A5J5IHS1 | FW778_00440 | LDSYQCT LDSYQCT | 303–309 | 100% | 5.3 × 10−6 | Host cell response to pathogen | [39] |
Zinc-finger protein 142, | Nothobranchius kuhntae | TR: A0A1A8JQF5 | ZNF142 | LDSYQCT LDSYRCS | 24–30 | 71.4% | 8.8 × 10−6 | DNA-binding, response to environmental changes | [40] |
Ferredoxin-type protein NapF | Salipiger sp. | TR: A0A2A3JNE6 | CLG85_24025 | LDS YQCT LDSAQCT | 3–9 | 85.7% | 1.1 × 10−5 | Nitrate oxidation, redox balance | [35] |
8-oxo-dGTP diphosphatase MutT | Spirochaetae bacterium | TR: A0A2N1RAE0 | MutT (CVV52_19070) | LDS YQCT MDAYQCT | 81–87 | 71.4% | 1.5 × 10−5 | Removal of oxidatively damaged guanine, DNA repair | [41] |
Sel1 domain protein repeat-containing protein | Nitrosococcus halophilus | TR: D5BUP3 | Nhal_0240 | LDSYQCT LDGYQCT | 63–69 | 85.7% | 3.0 × 10−5 | Protein degradation, response to pathogen | [42] |
Histidine kinase response regulator | Bacteroidetes bacterium | TR: A0A2M7KDX5 | COZ59_01780 | LDS YQCT MDGYQCT | 45–51 | 71.4% | 3.8 × 10−5 | Regulation of stress response | [43] |
Ferredoxin | Candidatus electrothrix aarhusiensis | TR: A0A444IS91 | H206_03280 | LDSYQCT I DTYQCS | 6–12 | 57.1% | 5.5 × 10−5 | Electron transfer, metal ion binding, redox regulation | [44] |
DTL protein | Balaeniceps rex | TR: A0A7L2U6N2 | Dtl | LDSYQCT LDSYQCS | 10–16 | 85.7% | 5.8 × 10−5 | Response to DNA damage and immunosuppressive microenvironment | [45] |
Anaredoxin | Nostoc sp. | SP: Q44141 | Adx | LDSYQCT LESYQCM | 19–25 | 71.4% | 6.1 × 10−5 | Oxidoreductase, endonuclease, redox regulation | [46] |
Protein jagged-1 | Trichoplax sp. H2 | TR: A0A369RNS5 | TrispH2_012046 | LDSYQCT LDQYQCT | 207–213 | 85.7% | 1.1 × 10−4 | Notch signaling, angiogenesis, response to hypoxia | [47] |
Host range factor 1 | Lymantria dispar multicapsid nuclear polyhedrosis virus | SP: Q90165 | HRF-1 | LDSYQCT VDSYKCT | 14–20 | 71.4% | 1.6 × 10−4 | Host response to virus | [48] |
Helix-turn-helix domain-containing protein | Cytophagaceae bacterium | TR: A0A4Q3N6Z7 | EOO38_22880 | LDSYQCT LDDYQCT | 59–65 | 85.7% | 2.4 × 10−4 | DNA binding, response to pathogen | [49] |
Cytochrome c | Ignavibacteriae bacterium | TR: A0A660Z7I5 | DRQ13_06320 | LDSYQCT LDTYQCT | 239–245 | 85.7% | 2.9 × 10−4 | ETC component, oxidative stress | [50] |
Calcium binding EGF domain protein | Trichinella nativa | TR: A0A1Y3EHZ0 | D917_09763 | LDSYQCT MDSYQCR | 79–85 | 71.4% | 2.9 × 10−4 | Cell proliferation and adhesion, angiogenesis under hypoxia | [51] |
TetR family transcriptional regulator | Pedobacter duraqua | TR: A0A4V3C417 | CLV32_0466 | LDSYQCT LDSYQCK | 73–78 | 85.7% | 3.4 × 10−4 | Sensing small molecule inducers | [52] |
Flavin oxidoreductase | Salinivibrio sharmensis | TR: A0A1V3GXS2 | BZG19_13810 | LDSYQCT LDSYHCT | 188–194 | 85.7% | 4.0 × 10−4 | Oxidative stress response | [53] |
PRONE domain-containing protein | Prunus persica Prunus armeniaca | TR:M5VXJ9 | PRUPE_ppa002319mg | LDSYQCT MDSYQCT | 666–672 | 85.7% | 4.5 × 10−4 | Response to environmental stimuli | [54] |
U-scoloptoxin(05)-Er1a | Ethmostigmus rubripes | SP: P0DPX8 | N/A | LDSYQCT LECYQCT | 21–27 | 71.4% | 7.1 × 10−4 | Toxin activity, defense response | [55] |
Fungal defensin eurocin | Aspergillus amstelodami | SP: K7NSL0 | N/A | LDSYQCT GDAYQCS | 6–11 | 57.1% | 9.2 × 10−4 | Antimicrobial peptide, defense response | [56] |
Yemanuclein | Drosophila melanogaster | SP: P25992 | yem | LDSYQCT LDDYQCT | 846–852 | 85.7% | 1.0 × 10−3 | DNA binding, chromatin assembly, genome stability | [57] |
dITP/XTP pyrophosphatase | Legionella pneumophila | SP: Q5X245 | lpp2548 | LDSYQCT LNEYQCT | 160–166 | 71.4% | 5.5 × 10−3 | Preventing non-canonical nucleotide incorporation, SOS response | [41] |
Augerpeptide hheTx2 | Hastula hectica | SP: P0CI09 | N/A | LDSYQCT SDSCQCT | 11–17 | 71.4% | 8.7 × 10−3 | Toxin activity, C-rich antimicrobial peptide | [58] |
Stress response protein YhaX | Bacillus subtilis | SP: O07539 | yhaX | LDSYQCT LESYQCN | 96–102 | 71.4% | 8.9 × 10−3 | Mg and Cu ion binding, response to stress | [59] |
Nucleus accumbens-associated protein 1 | Mus musculus | SP: Q7TSZ8 | Nacc1 | LDSYQCT LDSVQCT | 172–178 | 85.7% | 9.2 × 10−3 | Response to hypoxic microenvironment | [60] |
Ranatuerin-3 | Lithobates catesbeianus | SP: P82780 | N/A | LDSYQCT LDKIKCT | 18–24 | 57.1% | 1.3 × 10−2 | Host antimicrobial response | [61] |
Leiurutoxin-3 | Leiurus quinquestriatus | SP:P45661 | N/A | LDSYQCT YDSSQCE | 8–14 | 57.1% | 1.5 × 10−2 | K+-channel regulator, defense response | [62] |
Retinoic acid receptor RXR-gamma-B | Danio rerio | SP:Q6DHP9 | rxrgb | LDSYQCT MSSYQCT | 112–118 | 71.4% | 1.8 × 10−2 | Gene expression and immune response | [63] |
Infected cell protein 47 | Human herpesvirus 2 | SP: P14345 | US12 | LDSYQCT LDSSRCT | 12–18 | 71.4% | 2.4 × 10−2 | Inhibiting CD8+ host adaptive immune response | [64] |
NADH-quinone oxidoreductase subunit A | Roseiflexus sp. Azotobacter vinelandii | SP: A5UXK0 | nuoA | LDSYQCT LDTYECG | 39–45 | 57.1% | 2.7 × 10−2 | Electron transfer oxidative stress response | [65] |
Brevinin-2Re | Pelophylax ridibundus | SP: C0HKZ9 | N/A | LDSYQCT LDK IQCK | 18–24 | 57.1% | 3.0 × 10−2 | Antimicrobial defense response | [61] |
Gibberellin-regulated protein 6 | Arabidopsis thaliana | SP: Q6NMQ7 | GASA6 | LDSYQCT LKSYQCG | 38–44 | 71.4% | 4.7 × 10−2 | Plant development, antimicrobial response | [66] |
Protein Name | Species | Entry Code | Gene Symbol | Alignment | Aa Positions | Identity Degree | E-Value | Biological Role | Reference |
---|---|---|---|---|---|---|---|---|---|
2′-deoxycytidine 5’-triphosphate deaminase | Parvularcula sp. | TR: A0A357L903 | DEA40_15450 | EMTPVNPGV EMTP I NPGL | 184–192 | 77.8% | 2.2 × 10−7 | Maintaining dNTP pool and genomic stability | [67] |
FHA domain-containing protein | Cryobacterium sp. | TR: A0A6H3K8T7 | E3O68_01825 | EMTPVNPGV ERTPVNPGV | 64–72 | 88.9% | 9.1 × 10−7 | DNA damage response, innate immune response | [68] |
Chromosome partitioning protein ParA | Verrucomicrobiaceae bacterium | TR: A0A4Q3BDS1 | EOP84_15500 | EMTPVNPGV EMTPFNPGL | 70–78 | 77.8% | 7.4 × 10−6 | Chromosome partitioning and segregation | [69] |
AcrR family transcriptional regulator | Gordonia humi | TR:A0A840EPS7 | BKA16_000043 | EMTPVNPGV EMSPVDPGV | 158–166 | 77.8% | 3.1 × 10−5 | Transcriptional regulation, resistance to toxic chemicals | [70] |
CoA-binding protein | Acidocella sp. | TR: A0A257Q4I9 | B7Z75_09205 | EMTPVNPGV EVTPVNPGL | 42–50 | 77.8% | 3.2 × 10−5 | Cellular metabolism under redox control | [71] |
Cell division protein FtsL | Betaproteobacteria bacterium | TR:A0A2N2UB63 | ftsL | EMTPVNPGV KMRPVNPGI | 72–80 | 66.7% | 9.2 × 10−5 | Chromosome scaffolding, cell cycle, Zn2+ ion sensitivity | [72] |
Cytochrome c-type biogenesis protein CcmE | Agrobacterium fabrum | SP: Q8UGR1 | ccmE | EMTPVNPGV EKTPVNPGT | 43–51 | 77.8% | 1.2 × 10−4 | Apoprotein-heme interaction, redox response | [73] |
Cupin domain-containing protein | Bradyrhizobium sp. | TR: A0A525IHT2 | E7774_03250 | EMTPVNPGV E I TPVGPGV | 75–83 | 77.8% | 5.3 × 10−4 | Response to biotic and abiotic stress; SOD activity | [74] |
Thermonuclease family protein | Chloroflexia bacterium | TR: A0A7W0PLY7 | H0T93_01160 | EMTPVNPGV E I TPVNPG I | 126–134 | 77.8% | 5.9 × 10−4 | DNA and RNA degradation, defense response | [75] |
Dual specificity phosphatase | Dicentrarchus labrax | TR: A0A8C4HFW9 | N/A | EMTPVNPGV NLTPVNPGV | 25–33 | 77.8% | 6.9 × 10−4 | Cell signaling, protection from genotoxicity, and injury | [76] |
Envelope glycoprotein E | Varicella-zoster virus | SP: P09259 | gE | EMTPVNPGV E ITPVNPGT | 524–532 | 77.8% | 7.0 × 10−4 | Viral immune response | [77] |
NADPH-dependent oxidoreductase | Brevibacterium aurantiacum | TR: A0A4Z0KM68 | EB834_09640 | EMTPVNPGV RMTPVSPGV | 135–143 | 77.8% | 3.7 × 10−3 | Oxidative stress response | [78] |
Ferredoxin | Planctomycetes bacterium | TR: A0A3L7UG95 | DWI22_14495 | EMTPVNPGV EMSPLCPG I | 43–51 | 55.6% | 4.8 × 10−3 | Iron-sulfur cluster binding, redox response | [35] |
Glutamyl-Q tRNA(Asp) synthetase | Gammaproteobacteria bacterium | TR: A0A4Y8UV00 | gluQ | EMTPVNPGV ELRPVNPGV | 17–25 | 77.8% | 4.6 × 10−3 | Response to amino acid availability | [79] |
Cisd2-a protein | Symbiodinium pilosum | TR: A0A812YDJ7 | cisd2-a | EMTPVNPGV KPTPVNPG I | 31–39 | 66.7% | 5.6 × 10−3 | Electron transfer, redox response | [80] |
Plastocyanin-like domain-containing protein | Strigops habroptila | TR: A0A672VBQ4 | N/A | EMTPVNPGV EMSPENPGT | 23–32 | 66.7% | 7.2 × 10−3 | Electron transfer regulated by light-dark switches | [81] |
Cupredoxin domain-containing protein | Thermoleophilaceae bacterium | TR: A0A838PN94 | H0U20_06955 | EMTPVNPGV ELNPANPGV | 37–45 | 66.7% | 9.7 × 10−3 | Oxidative stress response | [82] |
50S ribosomal protein L13e | Aeropyrum pernix | SP: Q9YEN9 | rpl13e | EMTPVNPGV KLGPVDPGV | 15–23 | 55.6% | 1.1 × 10−2 | Ribosome assembly | [83] |
Ceruloplasmin | Pterocles gutturalis | TR: A0A093CDT1 | CP | EMTPVNPGV EMTPQNPGT | 166–174 | 77.8% | 1.1 × 10−2 | Copper-binding ferroxidase activity | [84] |
Proline-rich protein 2 | Lottia gigantea | SP: B3A0R8 | PRH2 | EMTPVNPGV PMSPVRPGV | 90–98 | 66.7% | 1.1 × 10−2 | Cell cycle regulation under redox control | [85] |
Addiction module HigA family antidote | Thiogranum longum | TR: A0A4R1H8U5 | DFR30_1540 | EMTPVNPGV KLTP IHPGV | 4–12 | 55.6% | 1.7 × 10−2 | Plasmid addiction, bacterial growth under stress conditions | [86] |
Divalent-cation tolerance protein CutA | Actinomadura rudentiformis | TR: A0A6H9YAH5 | F8566_39675 | EMTPVNPGV EVTPGNPGV | 10–18 | 77.8% | 1.3 × 10−2 | Response to Cu2+ ion | [87] |
Ribonuclease HII | Rhodanobacter sp. | TR: A0A522L7A0 | rnhB | EMTPVNPGV ELTPANPGL | 3–11 | 66.7% | 1.7 × 10−2 | RNA binding, defense response | [88] |
C2H2-type domain-containing protein | Gibberella nygamai | TR: A0A2K0W957 | FNYG_07693 | EMTPVNPGV EPTPVNPGL | 133–141 | 77.8% | 2.0 × 10−2 | Transcriptional regulation, response to environmental changes | [89] |
Forkhead box protein O1 | Bos taurus | SP: E1BPQ1 | FOXO1 | EMTPVNPGV IMTPVDPGV | 445–453 | 77.8% | 2.8 × 10−2 | Metabolic homeostasis under oxidative stress | [90] |
Glutathione S-transferase | Caulobacter vibrioides | TR: A0A258CQ14 | B7Z12_21310 | EMTPVNPGV EMI PVN IGV | 30–38 | 77.8% | 3.8 × 10−2 | Substrate S-glutathionylation and detoxification | [91] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zavadskiy, S.P.; Gruzdov, D.S.; Sologova, S.S.; Terentiev, A.A.; Moldogazieva, N.T. Evolutionary Conserved Short Linear Motifs Provide Insights into the Cellular Response to Stress. Antioxidants 2023, 12, 96. https://doi.org/10.3390/antiox12010096
Zavadskiy SP, Gruzdov DS, Sologova SS, Terentiev AA, Moldogazieva NT. Evolutionary Conserved Short Linear Motifs Provide Insights into the Cellular Response to Stress. Antioxidants. 2023; 12(1):96. https://doi.org/10.3390/antiox12010096
Chicago/Turabian StyleZavadskiy, Sergey P., Denis S. Gruzdov, Susanna S. Sologova, Alexander A. Terentiev, and Nurbubu T. Moldogazieva. 2023. "Evolutionary Conserved Short Linear Motifs Provide Insights into the Cellular Response to Stress" Antioxidants 12, no. 1: 96. https://doi.org/10.3390/antiox12010096
APA StyleZavadskiy, S. P., Gruzdov, D. S., Sologova, S. S., Terentiev, A. A., & Moldogazieva, N. T. (2023). Evolutionary Conserved Short Linear Motifs Provide Insights into the Cellular Response to Stress. Antioxidants, 12(1), 96. https://doi.org/10.3390/antiox12010096