Antioxidant Capacity of Carotenoid Extracts from the Haloarchaeon Halorhabdus utahensis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Hrd. utahensis Cultivation
2.3. Extraction and Quantification of Carotenoids
2.4. Analysis of the Extracts
2.5. HPLC/UV-Vis and HPLC-Atmospheric Pressure Chemical Ionization Multistage Ion Trap Mass Spectrometry (APCI-ITMSn) Analyses
2.6. Antioxidant Assays
2.6.1. Radical Scavenging Activity
2.6.2. Superoxide Scavenging Activity
2.6.3. Ferric Reducing Antioxidant Power
- A593nm = 0.1572 μg r2 = 0. 9998 for ascorbic acid;
- A593nm = 0.0026 μg r2 = 0.9945 for BHT;
- A593nm = 0.0994 μg r2= 0.9914 for Trolox.
2.7. HAase Inhibition Assay
2.8. Statistical Analysis
3. Results and Discussion
3.1. Influence of Sugars on Carotenoid Production, Extraction, and Quantification
3.2. Analysis Identification, and Quantification of Carotenoids
3.3. Estimation of the Antioxidant Power
3.4. HAase Inhibition
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Silva, M.M.; Reboredo, F.H.; Lidon, F.C. Food Colour Additives: A Synoptical Overview on Their Chemical Properties, Applications in Food Products, and Health Side Effects. Foods 2022, 11, 379. [Google Scholar] [CrossRef] [PubMed]
- Baswan, S.M.; Klosner, A.E.; Weir, C.; Salter-Venzon, D.; Gellenbeck, K.W.; Leverett, J.; Krutmann, J. Role of ingestible carotenoids in skin protection: A review of clinical evidence. Photodermatol. Photoimmunol. Photomed. 2021, 37, 490–504. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.C.; Yen, G.C. Antioxidative and anti-inflammatory activity of functional foods. Curr. Opin. Food Sci. 2015, 2, 1–8. [Google Scholar] [CrossRef]
- Castro-Puyana, M.; Pérez-Sánchez, A.; Valdés, A.; Ibrahimd, O.H.M.; Suarez-Álvarez, S.; Ferragut, J.A.; Micol, V.; Cifuentes, A.; Ibáñez, E.; García-Cañas, V. Pressurized liquid extraction of Neochloris oleoabundans for the recovery of bioactive carotenoids with anti-proliferative activity against human colon cancer cells. Food Res. Int. 2017, 99, 1048–1055. [Google Scholar] [CrossRef] [PubMed]
- Marova, I.; Carnecka, M.; Halienova, A.; Certik, M.; Dvorakova, T.; Haronikova, A. Use of several waste substrates for carotenoid-rich yeast biomass production. J. Environ. Manag. 2012, 95, S338–S342. [Google Scholar] [CrossRef]
- Silva, T.P.; Paixấo, S.M.; Alves, L. Ability of Gordonia alkanivorans strain 1B for high added value carotenoids production. RSC Adv. 2016, 6, 58055–58063. [Google Scholar] [CrossRef]
- Cheng, Y.T.; Yang, C.F. Using strain Rhodotorula mucilaginosa to produce carotenoids using food wastes. J. Taiwan Inst. Chem. 2016, 61, 270–275. [Google Scholar] [CrossRef]
- Pennacchi, M.G.C.; Rodríguez-Fernández, D.E.; Vendruscolo, F.; Maranho, L.T.; Marc, I.; Alves da Costa Cardoso, L. A comparison of cell disruption procedures for the recovery of intracellular carotenoids from Sporobolomyces ruberrimus H110. Int. J. Appl. Biol. Pharm. 2015, 6, 136–143. [Google Scholar]
- Saini, R.K.; Keum, Y.S. Carotenoid extraction methods: A review of recent developments. Food Chem. 2018, 240, 90–103. [Google Scholar] [CrossRef]
- Yatsunami, R.; Ando, A.; Yang, Y.; Takaichi, S.; Kohno, M.; Matsumura, Y.; Ikeda, H.; Fukui, T.; Nakasone, K.; Fujita, N.; et al. Identification of carotenoids from the extremely halophilic archaeon Haloarcula japonica. Front. Microbiol. 2014, 5, 100. [Google Scholar] [CrossRef]
- Squillaci, G.; Serino, I.; La Cara, F.; Morana, A. The wonderful halophiles: Microorganisms producing useful compounds. In Extreme Environments: Unique Ecosystems-Amazing Microbes; Pandey, A., Sharma, A., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 1–20. [Google Scholar] [CrossRef]
- Giani, M.; Garbayo, I.; Vílchez, C.; Martínez-Espinosa, R.M. Haloarchaeal Carotenoids: Healthy Novel Compounds from Extreme Environments. Mar. Drugs 2019, 17, 524. [Google Scholar] [CrossRef] [PubMed]
- Wainø, M.; Tindall, B.J.; Ingvorsen, K. Halorhabdus utahensis gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea from Great Salt Lake, Utah. Int. J. Syst. Evol. Microbiol. 2000, 50, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Squillaci, G.; Parrella, R.; Carbone, V.; Minasi, P.; La Cara, F.; Morana, A. Carotenoids from the extreme halophilic archaeon Haloterrigena turkmenica: Identification and antioxidant activity. Extremophiles 2017, 21, 933–945. [Google Scholar] [CrossRef] [PubMed]
- Scott, K.J. Detection and Measurement of Carotenoids by UV/VIS Spectrophotometry. Curr. Protoc. Food Anal. Chem. 2001, 1, F2.2.1–F2.2.10. [Google Scholar] [CrossRef]
- Britton, G. General carotenoid methods. In Methods in Enzymology; Law, J.H., Rilling, H.C., Eds.; Elsevier: Amsterdam, The Netherlands, 1985; Volume 11, pp. 113–149. [Google Scholar]
- Jiménez-Escrig, A.; Jiménez-Jiménez, I.; Sánchez-Moreno, C.; Saura-Calixto, F. Evaluation of free radical scavenging of dietary carotenoids by the stable radical 2,2-diphenyl-1-picrylhydrazyl. J. Sci. Food Agric. 2000, 80, 1686–1690. [Google Scholar] [CrossRef]
- Li, X.A. Improved Pyrogallol Autoxidation Method: A Reliable and Cheap Superoxide-Scavenging Assay Suitable for All Antioxidants. J. Agric. Food Chem. 2012, 60, 6418–6424. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Ferreres, F.; Lopes, G.; Gil-Izquierdo, A.; Andrade, P.B.; Sousa, C.; Mouga, T.; Valentão, P. Phlorotannin Extracts from Fucales Characterized by HPLC-DAD-ESI-MSn: Approaches to Hyaluronidase Inhibitory Capacity and Antioxidant Properties. Mar. Drugs 2012, 10, 2766–2781. [Google Scholar] [CrossRef]
- Gómez-Villegas, P.; Vigara, J.; Vila, M.; Varela, J.; Barreira, L.; Léon, R. Antioxidant, Antimicrobial, and Bioactive Potential of Two New Haloarchaeal Strains Isolated from Odiel Salterns (Southwest Spain). Biology 2020, 9, 298. [Google Scholar] [CrossRef]
- Vázquez-Madrigal, A.S.; Barbachano-Torres, A.; Arellano-Plaza, M.; Kirchmayr, M.R.; Finore, I.; Poli, A.; Nicolaus, B.; De la Torre Zavala, S.; Camacho-Ruiz, R.M. Effect of Carbon Sources in Carotenoid Production from Haloarcula sp. M1, Halolamina sp. M3 and Halorubrum sp. M5, Halophilic Archaea Isolated from Sonora Saltern, Mexico. Microorganisms 2021, 9, 1096. [Google Scholar] [CrossRef]
- Albuquerque, L.; Kowalewicz-Kulbat, M.; Drzewiecka, D.; Stączekd, P.; d’Auria, G.; Rosselló-Móra, R.; da Costa, M.S. Halorhabdus rudnickae sp. nov., a halophilic archaeon isolated from a salt mine borehole in Poland. Syst. Appl. Microbiol. 2016, 39, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Khomlaem, C.; Kim, B.S. Co-Production of Polyhydroxyalkanoates and Carotenoids by Haloferax mediterranei DSM 1411. In Proceedings of the First International Conference on “Green” Polymer Materials 2020 Session Green Polymers: Durability & Aging, Degradation & Biodegradation, Virtual, 5–25 November 2020; Volume 4. [Google Scholar] [CrossRef]
- Ma, Y.C.; Su, W.P.; Sun, Z.S.; Zhang, Z.X.; Li, P.Y.; Zhang, B.; Sui, L.Y. Optimization of extraction procedure and antioxidant activity of C50 carotenoids from Halorubrum sp. HRM-150. Process Biochem. 2023, 130, 577–583. [Google Scholar] [CrossRef]
- Kesbiç, F.I.; Gültepe, N. C50 carotenoids extracted from Haloterrigena thermotolerans strain K15: Antioxidant potential and identification. Folia Microbiol. 2022, 67, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Giani, M.; Gervasi, L.; Loizzo, M.R.; Martínez-Espinosa, R.M. Carbon Source Influences Antioxidant, Antiglycemic, and Antilipidemic Activities of Haloferax mediterranei Carotenoid Extracts. Mar. Drugs 2022, 20, 659. [Google Scholar] [CrossRef] [PubMed]
- Giani, M.; Miralles-Robledillo, J.M.; Peiró, G.; Pire, C.; Martínez-Espinosa, R.M. Deciphering Pathways for Carotenogenesis in Haloarchaea. Molecules 2020, 25, 1197. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Amaya, D.; Kimura, M. Harvest Plus Handbook for Carotenoid Analysis; HarvestPlus: Washington, DC, USA, 2004; pp. 1–58. [Google Scholar]
- Zechmeister, L. Cis–trans isomerization and stereochemistry of carotenoids and diphenylpolyenes. Chem. Rev. 1944, 34, 267–344. [Google Scholar] [CrossRef]
- Rønnekleiv, M.; Liaaen-Jensen, S. Bacterial carotenoids. 52. C50-carotenoids 22. Naturally occurring geometric isomers of bacterioruberin. Acta Chem. Scand. 1992, 46, 1092–1095. [Google Scholar] [CrossRef]
- Lizama, C.; Romero-Parra, J.; Andrade, D.; Riveros, F.; Bórquez, J.; Ahmed, S.; Venegas-Salas, L.; Cabalín, C.; Simirgiotis, M.J. Analysis of Carotenoids in Haloarchaea Species from Atacama Saline Lakes by High Resolution UHPLC-Q-Orbitrap-Mass Spectrometry: Antioxidant Potential and Biological Effect on Cell Viability. Antioxidants 2021, 10, 1230. [Google Scholar] [CrossRef]
- Montero-Lobato, Z.; Ramos-Merchante, A.; Fuentes, J.L.; Sayago, A.; Fernández-Recamales, A.; Martínez-Espinosa, R.M.; Vega, J.M.; Vílchez, C.; Garbayo, I. Optimization of Growth and Carotenoid Production by Haloferax mediterranei Using Response Surface Methodology. Mar. Drugs 2018, 16, 372. [Google Scholar] [CrossRef]
- Sahli, K.; Gomri, M.A.; Esclapez, J.; Gómez-Villegas, P.; Bonete, M.J.; León, R.; Kharroub, K. Characterization and biological activities of carotenoids produced by three haloarchaeal strains isolated from Algerian salt lakes. Arch. Microbiol. 2022, 204, 6. [Google Scholar] [CrossRef]
- Asgarani, E.; Funamizu, H.; Saito, T.; Terato, H.; Ohyama, Y.; Yamamoto, O.; Hiroshi, I. Mechanisms of DNA protection in Halobacterium salinarium, an extremely halophilic bacterium. Microbiol. Res. 1999, 154, 185–190. [Google Scholar] [CrossRef]
- Bidle, K.A.; Hanson, T.E.; Howell, K.; Nannen, J. HMG-CoA reductase is regulated by salinity at the level of transcription in Haloferax volcanii. Extremophiles 2007, 11, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Strand, A.; Shivaji, S.; Liaaen-Jensen, S. Bacterial carotenoids 55. C50-carotenoids 25. Revised structures of carotenoids associated with membranes in psychrotrophic Micrococcus roseus. Biochem. Syst. Ecol. 1997, 25, 547–552. [Google Scholar] [CrossRef]
- Flegler, A.; Lipski, A. The C50 carotenoid bacterioruberin regulates membrane fluidity in pink-pigmented Arthrobacter species. Arch. Microbiol. 2021, 204, 70. [Google Scholar] [CrossRef]
- Plank, D.W.; Szpylka, J.; Sapirstein, H.; Woollard, D.; Zapf, C.M.; Lee, V.; Chen, C.-Y.O.; Liu, R.H.; Tsao, R.; Düsterloh, A.; et al. Determination of Antioxidant Activity in Foods and Beverages by Reaction with 2,2′-Diphenyl-1-Picrylhydrazyl (DPPH): Collaborative Study First Action 2012.04. J. AOAC Int. 2012, 95, 1562–1569. [Google Scholar] [CrossRef] [PubMed]
- Galano, A.; Vargas, R.; Martínez, A. Carotenoids can act as antioxidants by oxidizing the superoxide radical anion. Phys. Chem. Chem. Phys. 2010, 12, 193–200. [Google Scholar] [CrossRef]
- Marklund, S.; Marklund, G. Involvement of the Superoxide Anion Radical in the Autoxidation of Pyrogallol and a Convenient Assay for Superoxide Dismutase. Eur. J. Biochem. 1974, 47, 469–474. [Google Scholar] [CrossRef]
- Sikkandar, S.; Kasi, M.; Al-Sohaibani, S.; Rayappan, F.; Nair, A.; Tilton, F. Halophilic Bacteria-A Potent Source of Carotenoids with Antioxidant and Anticancer Potentials. J. Pure Appl. Microbiol. 2013, 7, 2825–2830. [Google Scholar]
- Hou, J.; Cui, H.L. In Vitro Antioxidant, Antihemolytic, and Anticancer Activity of the Carotenoids from Halophilic Archaea. Curr. Microbiol. 2018, 75, 266–271. [Google Scholar] [CrossRef]
- Thorat, I. Antioxidants, Their Properties, Uses in Food Products and Their Legal Implications. Int. J. Food Stud. 2013, 2, 81–104. [Google Scholar] [CrossRef]
- Varvara, M.; Bozzo, G.; Celano, G.; Disanto, C.; Pagliarone, C.N.; Celano, G.V. The use of ascorbic acid as a food additive: Technical-legal issues. Ital. J. Food Saf. 2016, 5, 4313. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.N.; Tang, G.Y.; Cao, S.Y.; Xu, X.Y.; Gan, R.Y.; Liu, Q.; Mao, Q.Q.; Shang, A.; Li, H.B. Phenolic Profiles and Antioxidant Activities of 30 Tea Infusions from Green, Black, Oolong, White, Yellow and Dark Teas. Antioxidants 2019, 8, 215. [Google Scholar] [CrossRef] [PubMed]
- Kulczyński, B.; Sidor, A.; Gramza-Michałowska, A. Antioxidant potential of phytochemicals in pumpkin varieties belonging to Cucurbita moschata and Cucurbita pepo species. CyTA J. Food. 2020, 18, 472–484. [Google Scholar] [CrossRef]
- Stern, R.; Kogan, G.; Jedrzejas, M.J.; Šoltés, L. The many ways to cleave hyaluronan. Biotechnol. Adv. 2007, 25, 537–557. [Google Scholar] [CrossRef] [PubMed]
- Krupkova, O.; Greutert, H.; Boos, N.; Lemcke, J.; Liebscher, T.; Wuertz-Kozak, K. Expression and activity of hyaluronidases HYAL-1, HYAL-2 and HYAL-3 in the human intervertebral disc. Eur. Spine J. 2020, 29, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Morone, J.; Lopes, G.; Preto, M.; Vasconcelos, V.; Martins, R. Exploitation of Filamentous and Picoplanktonic Cyanobacteria for Cosmetic Applications: Potential to Improve Skin Structure and Preserve Dermal Matrix Components. Mar. Drugs 2020, 18, 486. [Google Scholar] [CrossRef]
- Kurinjery, A.; Kulanthaiyesu, A. Anti-hyaluronidase and cytotoxic activities of fucoxanthin cis/trans isomers extracted and characterized from 13 brown seaweeds. Process Biochem. 2022, 122, 53–68. [Google Scholar] [CrossRef]
Carbon Source | Growth Time (Days) | OD (600 nm) | Dry Biomass (g/L) | Carotenoids (µg/g Dry Cell) | Carotenoids (µg/L) |
---|---|---|---|---|---|
0.2% Glucose | 4 | 1.687 | 2.05 | 110.36 ± 5.05 a | 226.24 ± 14.64 |
1% Glucose | 12.5 | 3.146 | 6.16 | 124.72 ± 7.32 a | 768.28 ± 63.77 |
2% Glucose | 6 | 3.490 | 6.44 | 173.16 ± 11.48 b | 1115.15 ± 104.56 |
0.2% Fructose | 23.5 | 0.506 | 1.71 | 453.43 ± 8.04 c | 775.36 ± 19.44 |
1% Fructose | 24.5 | 1.940 | 3.10 | 403.05 ± 12.13 d | 1249.46 ± 53.18 |
2% Fructose | 19.5 | 2.880 | 4.41 | 550.60 ± 7.91 e | 2428.15 ± 49.33 |
0.2% Xylose | 5 | 1.116 | 1.80 | 266.36 ± 4.77 f | 479.45 ± 12.14 |
1% Xylose | 6 | 3.360 | 5.48 | 275.42 ± 6.01 f | 1509.30 ± 46.58 |
2% Xylose | No growth | - | - | - | - |
Peak a | tr b (min) | Cisλmax c (nm) | λmax c (nm) | % III/II | % AB/AII | [M + H]+ (m/z) | MS/MS Fragment Ion (m/z) | Molecular Formula | Carotenoid | |
---|---|---|---|---|---|---|---|---|---|---|
2% Glucose | 1 | 43.82 | 369.5, 387 | 467.5, 492.5, 525.5 | 46.5 | 14.4 | 741.5 | 723.4, 705.5, 687.5, 683.5, 665.5, 647.6, 635.5, 631.6, 629.6, 599.5, 591.5, 581.5, 563.6, 545.5, 537.6 | C50H76O4 | All-trans-bacterioruberin |
2 | 45.29 | 369, 386 | 459.5, 484, 516 | 42.0 | 20.9 | 741.5 | 723.4, 705.4, 687.4, 683.4, 665.3, 647.4, 635.3, 629.3, 599.6, 563.3, 549.3 | C50H76O4 | 5-cis,9’-cis-Bacterioruberin | |
3 | 45.78 | 368, 384 | 459, 483, 514.5 | 28.1 | 48 | 741.5 | 723.3, 705.4, 687.4, 665.3, 647.4, 631.3, 599.3 | C50H76O4 | Bacterioruberin isomer | |
4 | 49.43 | 367.5, 386.5 | 463, 490, 522,5 | 54.8 | 12.7 | 741.5 | 723.3, 705.4, 687.4, 665.4, 647.4, 631.4, 599.4, 591.3, 563.5 | C50H76O4 | 5-cis-Bacterioruberin | |
5 | 52.54 | 370.5, 386.5 | 461, 486.5, 518.5 | 48.9 | 26.3 | 741.5 | 723.4, 705.4, 687.4, 683.3 665.4, 647.4, 563.4 | C50H76O4 | 9-cis-Bacterioruberin | |
6 | 54.39 | 369, 386 | 461, 486.5, 519 | 34.5 | 73.3 | 741.5 | 723.4, 705.4, 687.4, 683.3, 665.4, 647.4, 635.4, 631.3, 591.4, 563.4, 549.5 | C50H76O4 | 13-cis-Bacterioruberin | |
7 | 61.71 | 372, 387 | 468, 492.5, 525.5 | 47.6 | 14.1 | 723.5 | 705.4, 687.3, 647.4, 629.4, 617.3, 563.3, 549.4, 537.3, 523.5, 479.3 | C50H74O3 | All-trans-monoanhydrobacterioruberin | |
8 | 66.50 | 387 | 461.5, 487.5, 518.5 | 44.9 | 10.9 | 723.5 | 705.4, 687.3, 647.3, 617.3, 537.5, 523.3, 563.3 | C50H74O3 | 5-cis-Monoanhydrobacterioruberin | |
9 | 68.71 | 373, 386 | 463, 484, 516 | 48.2 | 26.3 | 723.5 | 705.3, 687.5, 647.4, 629.4, 563.4, 549.5, 523.4, 507.3, 479.3 | C50H74O3 | 9-cis-Monoanhydrobacterioruberin | |
10 | 70.15 | 373.5, 387 | 459, 484, 517 | 44.6 | 63.9 | 723.5 | 705.3, 687.4, 647.3, 563.4, 549.3, 523.4, 507.3, 479.5 | C50H74O3 | 13-cis-Monoanhydrobacterioruberin | |
11 | 79.90 | 373, 389 | 465.5, 493, 526.5 | 49.9 | 16.2 | 705.5 | 687.4, 647.3, 599.5, 549.4, 537.4, 479.3 | C50H72O2 | All-trans-bisanhydrobacterioruberin |
Peak a | tr b (min) | Cisλmax c (nm) | λmax c (nm) | % III/II | % AB/AII | Carotenoid | |
---|---|---|---|---|---|---|---|
2% Fructose | 1 | 44.98 | 369.5, 387 | 468, 492.5, 525 | 44.4 | 14.7 | All-trans-bacterioruberin |
2 | 46.48 | 368, 385 | 460.5, 484.5, 516.5 | 41.2 | 21.3 | 5-cis,9’-cis-Bacterioruberin | |
3 | 46.97 | 367, 384.5 | 458.5, 483.5, 514.5 | 30.5 | 48.8 | Bacterioruberin isomer | |
4 | 50.68 | 368.5, 386.5 | 463.5, 490, 522.5 | 54.3 | 13.1 | 5-cis-Bacterioruberin | |
5 | 53.85 | 369, 386.5 | 461, 486.5, 518.5 | 47.3 | 25.7 | 9-cis-Bacterioruberin | |
6 | 55.71 | 369, 386 | 461.5, 487, 519 | 33.1 | 67.5 | 13-cis-Bacterioruberin | |
7 | 63.12 | 372, 389 | 465, 492, 524.5 | 41.2 | 14.7 | All-trans-monoanhydrobacterioruberin | |
8 | 67.95 | 387 | 467, 488, 515 | 22.1 | 11.2 | 5-cis-Monoanhydrobacterioruberin | |
1% Xylose | 1 | 47.55 | 369, 387 | 469, 492.5, 525 | 41.9 | 15.7 | All-trans-bacterioruberin |
2 | 49.04 | 368.5, 385 | 462, 485.5, 516.5 | 38.2 | 22.6 | 5-cis,9’-cis-Bacterioruberin | |
3 | 49.48 | 367.5, 383.5 | 457, 483, 512 | 25.4 | 81.3 | Bacterioruberin isomer | |
4 | 53.19 | 368.5, 386 | 463.5, 490, 522.5 | 54.1 | 13.4 | 5-cis-Bacterioruberin | |
5 | 56.28 | 369, 386.5 | 461.5, 486.5, 518.5 | 47 | 25.5 | 9-cis-Bacterioruberin | |
6 | 58.09 | 369, 386 | 462, 487, 519.5 | 32.9 | 65.9 | 13-cis-Bacterioruberin | |
7 | 65.34 | 371, 388.5 | 465, 493, 525.5 | 52.6 | 14.1 | All-trans-monoanhydrobacterioruberin | |
8 | 70.02 | 387 | 463, 486.5, 518.5 | 42.6 | 11.5 | 5-cis-Monoanhydrobacterioruberin | |
9 | 72.16 | 373.5, 386 | 461.5, 487, 519 | 43.1 | 28.2 | 9-cis-Monoanhydrobacterioruberin | |
10 | 73.62 | 373.5, 386 | 464, 484, 514.5 | 40.8 | 56.9 | 13-cis-Monoanhydrobacterioruberin | |
11 | 83.05 | 389 | 467.5, 494.5, 526 | 58.6 | 16.2 | All-trans-bisanhydrobacterioruberin |
Hrd. utahensis Extract | FRAP Response a (A593nm) | Ascorbic Acid Activity Equivalents b (µg) | Trolox Activity Equivalents b (µg) | BHT Activity Equivalents b (µg) |
---|---|---|---|---|
2% G | 0.476 ± 0.018 | 3.028 ± 0.118 a | 4.789 ± 0.186 a | 183.077 ± 7.120 a |
2% F | 0.854 ± 0.035 | 5.432 ± 0.221 b | 8.590 ± 0.350 b | 328.397 ± 13.391 b |
1% X | 0.723 ± 0.018 | 4.601 ± 0.114 c | 7.277 ± 0.180 c | 278.205 ± 6.870 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serino, I.; Squillaci, G.; Errichiello, S.; Carbone, V.; Baraldi, L.; La Cara, F.; Morana, A. Antioxidant Capacity of Carotenoid Extracts from the Haloarchaeon Halorhabdus utahensis. Antioxidants 2023, 12, 1840. https://doi.org/10.3390/antiox12101840
Serino I, Squillaci G, Errichiello S, Carbone V, Baraldi L, La Cara F, Morana A. Antioxidant Capacity of Carotenoid Extracts from the Haloarchaeon Halorhabdus utahensis. Antioxidants. 2023; 12(10):1840. https://doi.org/10.3390/antiox12101840
Chicago/Turabian StyleSerino, Ismene, Giuseppe Squillaci, Sara Errichiello, Virginia Carbone, Lidia Baraldi, Francesco La Cara, and Alessandra Morana. 2023. "Antioxidant Capacity of Carotenoid Extracts from the Haloarchaeon Halorhabdus utahensis" Antioxidants 12, no. 10: 1840. https://doi.org/10.3390/antiox12101840
APA StyleSerino, I., Squillaci, G., Errichiello, S., Carbone, V., Baraldi, L., La Cara, F., & Morana, A. (2023). Antioxidant Capacity of Carotenoid Extracts from the Haloarchaeon Halorhabdus utahensis. Antioxidants, 12(10), 1840. https://doi.org/10.3390/antiox12101840