Natural Bio-Compounds from Ganoderma lucidum and Their Beneficial Biological Actions for Anticancer Application: A Review
Abstract
:1. Introduction
2. Characteristics of Ganoderma lucidum Fungus
2.1. Description and Spread of the Fungus
2.2. Data on G. lucidum Cultivation
3. Chemical Bioactive Compounds Identified in G lucidum with Anticancer Actions
3.1. Proximate Composition for G. lucidum
3.2. Polysaccharide Content of G. lucidum
3.2.1. Extraction and Purification of Polysaccharides
3.2.2. Structure of Polysaccharides from G. lucidum
3.3. Triterpene and Triterpenoid Content of G. lucidum
3.3.1. Physicochemical Determination and Analysis of Triterpene Compounds
3.3.2. Structure of G. lucidum Triterpenoids (Gl-Ts)
3.4. Vitamins, Minerals, and Sterols Content
3.5. Protein, Lectin, and Amino Acid Content
3.5.1. Proteins and Peptides in G. lucidum
3.5.2. Lectins from G. lucidum
3.5.3. Amino Acid Content of G. lucidum
3.5.4. Content of Compounds with Antioxidant Properties in G. lucidum
3.6. Content in Nucleosides and Fatty Acids
3.6.1. Nucleosides and Nucleobases in G. lucidum
3.6.2. Fatty Acid Content
4. Biological Activities against Cancer
4.1. Anticancer Action
4.2. Possible Mechanisms in Anticancer Actions
- -
- G1-phase cell cycle arrest by inhibition of β-catenin;
- -
- Inhibition of protein kinase C (PCK), which generates G2-phase cell cycle inhibition;
- -
- Induction of apoptosis in cancer cells via the mitochondrial pathway, followed by activation of caspase cascades;
- -
- Preventing tumor metastasis by inhibiting MMP-9 and interleukin IL-8 and by degrading the extracellular matrix (ECM);
- -
- Suppressing the secretion of anti-inflammatory cytokines [240].
- I.
- Antioxidant actions by reducing oxidative stress generated by free radicals and reactive oxygen species (ROS) through the actions of antioxidant enzymes [35].
- II.
- Suppressing angiogenesis and inhibiting nitric oxide production.
4.3. Other Biological Actions Involved in Anticancer Activities
4.3.1. Immunomodulatory Activities
Effects of Gl-Ps on T- and B-Lymphocytes
Effect of Gl-Ps on Dendritic Cells
Effect of Gl-Ps on Macrophages
Effect of Gl-Ps on Natural Killer (NK) Cells
4.3.2. Anti-Proliferative, Cytotoxic, and Apoptosis-Increasing Activities
4.3.3. Anti-Inflammatory Activities
4.3.4. Anti-Angiogenic Activities
4.3.5. Antioxidant Activities
5. Toxicity and Safety
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Gl-Ps | G. lucidum polysaccharides | ROS | Reactive Oxygen Species |
Gl-Ts | G. lucidum triterpenoids | GA-A | Ganoderic acids A |
TPC | Total polyphenol content | GA-F | Ganoderic acids F |
TFC | Total flavonoid content | GA-H | Ganoderic acids H |
IL | Interleukin | GA-T | ganoderic acid T |
TNF-α | Tumor Necrosis Factor Alpha | GA-Me | Ganoderic acid Me |
INF-γ | Interferon Gamma | MMP | Matrix metalloproteinase; |
TGF-α | Transforming Growth Factor-Alfa | TCL | T-lymphocyte cytotoxic |
TGF-β | Transforming Growth Factor-Beta | NK | Natural killer cells; |
VEGF | Vascular Endothelial Growth Factor | PKC | Protein kinase C |
NO | Nitrogen species | ECM | Extracellular matrix; |
MDA | Malondialdehyde | DCs | Dendritic cells |
HPLC-ESI-MS | Liquid chromatography coupled with electrospray ionization mass spectrometry | TEAC | Trolox equivalent antioxidant capacity |
References
- Cai, Q.; Li, Y.; Pei, G. Polysaccharides from Ganoderma lucidum attenuates microglia-mediated neuroinflammation and modulate microglial phagocytosis and behavioural response. J. Neuroinflamm. 2017, 14, 63–76. [Google Scholar] [CrossRef]
- Li, H.J.; He, Y.L.; Zhang, D.H.; Yue, T.H.; Jiang, L.X.; Li, N.; Xu, J.W. Enhancement of ganoderic acid production by constitutively expressing Vitreoscilla hemoglobin gene in Ganoderma lucidum. J. Biotechnol. 2016, 227, 35–40. [Google Scholar] [CrossRef]
- Sliva, D. Cellular and physiological effects of Ganoderma lucidum (Reishi). Mini Rev. Med. Chem. 2004, 4, 873–879. [Google Scholar] [CrossRef] [PubMed]
- Soccol, C.R.; Bissoqui, L.Y.; Rodrigues, C.; Rubel, R.; Sella, S.R.; Leifa, F.; De Souza Vandenberghe, L.P.; Soccol, V.T. Pharmacological Properties of Biocompounds from Spores of the Lingzhi or Reishi Medicinal Mushroom Ganoderma lucidum (Agaricomycetes): A Review. Int. J. Med. Mushrooms 2016, 18, 757–767. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W. Drug discovery from fungal metabolites: A review of the papers in this monographical issue of Mycosystema concerned with the natural resources, problems and strategies. Mycosystema 2011, 30, 151–157. [Google Scholar]
- Lindequist, U.; Niedermeyer, T.H.; Jülich, W.D. The pharmacological potential of mushrooms. Evid. Based Complement. Altern. Med. 2005, 2, 285–299. [Google Scholar] [CrossRef]
- Ahmad, M.F.; Ahmad, F.A.; Azad, Z.R.; Azaz, A.; Alam, M.I.; Ansari, J.A.; Panda, B.P. Edible mushrooms as health promoting agent. Adv. Sci. Focus 2013, 1, 189–196. [Google Scholar] [CrossRef]
- El Sheikha, A.F.; Hu, D.M. How to trace the geographic origin of mushrooms? Trends Food Sci. Technol. 2018, 78, 292–303. [Google Scholar] [CrossRef]
- Kou, F.; Ge, Y.; Wang, W.; Mei, Y.; Kao, L.; Wei, X.; Xiao, H.; Wu, X. A review of Ganoderma lucidum polysaccharides: Health benefit, structure-activity relationship, modification, and nanoparticle encapsulation. Int. J. Biol. Macromol. 2023, 243, 125199. [Google Scholar] [CrossRef]
- Lee, K.H.; Morris-Natschke, S.L.; Yang, X.; Huang, R.; Zhou, T.; Wu, S.F.; Shi, Q.; Itokawa, H. Recent progress of research on medicinal mushrooms, foods, and other herbal products used in traditional Chinese medicine. J. Tradit. Complement. Med. 2012, 2, 1–12. [Google Scholar] [CrossRef]
- Loyd, A.L.; Richter, B.S.; Jusino, M.A.; Truong, C.; Smith, M.E.; Blanchette, R.A.; Smith, J.A. Identifying the “mushroom of immortality”: Assessing the Ganoderma species composition in commercial Reishi products. Front. Microbiol. 2018, 9, 1557–1572. [Google Scholar] [CrossRef]
- Wasser, S.P.; Coates, P.; Blackman, M.; Cragg, G.; Levine, M.; Moss, J.; White, J. Reishi or Ling Zhi (Ganoderma lucidum). In Encyclopedia of Dietary Supplements, 1st ed.; Coates, P.M., Blackman, M.R., Cragg, G.M., Levine, M., White, J.D., Moss, J., Eds.; Marcel Dekker: New York, NY, USA, 2005; Volume 1, pp. 680–690. [Google Scholar] [CrossRef]
- Ahmad, M.F. Ganoderma lucidum: Persuasive biologically active constituents and their health endorsement. Biomed. Pharmacother. 2018, 107, 507–519. [Google Scholar] [CrossRef]
- Boh, B.; Berovic, M.; Zhang, J.; Zhi-Bin, L. Ganoderma lucidum and its pharmaceutically active compounds. Biotechnol. Ann. Rev. 2007, 13, 265–301. [Google Scholar] [CrossRef]
- Cho, J.H.; Noh, H.J.; Kang, D.H.; Lee, J.Y.; Lee, M.J.; Park, H.S.; Sung, G.H.; Jhune, C.S. Antioxidant activity and Cancer cell growth inhibition of Ganoderma lucidum. J. Mush. 2012, 10, 203–207. [Google Scholar]
- Ryu, D.H.; Cho, J.Y.; Sadiq, N.B.; Kim, J.C.; Lee, B.; Hamayun, M.; Lee, T.S.; Kim, H.S.; Park, S.P.; Nho, C.W.; et al. Optimization of antioxidant, anti-diabetic, and anti-inflammatory activities and ganoderic acid content of differentially dried Ganoderma lucidum using response surface methodology. Food Chem. 2021, 335, 127645–127654. [Google Scholar] [CrossRef] [PubMed]
- Cherian, E.; Sudheesh, N.P.; Janardhanan, K.K.; Patani, G. Free-radical scavenging and mitochondrial antioxidant activities of Reishi-Ganoderma lucidum (Curt: Fr) P. Karst and Arogyapacha—Trichopus zeylanicus Gaertn extracts. J. Basic Clin. Physiol. Pharmacol. 2009, 20, 289–307. [Google Scholar] [CrossRef] [PubMed]
- Bhat, Z.A.; Wani, A.H.; War, J.M.; Bhat, M.Y. Major bioactive properties of Ganoderma polysaccharides: A Review. Asian J. Pharm. Clin. Res. 2021, 14, 11–24. [Google Scholar] [CrossRef]
- Liu, X.; Yuan, J.P.; Chung, C.K.; Chen, X.J. Antitumor activity of the sporoderm-broken germinating spores of Ganoderma lucidum. Cancer Lett. 2002, 182, 155–161. [Google Scholar] [CrossRef]
- Kumar, V.; Yadav, H.K. Therapeutic potential of an edible macro-fungus: Ganoderma lucidum (Curtis) P. Karst. Indian J. Trad. Know. 2019, 18, 702–713. [Google Scholar]
- Rahman, M.A.; Al Masud, A.; Lira, N.Y.; Shakil, S. Proximate analysis, phtochemical screening and antioxidant activity of different strains of Ganoderma lucidum (Reishi Mushroom). Open J. Biol. Sci. 2020, 5, 24–27. [Google Scholar]
- Sudheer, S.; Alzorqi, I.; Manickam, S.; Ali, A. Bioactive Compounds of the Wonder Medicinal Mushroom “Ganoderma lucidum”. Bioactive Molecules in Food. In Reference Series in Phytochemistry; Mérillon, J.M., Ramawat, K.G., Eds.; Springer: Cham, Switzerland, 2019; pp. 1863–1893. [Google Scholar] [CrossRef]
- Bulam, S.; Ustun, N.S.; Peksen, A. Health benefits of Ganoderma lucidum as a medicinal mushroom. Turk. J. Agric. Food Sci. Technol. 2019, 7, 84–93. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Khoo, K.H.; Chen, S.T.; Lin, C.C.; Wonga, C.H.; Lin, C.H. Studies on the immunomodulating and antitumor activities of Ganoderma lucidum (reishi) polysaccharides: Functional and proteomic analyses of a fucose-containing glycoprotein fraction responsible for the activities. Bioorg. Med. Chem. 2002, 10, 1057–1062. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.L.; He, Y.M. Network pharmacology analysis of the anti-cancer pharmacological mechanisms of Ganoderma lucidum extract with experimental support using Hepa1-6-bearing C57 BL/6 mice. J. Ethnopharmacol. 2018, 10, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Oke, M.A.; Afolabi, F.J.; Oyeleke, O.O.; Kilani, T.A.; Adeosun, A.R.; Olanbiwoninu, A.A.; Adebayo, E.A. Ganoderma lucidum: Unutilized natural medicine and promising future solution to emerging diseases in Africa. Front. Pharmacol. 2022, 13, 952027. [Google Scholar] [CrossRef]
- Sanodiya, B.S.; Thakur, G.S.; Baghel, R.K.; Prasad, G.B.; Bisen, P.S. Ganoderma lucidum: A potent pharmacological macrofungus. Curr. Pharm. Biotechnol. 2009, 10, 717–742. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, I.C.; Vaz, J.; Vasconcelos, M.H.; Martins, A. Compounds from wild mushrooms with antitumor potential. Anticancer. Agents Med. Chem. 2010, 10, 424–436. [Google Scholar] [CrossRef]
- Smania, E.F.A.; Monache, F.D.; Smania, A., Jr.; Yunes, R.A.; Cuneo, R.S. Antifungal activity of sterols and triterpenes isolated from Ganoderma annulare. Fitoterapia 2003, 74, 375–377. [Google Scholar] [CrossRef]
- El Sheikha, A.F. Nutritional Profile and Health Benefits of Ganoderma lucidum “Lingzhi, Reishi, or Mannentake” as Functional Foods: Current Scenario and Future Perspectives. Foods 2022, 11, 1030. [Google Scholar] [CrossRef]
- Du, M.; Hu, X.; Zhao, G.; Wang, C. Mechanism Underlying the Antitumor Activity of Proteins from the Ling Zhi or Reishi Medicinal Mushroom, Ganoderma lucidum (W. Curt.: Fr.) P. Karst. (Aphyllophoromycetideae) In Vitro. Int. J. Med. Mush. 2010, 12, 133–139. [Google Scholar] [CrossRef]
- Siwulski, M.; Sobieralski, K.; Golak-Siwulska, I.; Sokol, S.; Sękara, A. Ganoderma lucidum (Curt.: Fr.) Karst.—health-promoting properties. A review. Herba Pol. 2015, 61, 105–118. [Google Scholar] [CrossRef]
- Yuen, J.W.; Gohel, M.D. Anticancer effects of Ganoderma lucidum: A review of scientific evidence. Nutr. Cancer 2005, 53, 11–17. [Google Scholar] [CrossRef]
- Trajkovic, H.L.M.; Mijatovic, S.A.; Maksimovic-Ivanic, D.D.; Stojanovic, I.D.; Mamcilovic, M.B.; Tufegdzic, S.J.; Maksimovic, V.M.; Marjanovic, Z.S.; Stosic-Grujicic, S.D. Anticancer Properties of Ganoderma lucidum Methanol Extracts In Vitro and In Vivo. Nutr. Cancer 2009, 61, 696–707. [Google Scholar] [CrossRef]
- Kao, C.; Jesuthasan, A.C.; Bishop, K.S.; Glucina, M.P.; Ferguson, L.R. Anti-cancer activities of Ganoderma lucidum: Active ingredients and pathways. Funct. Foods Health Dis. 2013, 3, 48–65. [Google Scholar] [CrossRef]
- Kumar, D.S.; Senthilkumar, P.; Surendran, L.; Sudhagar, B. Ganoderma lucidum oriental mushroom mediated synthesis of gold nanoparticles conjugated with doxorubicin and evaluation of its anticancer potential on human breast cancer MCF-7/DOX cells. Int. J. Pharm. Pharm. Sci. 2017, 9, 267–274. [Google Scholar] [CrossRef]
- Joseph, S.; Sabulal, B.; George, V.; Antony, K.; Janardhanan, K. Antitumor and anti-inflammatory activities of polysaccharides isolated from Ganoderma lucidum. Acta Pharm. 2011, 61, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Stanley, G.; Harvey, K.; Slivova, V.; Jiang, J. Ganoderma lucidum suppresses angiogenesis through the inhibition of secretion of VEGF and TGF-beta1 from prostate cancer cells. Biochem. Biophys. Res. Commun. 2005, 330, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, T.C.; Wu, J.M. Suppression of proliferation and oxidative stress by extracts of Ganoderma lucidum in the ovarian cancer cell line OVCAR-3. Int. J. Mol. Med. 2011, 28, 1065–1069. [Google Scholar] [CrossRef]
- Wu, X.; Guan, H.; Li, J.; Guo, J.; Hou, B. Evaluation of antitumour action of Ganoderma lucidum extract in hepatocarcinoma mice. Afr. J. Pharm. Pharmacol. 2012, 6, 2884–2887. [Google Scholar] [CrossRef]
- Li, A.; Shuai, X.; Jia, Z.; Li, H.; Liang, X.; Su, D.; Guo, W. Ganoderma lucidum polysaccharide extract inhibits hepatocellular carcinoma growth by down regulating regulatory T cells accumulation and function by inducing microRNA-125b. J. Transl. Med. 2015, 13, 100. [Google Scholar] [CrossRef]
- Liang, Z.; Guo, Y.T.; Yi, Y.J.; Wang, R.C.; Hu, Q.L.; Xiong, X.Y. Ganoderma lucidum Polysaccharides Target a Fas/Caspase Dependent Pathway to Induce Apoptosis in Human Colon Cancer Cells. Asian Pac. J. Cancer Prev. 2014, 15, 3981–3986. [Google Scholar] [CrossRef]
- Hsu, S.C.; Ou, C.C.; Chuang, T.C.; Li, J.W.; Lee, Y.J.; Wang, V. Ganoderma tsugae extract inhibits expression of epidermal growth factor receptor and angiogenesis in human epidermoid carcinoma cells: In vitro and in vivo. Cancer. Lett. 2009, 281, 108–116. [Google Scholar] [CrossRef]
- Wasser, S.P. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl. Microbiol. Biotechnol. 2002, 60, 258–274. [Google Scholar] [CrossRef]
- Gao, Y.; Zhou, S.; Jiang, W.; Huang, M.; Dai, X. Effects of Ganopoly (a Ganoderma lucidum polysaccharide extract) on the immune functions in advanced-stage cancer patients. Immunol. Investig. 2003, 32, 201–215. [Google Scholar] [CrossRef]
- Sun, L.X.; Lin, Z.B.; Duan, X.S.; Qi, H.H.; Yang, N.; Li, M. Suppression of the production of transforming growth factor b1, interleukin-10, and vascular endothelial growth factor in the B16F10 cells by G. lucidum polysaccharides. J. Interferon Cytokine Res. 2014, 34, 667–675. [Google Scholar] [CrossRef]
- Shi, M.; Zhang, Z.; Yang, Y. Antioxidant and immunoregulatory activity of Ganoderma lucidum polysaccharide. Carbohydr. Polym. 2013, 95, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Shaher, F.; Qiu, H.; Wang, S.; Hu, Y.; Wang, W.; Zhang, Y.; Wei, Y.; Al-ward, S.; Abdulghani, M.A.M.; Alenezi, S.K.; et al. Associated Targets of the Antioxidant Cardioprotection of Ganoderma lucidum in Diabetic cardiomyopathy by Using Open Targets Platform: A Systematic Review. BioMed Res. Int. 2020, 2020, 7136075. [Google Scholar] [CrossRef]
- XiaoPing, C.X.; Yan, C.; Shuibing, L.; You Gou, C. Free radical scavenging of Ganoderma lucidum polysaccharides and its effect on antioxidant enzymes and immunity activities in cervical carcinoma rats. Carbohydr. Polym. 2009, 77, 389–393. [Google Scholar] [CrossRef]
- Jones, S.; Janardhanan, K.K. Antioxidant and antitumor activity of Ganoderma lucidum (Curt.: Fr.) P. Karst. Reishi (Aphyllophoromycetideae) from South India. Int. J. Med. Mushr. 2000, 2, 195–200. [Google Scholar] [CrossRef]
- Fries, E.M. Systema Mycologicum, Sistens Fungorum Ordines, Genera et Species, huc Usque Cognitas, Quas ad Normam Methodi Naturalis Determinavit; Sumtibus Ernesti Mauritti: New York, NY, USA, 1821; Volume 1, pp. 1–274. [Google Scholar]
- Cao, Y.; Wu, S.H.; Dai, Y.C. Species clarification of the prize medicinal Ganoderma mushroom “Lingzhi”. Fungal Divers. 2012, 56, 49–62. [Google Scholar] [CrossRef]
- Wang, X.C.; Xi, R.J.; Li, Y.; Wang, D.M.; Yao, Y.J. The species identity of the widely cultivated Ganoderma, ’G. lucidum’ (Ling-zhi), in China. PLoS ONE 2012, 7, 40857. [Google Scholar] [CrossRef]
- Kwon, O.C.; Park, Y.J.; Kim, H.I.; Kong, W.S.; Cho, J.H.; Lee, C.S. Taxonomic Position and Species Identity of the Cultivated Yeongji ’Ganoderma lucidum’ in Korea. Mycobiology 2016, 44, 1–6. [Google Scholar] [CrossRef]
- Nahata, A. Ganoderma lucidum: A potent medicinal mushroom with numerous health benefits. Pharm. Anal. Acta 2013, 4, 159. [Google Scholar] [CrossRef]
- Kim, H.K.; Seo, G.S.; Kim, H.G. Comparison of characteristics of Ganoderma lucidum according to geographical origins: Consideration of morphological characteristics (II). Mycobiology 2001, 29, 80–84. [Google Scholar] [CrossRef]
- Park, Y.J.; Kwon, O.C.; Son, E.S.; Yoon, D.E.; Han, W.; Nam, J.Y.; Yoo, Y.B.; Lee, C.S. Genetic diversity analysis of Ganoderma species and development of a specific marker for identification of medicinal mushroom Ganoderma lucidum. Afr. J. Microbiol. Res. 2012, 6, 5417–5425. [Google Scholar] [CrossRef]
- Liao, B.; Chen, X.; Han, J.; Dan, Y.; Wang, L.; Jiao, W.; Song, J.; Chen, S. Identification of commercial Ganoderma (Lingzhi) species by ITS2 sequences. Chin. Med. 2015, 10, 22. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, A.M.; Ferrer, E.; Wright, J.E. rDNA analyses as an aid to the taxonomy of species of Ganoderma. Mycol. Res. 2000, 104, 1033–1045. [Google Scholar] [CrossRef]
- Eyssartier, G.; Roux, P. Le Guide des Champignons: France et Europe, 4th ed.; Pub. Belin/Humensis: Paris, France, 2017; pp. 1–1150. Available online: https://www.amazon.co.uk/champignons-France-Europe-Guillaume-Eyssartier/dp/2410010423 (accessed on 22 October 2023).
- Copot, O.; Tanase, C. Maxent modelling of the potential distribution of Ganoderma lucidum in north-eastern region of Romania. J. Plant Develop. 2017, 24, 133–143. [Google Scholar]
- Parepalli, Y.; Chavali, M.; Sami, R.; Singh, M.; Sinha, S.; Touahra, F. Ganoderma Lucidum: Extraction and Characterization of Polysaccharides, Yields and their Bioapplications. Algerian J. Res. Technol. 2021, 5, 30–43. [Google Scholar]
- Nithya, M.; Ambikapathy, V. Cultivation of Ganoderma lucidum (Curt. fr.) P. Karst. Int. J. Sci. Res. 2012, 3, 39–41. [Google Scholar]
- Adongbede, E.M.; Atoyebi, A.F. Isolation of Ganoderma lucidum (Curtis) P. Karst. From the Wild in Lagos through Tissue Culture Techniques and Cultivation on Sawdust of Six Nigerian Hardwoods. J. Appl. Sci. Environ. Manag. 2021, 25, 1497–1503. [Google Scholar] [CrossRef]
- Matute, R.G.; Figlas, D.; Devalis, R.; Delmastro, S.; Curvetto, N. Sunflower seed hulls as a main nutrient source for cultivating Ganoderma lucidum. Micol. Apl. Int. 2002, 14, 19–24. [Google Scholar]
- Yang, F.C.; Hsieh, C.; Chen, H.M. Use of stillage grain from a rice-spirit distillery in the solid state fermentation of Ganoderma lucidum. Process. Biochem. 2003, 39, 21–26. [Google Scholar] [CrossRef]
- Hsieh, C.; Yang, F.C. Reusing soy residue for the solid-state fermentation of Ganoderma lucidum. Bioresour. Technol. 2004, 91, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.Y.; Tsai, G.J.; Houng, J.Y. Optimization of the medium composition for the submerged culture of Ganoderma lucidum by Taguchi array design and steepest ascent method. Enz. Microb. Technol. 2006, 38, 407–414. [Google Scholar] [CrossRef]
- Baskar, G.; Sathya, S.R.; Jinnah, R.B.; Sahadevan, R. Statistical optimization of polysaccharide production by submerged cultivation of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W.Curt.: Fr.) P. Karst. MTCC 1039 (Aphyllophoromycetideae). Int. J. Med. Mush. 2011, 13, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Mau, J.L.; Lin, H.C.; Chen, C.C. Non-volatile components of several medicinal mushrooms. Food Res. Int. 2001, 34, 521–526. [Google Scholar] [CrossRef]
- Roy, D.N.; Azad, A.; Sultana, M.F.; Anisuzzaman, A.S.M.; Khondkar, P. Nutritional profil e and mineral composition of two edible mushroom varieties consumed and cultivated in Bangladesh. J. Phytopharmacol. 2018, 1, 100–107. [Google Scholar] [CrossRef]
- Fraile-Fabero, R.; Ozcariz-Fermoselle, M.V.; Oria-de-Rueda-Salgueiro, J.A.; Garcia-Recio, V.; Cordoba-Diaz, D.; Jimen-Lopez, M.P.; Girbes-Juan, T. Differences in Antioxidants, Polyphenols, Protein Digestibility and Nutritional Profile between Ganoderma lingzhi from Industrial Crops in Asia and Ganoderma lucidum from Cultivation and Iberian Origin. Foods 2021, 10, 1750. [Google Scholar] [CrossRef]
- Parepalli, Y.; Chavali, M.; Sami, R.; Khojah, E.; Elhakem, A.; El Askary, A.; Singh, M.; Sinha, S.; El-Chaghaby, G. Evaluation of Some Active Nutrients, Biological Compounds and Health Benefits of Reishi Mushroom (Ganoderma lucidum). Int. J. Pharm. 2021, 17, 243–250. [Google Scholar] [CrossRef]
- Ogbe, A.O.; Obeka, A.D. Proximate, Mineral and Anti-Nutrient Composition of Wild Ganoderma lucidum: Implication on its Utilization in Poultry Production. Ir. J. Appl. Anim. Sci. 2013, 3, 161–166. [Google Scholar]
- Wachtel-Galor, S.; John, J.Y.; Buswell, J.A.; Benzie, I.F.F. Ganoderma lucidum (Lingzhi or Reishi). In Herbal Medicine: Biomolecular and Clinical Aspects, 2nd ed.; Benzie, I.F.F., Wachtel-Galor, S., Eds.; CRC Press/Taylor and Francis: Boca Raton, FL, USA, 2011; pp. 1–500. [Google Scholar] [CrossRef]
- Paterson, R.R.M. Ganoderma—a therapeutic fungal biofactory. Phytochemistry 2006, 67, 1985–2001. [Google Scholar] [CrossRef]
- Garuba, T.; Olahan, G.; Lateef, A.; Alaya, R.; Awolowo, M.; Sulyman, A. Proximate Composition and Chemical Profiles of Reishi Mushroom (Ganoderma lucidum (Curt: Fr.) Karst). J. Sci. Res. 2020, 12, 103–110. [Google Scholar] [CrossRef]
- Liu, Y.; Long, Y.; Liu, H.; Lan, Y.; Long, T.; Kuang, R.; Wang, Y.; Zhao, J. Polysaccharide prediction in Ganoderma lucidum fruiting body by hyperspectral imaging. Food Chem. X 2021, 13, 100–199. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.L.; Shih, C.; Cheng, P.Y.; Chin, C.L.; Liou, A.T.; Lee, P.Y.; Chiang, B.L. A Polysaccharide Purified from Ganoderma lucidum Acts as a Potent Mucosal Adjuvant That Promotes Protective Immunity Against the Lethal Challenge with Enterovirus A71. Front. Immunol. 2020, 29, 5617–5658. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, I.C.; Heleno, S.A.; Reis, F.S.; Stojkovic, D.; Queiroz, M.J.; Vasconcelos, M.H. Chemical features of Ganoderma polysaccharides with antioxidant, antitumor and antimicrobial activities. Phytochemistry 2015, 114, 38–55. [Google Scholar] [CrossRef]
- Yu, H.; Liu, Y.; Zhou, S.; Yan, M.; Xue, L.; Tang, Q.; Zhang, J. Comparison of the polysaccharides form fruiting bodies, mycelia, and spore powder of Ganoderma lingzhi. Mycosystema 2016, 35, 170–177. [Google Scholar] [CrossRef]
- Giavasis, I. Bioactive fungal polysaccharides as potential functional ingredients in food and nutraceuticals. Curr. Opin. Biotechnol. 2014, 26, 162–173. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, M.; Zhang, H.; Wang, Y.; Nie, S.; Li, C. Quantification of total polysaccharides and triterpenoids in Ganoderma lucidum and Ganoderma atrum by near infrared spectroscopy and chemometrics. Food Chem. 2012, 135, 268–275. [Google Scholar] [CrossRef]
- Nie, S.; Zhang, H.; Li, W.; Xie, M. Current development of polysaccharides from Ganoderma: Isolation, structure and bioactivities. Bioact. Carbohydr. Diet. Fibre. 2013, 1, 10–20. [Google Scholar] [CrossRef]
- Choong, Y.-K.; Ellan, K.; Chen, X.D.; Mohamad, S.A. Extraction and Fractionation of Polysaccharides from a Selected Mushroom Species, Ganoderma lucidum: A Critical Review. In Fractionation; Hassan-Al, H.I., Ed.; IntechOpen: London, UK, 2019; pp. 39–60. [Google Scholar] [CrossRef]
- Wang, J.G.; Ma, Z.C.; Zhang, L.N.; Fang, Y.P.; Jiang, F.; Phillips, G.O. Structure and chain conformation of water-soluble heteropolysaccharides from Ganoderma lucidum. Carbohydr. Polym. 2011, 86, 844–851. [Google Scholar] [CrossRef]
- Lin, Y.L.; Liang, Y.C.; Lee, S.S.; Chiang, B.L. Polysaccharide purified from Ganoderma lucidum induced activation and maturation of human monocyte-derived dendritic cells by the NF-κB and p38 mitogen activated protein kinase pathways. J. Leukoc. Biol. 2005, 78, 533–543. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.Q.; Ning, Z.X. Extraction of polysaccharide from Ganoderma lucidum and its immune enhancement activity. Int. J. Biol. Macromol. 2010, 47, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Dong, Y.; Chen, G.; Hu, Q. Extraction, purification, characterization, and antitumor activity of polysaccharides from Ganoderma lucidum. Carbohydr. Polym. 2010, 80, 783–789. [Google Scholar] [CrossRef]
- Leong, Y.K.; Yang, F.C.; Chang, J.S. Extraction of polysaccharides from edible mushrooms: Emerging technologies and recent advances. Carbohydr. Polym. 2021, 251, 117006. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, M.Y.; Nie, S.P.; Li, C.; Wang, Y. Purification, composition analysis and antioxidant activity of a polysaccharide from the fruiting bodies of Ganoderma atrum. Food Chem. 2008, 107, 231–241. [Google Scholar] [CrossRef]
- Huang, S.Q.; Li, J.W.; Li, Y.Q.; Wang, Z. Purification, and structural characterization of a new water-soluble neutral polysaccharide GLP-F1-1 from Ganoderma lucidum. Int. J. Biol. Macromol. 2011, 48, 165–169. [Google Scholar] [CrossRef]
- Jiang, H.Y.; Sun, P.L.; He, J.Z.; Shao, P. Rapid purification of polysaccharides using novel radial flow ion-exchange by response surface methodology from Ganoderma lucidum. Food Bioprod. Process. 2012, 90, 1–8. [Google Scholar] [CrossRef]
- Bao, X.F.; Wang, X.S.; Dong, Q.; Fang, J.N.; Li, X.Y. Structural features of immunologically active polysaccharides from Ganoderma lucidum. Phytochemistry 2002, 59, 175–181. [Google Scholar] [CrossRef]
- Cao, Q.Z.; Lin, Z.B. Ganoderma lucidum polysaccharides peptide inhibits the growth of vascular endothelial cell and the induction of VEGF in human lung cancer cell. Life Sci. 2006, 78, 1457–1463. [Google Scholar] [CrossRef]
- Sullivan, R.; Smith, J.E.; Rowan, N.J. Medicinal mushrooms and cancer therapy. Translating a traditional practice into Western medicine. Perspect. Biol. Med. 2006, 49, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Q.; Fang, L.; Zhang, K.C. Structure and bioactivities of agalactose rich extracellular polysaccharide from submergedly cultured Ganoderma lucidum. Carbohydr. Polym. 2007, 68, 323–328. [Google Scholar] [CrossRef]
- Ye, L.B.; Zhang, J.S.; Zhou, K.; Yang, Y.; Zhou, S.J.W. Purification, NMR study and immuno stimulating property of a fucogalactan from the fruiting bodies of Ganoderma lucidum. Planta Medica 2008, 74, 1730–1734. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.B.; Zhang, J.S.; Yang, Y.; Zhou, S.; Liu, Y.F.; Tang, Q.J.; Du, X.; Chen, H.; Pan, Y. Structural characterisation of a heteropolysaccharide by NMR spectra. Food Chem. 2009, 112, 962–966. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L. Structure and chain conformation of five water-soluble derivatives of a beta-D-glucan isolated from Ganoderma lucidum. Carbohydr. Res. 2009, 344, 105–112. [Google Scholar] [CrossRef]
- Ye, L.; Li, J.R.; Zhang, J.S.; Pan, Y.J. NMR characterization for polysaccharide moiety of a glycopeptide. Fitoterapia 2010, 81, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wang, H.Y.; Pang, X.B.; Yao, W.B.; Gao, X.D. Characterization, and antioxidant activity of two low- molecular-weight polysaccharides purified from the fruiting bodies of Ganoderma lucidum. Int. J. Biol. Macromol. 2010, 46, 451–457. [Google Scholar] [CrossRef]
- Pan, D.; Wang, L.; Chen, C.; Teng, B. Structure characterization of a novel neutral polysaccharide isolated from Ganoderma lucidum fruiting bodies. Food Chem. 2012, 135, 1097–1103. [Google Scholar] [CrossRef]
- Ma, C.W.; Feng, M.; Zhai, X.; Hu, M. Optimization for the extraction of polysaccharides from Ganoderma lucidum and their antioxidant and antiproliferative activities. J. Taiwan Inst. Chem. Eng. 2013, 44, 886–894. [Google Scholar] [CrossRef]
- Pan, K.; Jiang, Q.; Liu, G.; Miao, X.; Zhong, D. Optimization extraction of Ganoderma lucidum polysaccharides and its immunity and antioxidant activities. Intl. Biol. Macromol. 2013, 55, 301–306. [Google Scholar] [CrossRef]
- Ooi, V.E.; Liu, F. Immunomodulation, and anti-cancer activity of polysaccharide-protein complexes. Curr. Med. Chem. 2000, 7, 715–729. [Google Scholar] [CrossRef]
- Zhang, M.; Cui, S.W.; Cheung, P.C.; Wang, Q. Antitumor polysaccharides from mushrooms: A review on their isolation process, structural characteristics, and antitumor activity. Trends Food Sci. Technol. 2007, 18, 4–19. [Google Scholar] [CrossRef]
- Jia, J.; Zhang, X.; Hu, Y.S.; Wu, Y.; Wang, Q.Z.; Li, N.N. Evaluation of in vivo antioxidant activities of Ganoderma lucidum polysaccharides in STZ diabetic rats. Food Chem. 2009, 115, 32–36. [Google Scholar] [CrossRef]
- Moradali, M.F.; Mostafavi, H.; Ghods, S.; Hedjaroude, G.A. Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi). Int. Immunopharmacol. 2007, 7, 701–724. [Google Scholar] [CrossRef]
- Doco, T.; O’Neill, M.A.; Pellerin, P. Determination of the neutral and acidic glycosyl-residue compositions of plant polysaccharides by GC–EI–MS analysis of the trimethylsily l methyl glycoside derivatives. Carbohydr. Polym. 2001, 46, 249–259. [Google Scholar] [CrossRef]
- Hung, C.C.; Santschi, P.H.; Gillow, J.B. Isolation and characterization of extracellular polysaccharides produced by Pseudomonas fluorescens Biovar II. Carbohydr. Polym. 2005, 61, 141–147. [Google Scholar] [CrossRef]
- Dai, J.; Wu, Y.; Chen, S.W.; Zhu, S.; Yin, H.P.; Wang, M. Sugar compositional determination of polysaccharides from Dunaliella salina by modified RP-HPLC method of precolumn derivatization with 1-phenyl-3-methyl-5-pyrazolone. Carbohydr. Polym. 2010, 82, 629–635. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, S.W.; Xie, Y.H.; Sun, J.Y.; Wang, J.B. HPLC analysis of Ganoderma lucidum polysaccharides and its effect on antioxidant enzymes activity and Bax, Bcl-2 expression. Int. J. Biol. Macromol. 2010, 46, 167–172. [Google Scholar] [CrossRef]
- Dong, Q.; Wang, Y.; Shi, L.; Yao, J.; Li, J.; Ma, F. A novel water-soluble β-D-glucan isolated from the spores of Ganoderma lucidum. Carbohydr. Res. 2012, 353, 100–105. [Google Scholar] [CrossRef]
- Liu, Y.J.; Shena, J.; Xia, Y.M.; Zhang, J. The polysaccharides from Ganoderma lucidum: Are they always inhibitors on human hepatocarcinoma cells? Carbohydr. Polym. 2012, 90, 1210–1215. [Google Scholar] [CrossRef] [PubMed]
- Skalicka-Wozniak, K.; Szypowski, J.; Łos, R.; Siwulski, M.; Sobieralski, K.; Glowniak, K. Evaluation of polysaccharides content in fruit bodies and their antimicrobial activity of four Ganoderma lucidum (W Curt.: Fr.) P. Karst strains cultivated on different wood type substrates. Acta Soc. Bot. Pol. 2012, 81, 17–21. [Google Scholar] [CrossRef]
- Pascale, C.; Sirbu, R.; Cadar, E. Importance of Bioactive Compounds of Ganoderma lucidum Extract in Medical Field. Eur. J. Nat. Sci. Med. 2022, 5, 39–47. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, S.; Peng, B.; Tan, D.; Wua, M.; Jinchao Weia, J.; Wanga, Y.; Luoa, H. Ganoderma lucidum: A comprehensive review of phytochemistry, efficacy, safety and clinical study. Food Sci. Hum. Wellness 2023, 13, 568–596. [Google Scholar] [CrossRef]
- Gu, L.; Zheng, Y.; Lian, D. Production of triterpenoids from Ganoderma lucidum: Elicitation strategy and signal transduction. Process Biochem. 2018, 69, 22–32. [Google Scholar] [CrossRef]
- Baby, S.; Johnson, A.J.; Govindan, B. Secondary metabolites from Ganoderma. Phytochemistry 2015, 114, 66–101. [Google Scholar] [CrossRef]
- Galappaththi, M.C.A.; Patabendige, N.M.; Premarathne, B.M.; Hapuarachchi, K.K.; Tibpromma, S.; Dai, D.Q.; Suwannarach, N.; Rapior, S.; Karunarathna, S.C. A Review of Ganoderma Triterpenoids and Their Bioactivities. Biomolecules 2023, 13, 24. [Google Scholar] [CrossRef] [PubMed]
- Cör, A.D.; Knez, Ž.; Knez, M.M. Antioxidant, antibacterial, antitumor, antifungal, antiviral, anti-inflammatory, and nevroprotective activity of Ganoderma lucidum: An overview. Front. Pharmacol. 2022, 13, 934–982. [Google Scholar] [CrossRef]
- Lin, Y.X.; Sun, J.T.; Liao, Z.Z.; Sun, Y.; Tian, X.G.; Jin, L.L.; Wang, C.; Leng, A.J.; Zhou, J.; Li, D.W. Triterpenoids from the fruiting bodies of Ganoderma lucidum and their inhibitory activity against FAAH. Fitoterapia 2022, 158, 1051–1061. [Google Scholar] [CrossRef]
- Ghorai, N.; Chakraborty, S.; Shamik, G.; Saha, S.K.; Biswas, S. Estimation of total Terpenoids concentration in plant tissues using a monoterpene, Linalool as standard reagent. Protoc. Exch. 2012, 1, 6. [Google Scholar] [CrossRef]
- Taofiq, O.; Heleno, S.A.; Calhelha, R.C.; José Alves, M.; Barros, L.; González-Paramás, A.M.; Barreiro, M.F.; Ferreira, I.C.F.R. The potential of Ganoderma lucidum extracts as bioactive ingredients in topical formulations, beyond its nutritional benefits. Food Chem. Toxicol. 2017, 108, 139–147. [Google Scholar] [CrossRef]
- Chang, C.L.; Lin, C.S.; Lai, G.H. Phytochemical characteristics, free radical scavenging activities, and neuroprotection of five medicinal plant extracts. Evidence-based Complement. Altern. Med. 2012, 2012, 984295. [Google Scholar] [CrossRef]
- Huie, C.W.; Di, X. Chromatographic and electrophoretic methods for Lingzhi pharmacologically active components. J. Chromatogr. B. 2004, 812, 214–257. [Google Scholar] [CrossRef]
- Yang, M.; Wang, X.; Guan, S.; Xia, J.; Sun, J.; Guo, H.; Guo, D.A. Analysis of triterpenoids in Ganoderma lucidum using liquid chromatography coupled with electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectr. 2007, 18, 927–939. [Google Scholar] [CrossRef]
- Zhang, C.R.; Yang, S.P.; Yue, J.M. Sterols and triterpenoids from the spores of Ganoderma lucidum. Nat. Prod. Res. 2008, 22, 1137–1142. [Google Scholar] [CrossRef]
- Shi, L.; Ren, A.; Mu, D.; Zhao, M. Current progress in the study on biosynthesis and regulation of ganoderic acids. Appl. Microbiol. Biotechnol. 2010, 88, 1243–1251. [Google Scholar] [CrossRef]
- Hadda, M.; Djamel, C.; Akila, O. Production and qualitative analysis of triterpenoids and steroids of Ganoderma species harvested from cork oak forest of North-Eastern Algeria. Res. J. Microbiol. 2015, 10, 366–376. [Google Scholar] [CrossRef]
- Che, X.Q.; Li, S.P.; Zhao, J. Ganoderma triterpenoids from aqueous extract of Ganoderma lucidum. Zhongguo Zhong Yao Za Zhi 2017, 42, 1908–1915. [Google Scholar]
- Hui, Z.; Jiang, H.; Yan Chen, Y.; Wang, J.; Yan, J. Quality evaluation of triterpenoids in Ganoderma and related species by the quantitative analysis of multi-components by single marker method. J. Liq. Chromatogr. Relat. Technol. 2018, 41, 860–867. [Google Scholar] [CrossRef]
- Zhang, C.; Fu, D.; Chen, G. Comparative and chemometric analysis of correlations between the chemical fingerprints and anti-proliferative activities of ganoderic acids from three Ganoderma species. Phytochem. Anal. 2019, 30, 474–480. [Google Scholar] [CrossRef]
- Xia, Q.; Zhang, H.; Sun, X.; Zhao, H.; Wu, L.; Zhu, D.; Yang, G.; Shao, Y.; Zhang, X.; Mao, X.; et al. A comprehensive review of the structure elucidation and biological activity of triterpenoids from Ganoderma spp. Molecules 2014, 19, 17478–17535. [Google Scholar] [CrossRef]
- Fatmawati, S.; Shimizu, K.; Kondo, R. Ganoderic acid Df, a new triterpenoid with aldose reductase inhibitory activity from the fruiting body of Ganoderma lucidum. Fitoterapia 2010, 81, 1033–1036. [Google Scholar] [CrossRef]
- Sharma, C.; Bhardwaj, N.; Sharma, A.; Tuli, H.S.; Katial, P.; Beniwal, V.; Gupta, G.K.; Sharma, A. Bioactive metabolites of Ganoderma lucidum: Factors, mechanism and broad-spectrum therapeutic potential. J. Herb. Med. 2019, 17, 100268. [Google Scholar] [CrossRef]
- Koo, M.H.; Chae, H.J.; Lee, J.H. Antiinflammatory lanostane triterpenoids from Ganoderma lucidum. Nat. Prod. Res. 2019, 35, 4295–4302. [Google Scholar] [CrossRef] [PubMed]
- Murata, C.T.Q.; Onda, S.; Usuki, T. Extraction and isolation of ganoderic acid Sigma from Ganoderma lucidum. Tetrahedron Lett. 2016, 57, 5368–5371. [Google Scholar] [CrossRef]
- Yue, Q.X.; Cao, Z.W.; Guan, S.H.; Liu, X.H.; Tao, L.; Wu, W.Y.; Li, Y.X.; Yang, P.Y.; Liu, X.; Guo, D.A. Proteomics characterization of the cytotoxicity mechanism of ganoderic acid D and computer-automated estimation of the possible drug target network. Mol. Cell. Proteom. 2008, 7, 949–961. [Google Scholar] [CrossRef]
- Yue, Q.X.; Song, X.Y.; Ma, C.; Feng, L.X.; Guan, S.H.; Wu, W.Y.; Yang, M.; Jiang, B.H.; Liu, X.; Cui, Y.J.; et al. Effects of triterpenes from Ganoderma lucidum on protein expression profile of HeLa cells. Phytomedicine 2010, 17, 606–613. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Ip, F.C.; Zhang, D.M. Triterpenoids with neurotrophic activity from Ganoderma lucidum. Nat. Prod. Res. 2011, 25, 1607–1613. [Google Scholar] [CrossRef]
- Cheng, C.R.; Yue, Q.X.; Wu, Z.Y. Cytotoxic triterpenoids from Ganoderma lucidum. Phytochemistry 2010, 71, 1579–1585. [Google Scholar] [CrossRef]
- Liu, J.; Shimizu, K.; Tanaka, A. Target proteins of ganoderic acid DM provides clues to various pharmacological mechanisms. Sci. Rep. 2012, 2, 905. [Google Scholar] [CrossRef]
- Ríos, J.L.; Andújar, I.; Recio, M.C.; Giner, R.M. Lanostanoids from fungi: A group of potential anticancer compounds. J. Nat. Prod. 2012, 75, 2016–2044. [Google Scholar] [CrossRef]
- Li, Y.B.; Liu, R.M.; Zhong, J.J. A new ganoderic acid from Ganoderma lucidum mycelia and its stability. Fitoterapia 2013, 84, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Fatmawati, S.; Kondo, R.; Shimizu, K. Structure-activity relationships of lanostane-type triterpenoids from Ganoderma lingzhi as α-glucosidase inhibitors. Bioorg. Med. Chem. Lett. 2013, 23, 5900–5903. [Google Scholar] [CrossRef]
- Li, P.; Deng, Y.P.; Wei, X.X.; Xu, J.H. Triterpenoids from Ganoderma lucidum and their cytotoxic activities. Nat. Prod. Res. 2013, 27, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Tian, J.; Zhang, J. Triterpenes and meroterpenes from Ganoderma lucidum with inhibitory activity against HMGs reductase, aldose reductase and α-glucosidase. Fitoterapia 2017, 120, 6–16. [Google Scholar] [CrossRef]
- Liang, C.; Tian, D.; Liu, Y. Review of the molecular mechanisms of Ganoderma lucidum triterpenoids: Ganoderic acids A, C2, D, F, DM, X and Y. Eur. J. Med. Chem. 2019, 174, 130–141. [Google Scholar] [CrossRef]
- Chinthanom, P.; Vichai, V.; Dokladda, K.; Sappan, M.; Thongpanchang, C.; Isaka, M. Semisynthetic modifications of antitubercular lanostane triterpenoids from Ganoderma. J. Antibiot. 2021, 74, 435–442. [Google Scholar] [CrossRef]
- Pascale, C.; Sirbu, R.; Cadar, E. Therapeutical Properties of Bioactive Compounds Extracted from Ganoderma lucidum Species on Acute and Chronic Diseases. Eur. J. Nat. Sci. Med. 2023, 6, 73–86. [Google Scholar] [CrossRef]
- Cör, A.D.; Knez, Z.; Knez-Hrncic, M. Antitumour, Antimicrobial, Antioxidant and Antiacetylcholinesterase Effect of Ganoderma lucidum Terpenoids and Polysaccharides: A Review. Molecules 2018, 23, 649. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, H.; Zuo, J.; Gong, X.; Yi, F.; Zhu, W.; Li, L. Advances in research on the active constituents and physiological effects of Ganoderma lucidum. Biomed. Dermatol. 2019, 3, 1–17. [Google Scholar] [CrossRef]
- Ahmad, M.F. Ganoderma lucidum: A rational pharmacological approach to surmount cancer. J. Ethnopharmacol. 2020, 60, 113047. [Google Scholar] [CrossRef] [PubMed]
- Hussien, Z.G. Chemical content study in Ganoderma lucidum commercial products. Minar. Int. J. App. Sci. Technol. 2022, 4, 158–165. [Google Scholar] [CrossRef]
- Sharif, S.; Mustafa, G.; Munir, H. Proximate composition and micronutrient mineral profile of wild Ganoderma lucidum and four commercial exotic mushrooms by ICP-OES and LIBS. J. Food Nutr. Res. 2016, 4, 703–708. [Google Scholar]
- Treviño, S.; Díaz, A.; Sanchez-Lara, E.; Sanchez-Gaytan, B.L.; Perez-Aguilar, J.M.; Gonzalez-Vergara, E. Vanadium in Biological Action: Chemical, Pharmacological Aspects, and Metabolic Implications in Diabetes Mellitus. Biol. Trace Elem. Res. 2019, 188, 68–98. [Google Scholar] [CrossRef] [PubMed]
- Matute, R.G.; Serra, A.; Figlas, D.; Curvetto, N. Copper and Zinc Bioaccumulation and Bioavailability of Ganoderma lucidum. J. Med. Food 2011, 14, 1273–1279. [Google Scholar] [CrossRef] [PubMed]
- Falandysz, J. Selenium in edible mushrooms. J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev. 2008, 26, 256–299. [Google Scholar] [CrossRef] [PubMed]
- Chiu, S.W.; Wang, Z.M.; Leung, T.M.; Moore, D. Nutritional value of ganoderma extract and assessment of its genotoxicity and antigenotoxicity using comet assays of mouse lymphocytes. Food Chem. Toxicol. 2000, 38, 173–178. [Google Scholar] [CrossRef]
- Du, M.; Cong, W.; Hu, X.S.; Zhao, G. Positive Effect of Selenium on the Immune Regulation Activity of Ling Zhi or Reishi Medicinal Mushroom, Ganoderma lucidum (W. Curt.: Fr.) P. Karst. (Aphyllophoromycetideae), Proteins In Vitro. Int. J. Med. Mushrooms 2008, 10, 337–344. [Google Scholar] [CrossRef]
- Ma, J.; Ye, Q.; Hua, Y.; Zhang, D.; Cooper, R.; Chang, M.N.; Chang, J.Y.; Sun, H.H. New Lanostanoids from the Mushroom Ganoderma lucidum. Nat. Prod. 2002, 65, 72–75. [Google Scholar] [CrossRef]
- Akihisa, T.; Nakamura, Y.; Tagata, M.; Tokuda, H.; Yasukawa, K.; Uchiyama, E.; Suzuki, T.; Kimura, Y. Anti-Inflammatory and Anti-Tumor-Promoting Effects of Triterpene Acids and Sterols from the Fungus Ganoderma lucidum. Chem. Biodivers. 2007, 4, 224–231. [Google Scholar] [CrossRef]
- Liu, J.; Huang, W.; Lv, M.; Si, J.; Guo, B.; Li, S. Determination of ergosterol in Ganoderma lucidum from different varieties and cultured tree species by HPLC. J. Chin. Med. Mater. 2011, 34, 187–190. [Google Scholar]
- Huang, L.; Sun, F.; Liang, C.; He, Y.X.; Bao, R.; Liu, L.; Zhou, C.Z. Crystal structure of LZ-8 from the medicinal fungus Ganoderma lucidium. Proteins 2009, 75, 524–527. [Google Scholar] [CrossRef]
- Hsu, H.Y.; Kuan, Y.C.; Lin, T.Y.; Tsao, S.M.; Hsu, J.; Ma, L.J.; Sheu, F. Reishi Protein LZ-8 Induces FOXP3(+) Treg Expansion via a CD45-Dependent Signaling Pathway and Alleviates Acute Intestinal Inflammation in Mice. Evid. Based Comp. Alternat. Med. 2013, 2013, 513542. [Google Scholar] [CrossRef]
- Lin, H.J.; Chang, Y.S.; Lin, L.H.; Haung, C.F.; Wu, C.Y.; Ou, K.L. An Immunomodulatory Protein (Ling Zhi-8) from a Ganoderma lucidum Induced Acceleration of Wound Healing in Rat Liver Tissues after Monopolar Electrosurgery. Evid. Based Complement. Altern. Med. 2014, 2014, 916531. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, T.; Tang, H.; Ren, Z.; Li, Q.; Jia, J.; Chen, H.; Fu, J.; Ding, S.; Hao, Q.; et al. Ganoderma lucidum Immune Modulator Protein rLZ-8 Could Prevent and Reverse Bone Loss in Glucocorticoids-Induced Osteoporosis Rat Model. Front. Pharmacol. 2020, 11, 731. [Google Scholar] [CrossRef]
- Sa-Ard, P.; Sarnthima, R.; Khammuang, S. Antioxidant, antibacterial and DNA protective activities of protein extracts from Ganoderma lucidum. J. Food Sci. Technol. 2015, 52, 2966–2973. [Google Scholar] [CrossRef]
- Sun, J.; He, H.; Xie, B.J. Novel Antioxidant Peptides from Fermented Mushroom Ganoderma lucidum. J. Agric. Food Chem. 2004, 52, 6646–6652. [Google Scholar] [CrossRef]
- Ji, Z.; Tang, Q.; Zhang, J.; Yang, Y.; Jia, W.; Pan, Y. Immunomodulation of RAW264.7 macrophages by GLIS, a proteopolysaccharide from Ganoderma lucidum. J. Ethnopharmacol. 2007, 112, 445–450. [Google Scholar] [CrossRef]
- Yeh, C.H.; Chen, H.C.; Yang, J.J.; Chuang, W.I.; Sheu, F. Polysaccharides PS-G and Protein LZ-8 from Reishi (Ganoderma lucidum) Exhibit Diverse Functions in Regulating Murine Macrophages and T Lymphocytes. J. Agric. Food Chem. 2010, 58, 8535–8544. [Google Scholar] [CrossRef]
- Girjal, V.U.; Neelagund, S.; Krishnappa, M. Antioxidant Properties of the Peptides Isolated from Ganoderma lucidum Fruiting Body. Int. J. Pept. Res. Ther. 2012, 18, 319–325. [Google Scholar] [CrossRef]
- Zhong, D.; Wang, H.; Liu, M.; Li, X.; Huang, M.; Zhou, H.; Lin, S.; Lin, Z.; Yang, B. Ganoderma lucidum polysaccharide peptide prevents renal ischemia reperfusion injury via counteracting oxidative stress. Sci. Rep. 2015, 5, 16910. [Google Scholar] [CrossRef]
- Kumakura, K.; Hori, C.; Matsuoka, H.; Kiyohiko, I.K.; Masahiro, S.M. Protein components of water extracts from fruiting bodies of the reishi mushroom Ganoderma lucidum contribute to the production of functional molecules. J. Sci. Food. Agric. 2019, 99, 529–535. [Google Scholar] [CrossRef]
- Yu, F.; Wang, Y.; Teng, Y.; Yang, S.; He, Y.; Zhang, Z.; Yang, H.; Ding, C.F.; Zhou, P. Interaction and Inhibition of a Ganoderma lucidum Proteoglycan on PTP1B Activity for Anti-diabetes. ACS Omega 2021, 6, 29804–29813. [Google Scholar] [CrossRef]
- Yu, F.; Teng, Y.; Jiaqi, L.J.; Yang, S.; Zeng, Z.; Yanming, H.; Hongjie, Y.; Chuan-Fan, D.; Ping, Z. Effects of a Ganoderma lucidum Proteoglycan on Type 2 Diabetic Rats and the Recovery of Rat Pancreatic Islets. ACS Omega 2023, 8, 17304–17316. [Google Scholar] [CrossRef]
- Huang, P.; Luo, F.J.; Ma, Y.C.; Wang, S.X.; Huang, J.; Qin, D.D.; Xue, F.F.; Liu, B.Y.; Wu, Q.; Wang, X.L.; et al. Dual antioxidant activity and the related mechanisms of a novel pentapeptide GLP4 from the fermented mycelia of Ganoderma lingzhi. Food Funct. 2022, 13, 9032–9048. [Google Scholar] [CrossRef]
- Thakur, A.; Rana, M.; Lakhanpal, T.N.; Ahmad, A.; Khan, M.I. Purification and characterization of lectin from fruiting body of Ganoderma lucidum: Lectin from Ganoderma lucidum. Biochim. Et Biophys. Acta Gen. Subj. 2007, 1770, 1404–1412. [Google Scholar] [CrossRef]
- Girjal, V.U.; Neelagund, S.; Krishnappa, M. Ganoderma lucidum: A source for novel bioactive lectin. Prot. Pept. Lett. 2011, 18, 1150–1157. [Google Scholar] [CrossRef]
- Nikitina, V.E.; Loshchinina, E.A.; Vetchinkina, E.P. Lectins from Mycelia of Basidiomycetes. Int. J. Mol. Sci. 2017, 18, 1334. [Google Scholar] [CrossRef]
- Yousra, A.; El-Maradny, E.M.; El-Fakharany, M.M.S.; Mona, H.H.; Heba, S.S. Lectins purified from medicinal and edible mushrooms: Insights into their antiviral activity against pathogenic viruses. Int. J. Biol. Macromol. 2021, 179, 239–258. [Google Scholar] [CrossRef]
- Deepalakshmi, K.; Mirunalini, S. Therapeutic properties and current medical usage of medicinal mushroom: Ganoderma lucidum. Int. J. Pharm. Sci. Res. 2011, 2, 1922–1929. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, H.; Zhang, X.; Yan, J. Amino Acids from Ganoderma lucidum: Extraction Optimization, Composition Analysis, Hypoglycemic and Antioxidant Activities. Curr. Pharm. Anal. 2018, 14, 562–570. [Google Scholar] [CrossRef]
- Kim, M.Y.; Seguin, P.; Ahn, J.K.; Kim, J.J.; Chun, S.C.; Kim, E.H.; Seo, S.H.; Kang, E.Y.; Kim, S.L.; Park, Y.J.; et al. Phenolic Compound Concentration and Antioxidant Activities of Edible and Medicinal Mushrooms from Korea. J. Agric. Food Chem. 2008, 56, 7265–7270. [Google Scholar] [CrossRef]
- Sheikh, I.A.; Vyas, D.; Ganaie, M.A.; Dehariya, K.; Singh, V. HPLC determination of phenolics and free radical scavenging activity of ethanolic extracts of two polypore mushrooms. Int. J. Pharm. Pharm. Sci. 2014, 6, 679–684. [Google Scholar]
- Lin, M.S.; Yu, Z.R.; Wang, B.J.; Wang, C.C.; Weng, Y.M.; Koo, M. Bioactive constituent characterization and antioxidant activity of Ganoderma lucidum extract fractionated by supercritical carbon dioxide. Sains Mal. 2015, 44, 1685–1691. [Google Scholar]
- Veljović, S.; Veljović, M.; Nikićević, N.; Despotović, S.; Radulović, S.; Nikšić, M.; Filipović, L. Chemical composition, antiproliferative and antioxidant activity of differently processed Ganoderma lucidum ethanol extracts. J. Food Sci. Technol. 2017, 54, 1312–1320. [Google Scholar] [CrossRef]
- Dong, Q.; He, D.; Ni, X. Comparative study on phenolic compounds, triterpenoids, and antioxidant activity of Ganoderma lucidum affected by different drying methods. Food Meas. 2019, 13, 3198–3205. [Google Scholar] [CrossRef]
- Zheng, S.; Zhang, W.; Liu, S. Optimization of ultrasonic-assisted extraction of polysaccharides and triterpenoids from the medicinal mushroom Ganoderma lucidum and evaluation of their in vitro antioxidant capacities. PLoS ONE 2020, 15, e0244749. [Google Scholar] [CrossRef]
- Kolniak-Ostek, J.; Oszmianski, J.; Szyjka, A.; Moreira, H.; Barg, E. Anticancer and Antioxidant Activities in Ganoderma lucidum Wild Mushrooms in Poland, as Well as Their Phenolic and Triterpenoid Compounds. Int. J. Mol. Sci. 2022, 23, 9359. [Google Scholar] [CrossRef]
- Saltarelli, R.; Ceccaroli, P.; Buffalini, M.; Vallorani, L.; Casadei, L.; Zambonelli, A.; Iotti, M.; Badalyan, S.; Stocchi, V. Biochemical characterization and antioxidant and antiproliferative activities of different Ganoderma collections. J. Mol. Microb. Biotechnol. 2015, 25, 16–25. [Google Scholar] [CrossRef]
- Tang, X.; Cai, W.; Xu, B. Comparison of the Chemical Profiles and Antioxidant and Antidiabetic Activities of Extracts from Two Ganoderma Species (Agaricomycetes). Int. J. Med. Mush. 2016, 18, 609–620. [Google Scholar] [CrossRef]
- Sánchez, C. Reactive oxygen species and antioxidant properties from mushrooms. Synth. Syst. Biotechnol. 2017, 2, 13–22. [Google Scholar] [CrossRef]
- Mohammadifar, S.; Fallahi, G.S.; Asef, S.M.R.; Vaziri, A. Comparison between antioxidant activity and bioactive compounds of Ganoderma applanatum (Pers.) Pat. and Ganoderma lucidum (Curt.) P. Karst from Iran. Iran. J. Plant Physiol. 2020, 11, 3417–3424. [Google Scholar]
- Mustafin, K.; Bisko, N.; Blieva, R.; Al-Maali, G.; Krupodorova, T.; Narmuratova, Z.; Saduyeva, Z.; Zhakipbekova, A. Antioxidant and antimicrobial potential of Ganoderma lucidum and Trametes versicolor. Turk. J. Biochem. 2022, 47, 483–489. [Google Scholar] [CrossRef]
- Cheung, H.Y.; Ng, C.W.; Hood, D.J. Identification and quantification of base and nucleoside markers in extracts of Ganoderma lucidum, Ganoderma japonicum and Ganoderma capsules by micellar electrokinetic chromatography. J. Chromatogr. 2001, 911, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.L.; Leung, K.S.; Wang, Y.T.; Lai, C.M.; Li, S.P.; Hu, L.F. Qualitative and quantitative analyses of nucleosides and nucleobases in Ganoderma spp. by HPLC-DAD-MS. J. Pharm. Biomed. Anal. 2007, 44, 801–811. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.P.; Zhao, S.Y.; Wang, J.H.; Kuang, H.C.; Liu, X. Distribution of Nucleosides and Nucleobases in Edible Fungi. J. Agric. Food Chem. 2008, 56, 809–815. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Bicker, W.; Wu, J.I.; Xie, M.; Lindner, W. Simultaneous Determination of 16 Nucleosides and Nucleobases by Hydrophilic Interaction Chromatography and Its Application to the Quality Evaluation of Ganoderma. J. Agric. Food Chem. 2012, 60, 4243–4252. [Google Scholar] [CrossRef] [PubMed]
- Phan, C.W.; Wang, J.K.; Cheah, S.C.; Naidu, M.; David, P.; Sabaratnam, V. A review of the nucleid acid constituents in mushrooms: Nucleobases, nucleosides, and nucleotides. Crit. Rev. Biotechnol. 2018, 38, 762–777. [Google Scholar] [CrossRef]
- Sheng, F.; Wang, A.; Luo, X.; Xiao, J.; Hu, L.; Li, L. Simultaneous determination of ten nucleosides and bases in Ganoderma by micellar electrokinetic chromatography. Food Sci. Hum. Wellness 2022, 11, 263–268. [Google Scholar] [CrossRef]
- Hossain, S.A.; Nuhu, A.; Siddharth, B.M.A.; Rahman, M. Essential fatty acid contents of Pleurotus ostreatus, Ganoderma lucidum and Agaricus bisporus. Bangladesh J. Mush. 2007, 2, 1–7. [Google Scholar]
- Stojković, D.S.; Barros, L.; Calhelha, R.C.; Glamočlija, J.; Ćirić, A.; van Griensven, L.J.; Soković, M.; Ferreira, I.C. A detailed comparative study between chemical and bioactive properties of Ganoderma lucidum from different origins. Int. J. Food Sci. Nutr. 2014, 65, 42–47. [Google Scholar] [CrossRef]
- Lin, J.T.; Hou, C.; Dulay, R.; Ray, K.; Chen, G. Structures of hydroxy fatty acids as the constituents of triacylglycerols in Philippine wild edible mushroom, Ganoderma lucidum. Biocatal. Agric. Biotechnol. 2017, 12, 148–151. [Google Scholar] [CrossRef]
- Salvatore, M.M.; Elvetico, A.; Gallo, M.; Salvatore, F.; DellaGreca, M.; Naviglio, D.; Andolfi, A. Fatty Acids from Ganoderma lucidum Spores: Extraction, Identification and Quantification. Appl. Sci. 2020, 10, 3907. [Google Scholar] [CrossRef]
- Wasser, S.P. Medicinal mushroom science: History, current status, future trends, and unsolved problems. Int. J. Med. Mush. 2010, 12, 1–16. [Google Scholar] [CrossRef]
- Wasser, S.P. Current findings, future trends, and unsolved problems in studies of medicinal mushrooms. Appl. Microbiol. Biotechnol. 2011, 89, 1323–1332. [Google Scholar] [CrossRef]
- Ekiz, E.; Oz, E.; Abd El-Aty, A.M.; Proestos, C.; Brennan, C.; Zeng, M.; Tomasevic, I.; Elobeid, T.; Çadırcı, K.; Bayrak, M.; et al. Exploring the Potential Medicinal Benefits of Ganoderma lucidum: From Metabolic Disorders to Coronavirus Infections. Foods 2023, 12, 1512. [Google Scholar] [CrossRef]
- Cao, L.Z.; Lin, Z.B. Regulation on maturation and function of dendritic cells by Ganoderma lucidum polysaccharides. Immunol. Lett. 2002, 83, 163–169. [Google Scholar] [CrossRef]
- Cao, L.Z.; Lin, Z.B. Regulatory effect of Ganoderma lucidum polysaccharides on cytotoxic T-lymphocytes induced by dendritic cells in vitro. Acta. Pharmacol. Sin. 2003, 24, 321–326. [Google Scholar] [PubMed]
- Chen, H.S.; Tsai, Y.F.; Lin, S.; Lin, C.C.; Khoo, K.H.; Lin, C.H. Studies on the immuno-modulating and anti-tumor activities of Ganoderma lucidum (Reishi) polysaccharides. Bioorg. Med. Chem. 2004, 12, 5595–5601. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.L.; Lin, Z.B. Effects of Ganoderma lucidum polysaccharides on proliferation and cytotoxicity of cytokine-induced killer cells. Acta Pharmacol. Sin. 2005, 26, 1130–1137. [Google Scholar] [CrossRef]
- Zhu, X.L.; Chen, A.F.; Lin, Z.B. Ganoderma lucidum polysaccharides enhance the function of immunological effector cells in immunosuppressed mice. J. Ethnopharmacol. 2007, 111, 219–226. [Google Scholar] [CrossRef]
- You, G.C.; Zongji, S.; XiaoPing, C. Modulatory effect of Ganoderma lucidum polysaccharides on serum antioxidant enzymes activities in ovarian cancer rats. Carbohyd. Polym. 2009, 78, 258–262. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, X.; Zhong, Z.; Chen, L.; Wang, Y. Ganoderma lucidum polysaccharides: Immunomodulation and potential anti-tumor activities. Am. J. Chin. Med. 2011, 39, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.X.; Lin, Z.B.; Li, X.J.; Li, M.; Lu, J.; Duan, X.S. Promoting effects of Ganoderma lucidum polysaccharides on B16F10 cells to activate lymphocytes. Basic Clin. Pharmacol. Toxicol. 2011, 108, 149–154. [Google Scholar] [CrossRef]
- Wiater, A.; Paduch, R.; Choma, A.; Pleszczyńska, M.; Siwulski, M.; Dominik, J. Biological study on carboxymethylated (1→3)-α-D-glucans from fruiting bodies of Ganoderma lucidum. Int. J. Biol. Macromol. 2012, 51, 1014–1023. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.J.; Park, H.S.; Xia, Y.M. Antitumor activity of sulfated extracellular polysaccharides of Ganoderma lucidum from the submerged fermentation broth. Carbohydr. Polym. 2012, 87, 1539–1544. [Google Scholar] [CrossRef]
- Suarez-Arroyo, I.J.; Rosario-Acevedo, R.; Aguilar-Perez, A.; Clemente, P.L.; Cubano, L.A.; Serrano, J. Anti-tumor effects of Ganoderma lucidum (reishi) in inflammatory breast cancer in in vivo and in vitro models. PLoS ONE 2013, 8, e57431. [Google Scholar] [CrossRef]
- Habijanic, J.; Berovic, M.; Boh, B.; Plankl, M.; Wraber, B. Submerged cultivation of Ganoderma lucidum and the effects of its polysaccharides on the production of human cytokines TNF-α, IL-12, IFN-γ, IL-2, IL-4, IL-10 and IL-17. N. Biotechnol. 2015, 32, 85–95. [Google Scholar] [CrossRef]
- Sohretoglu, D.; Huang, S. Ganoderma lucidum Polysaccharides as An Anti-cancer Agent. Anticancer Agents Med. Chem. 2018, 18, 667–674. [Google Scholar] [CrossRef]
- Wang, C.; Shi, S.; Chen, Q.; Lin, S.; Wang, R.; Wang, S.; Chen, C. Antitumor and Immunomodulatory Activities of Ganoderma lucidum Polysaccharides in Glioma-Bearing Rats. Integr. Cancer Ther. 2018, 17, 674–683. [Google Scholar] [CrossRef]
- Fu, Y.; Shi, L.; Ding, K. Structure elucidation and anti-tumor activity in vivo of a polysaccharide from spores of Ganoderma lucidum (Fr.) Karst. Int. J. Biol. Macromol. 2019, 141, 693–699. [Google Scholar] [CrossRef]
- Min, B.S.; Gao, J.J.; Nakamura, N.; Hattori, M. Triterpenes from the spores of Ganoderma lucidum and their cytotoxicity against meth-A and LLC tumor cells. Chem. Pharm. Bull. 2000, 48, 1026–1033. [Google Scholar] [CrossRef]
- Gao, J.J.; Min, B.S.; Ahn, E.M.; Nakamura, N.; Lee, H.K.; Hattori, M. New triterpene aldehydes, lucialdehydes A—C, from Ganoderma lucidum and their cytotoxicity against murine and human tumor cells. Chem. Pharm. Bull. 2002, 50, 837–840. [Google Scholar] [CrossRef]
- Lin, Z.B.; Zhang, H.N. Anti-tumor and immunoregulatory activities of Ganoderma lucidum and its possible mechanisms. Acta. Pharmacol. Sin. 2004, 25, 1387–1395. [Google Scholar] [PubMed]
- Li, C.H.; Chen, P.Y.; Chang, U.M.; Kan, L.S.; Fang, W.H.; Tsai, K.S. Ganoderic acid X, a lanostanoid triterpene, inhibits topoisomerases and induces apoptosisofcancercells. Life Sci. 2005, 77, 252–265. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Liu, J.W.; Zhao, W.M.; Wei, D.Z.; Zhong, J.J. Ganoderic acid T from Ganoderma lucidum mycelia induces mitochondria mediated apoptosis in lung cancer cells. Life Sci. 2006, 80, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Grieb, B.; Thyagarajan, A.; Sliva, D. Ganoderic acids suppress growth and invasive behavior of breast cancer cells by modulating AP-1 and NFkappaB signaling. Int. J. Mol. Med. 2008, 21, 577–584. [Google Scholar] [CrossRef]
- Xu, K.; Liang, X.; Gao, F.; Zhong, J.; Liu, J. Antimetastatic effect of ganoderic acid T in vitro through inhibition of cancer cell invasion. Process Biochem. 2010, 45, 1261–1267. [Google Scholar] [CrossRef]
- Barbieri, A.; Quagliariello, V.; DelVecchio, V.; Falco, M.; Luciano, A.; Amruthraj, N.J. Anticancer and anti-inflammatory properties of Ganoderma lucidum extract effects on melanoma and triple-negative breast cancer treatment. Nutrients 2017, 9, 210. [Google Scholar] [CrossRef]
- Ye, H.; Jenson, A.B. Ganoderma lucidum on the Inhibition of Colorectal Cancer. Hematol. Med. Oncol. 2017, 2, 1–4. [Google Scholar] [CrossRef]
- Li, P.; Liu, L.; Huang, S.; Zhang, Y.; Xu, J.; Zhang, Z. Anti-cancer effects of a neutral triterpene fraction from Ganoderma lucidum and its active constituents on SW620 human colorectal cancer cells. Anticancer Agents Med. Chem. 2020, 20, 237–244. [Google Scholar] [CrossRef]
- Jiao, C.; Chen, W.; Tan, X.; Liang, H.; Li, J.; Yun, H. Ganoderma lucidum spore oil induces apoptosis of breast cancer cells in vitro and in vivo by activating caspase-3 and caspase-9. J. Ethnopharmacol. 2020, 247, 112256. [Google Scholar] [CrossRef]
- Wang, X.; Wang, B.; Zhou, L.; Wang, X.; Veeraraghavan, V.P.; Mohan, S.K. Ganoderma lucidum put forth anti-tumor activity against PC-3 prostate cancer cells viainhibitionofJak-1/STAT-3activity. Saudi J. Biol. Sci. 2020, 27, 2632–2637. [Google Scholar] [CrossRef]
- Liu, M.M.; Liu, T.; Yeung, S.; Wang, Z.; Andresen, B.; Parsa, C.; Orlando, R.; Zhou, B.; Wu, W.; Li, X.; et al. Inhibitory activity of medicinal mushroom Ganoderma lucidum on colorectal cancer by attenuating inflammation. Prec. Clin. Med. 2021, 4, 231–245. [Google Scholar] [CrossRef] [PubMed]
- Shahid, A.; Huang, M.; Liu, M.; Shamim, M.A.; Parsa, C.; Orlando, R. The medicinal mushroom Ganoderma lucidum attenuates UV-induced skin carcinogenesis and immunosuppression. PLoS ONE 2022, 17, e0265615. [Google Scholar] [CrossRef] [PubMed]
- De Marzo, A.M.; Platz, E.A.; Sutcliffe, S.; Xu, J.; Gronberg, H.; Drake, C.G.; Nakai, Y.; Isaacs, W.B.; Nelson, W.G. Inflammațion in prostate carciogenesis. Nat. Rev. Cancer 2007, 7, 256–269. [Google Scholar] [CrossRef] [PubMed]
- Hapuarachchi, K.K.; Wen, T.C.; Jeewon, R.; Wu, X.; Kang, J.C.; Hyde, K.D. Mycosphere Essays 7: Ganoderma lucidum—are the beneficial anti-cancer properties substantiated? Mycosphere 2016, 7, 305–332. [Google Scholar] [CrossRef]
- Zhang, J.; Tang, Q.; Zhou, C.; Jia, W.; Da Silva, L.; Nguyen, L.D.; Reutter, W.; Fan, H. GLIS, a bioactive proteoglycan fraction from Ganoderma lucidum, displays anti-tumour activity by increasing both humoral and cellular immune response. Life Sci. 2010, 87, 628–637. [Google Scholar] [CrossRef]
- Lai, C.Y.; Hung, J.T.; Lin, H.H.; Yu, A.L.; Chen, S.H.; Tsai, Y.C.; Shao, L.E.; Yang, W.B.; Yu, J. Immunomodulatory and adjuvant activities of a polysaccharide extract of Ganoderma lucidum in vivo and in vitro. Vaccine 2010, 28, 4945–4954. [Google Scholar] [CrossRef]
- Jan, R.H.; Lin, T.Y.; Hsu, Y.C.; Lee, S.S.; Lo, S.Y.; Chang, M.; Chen, L.K.; Lin, Y.L. Immuno-modulatory activity of Ganoderma lucidum-derived polysacharide on human monocytoid dendritic cells pulsed with Der p 1 allergen. BMC Immunol. 2012, 12, 31–41. [Google Scholar] [CrossRef]
- Chan, W.K.; Cheung, C.C.; Law, H.K.; Lau, Y.L.; Chan, G.C. Ganoderma lucidum polysaccharides can induce human monocytic leukemia cells into dendritic cells with immuno-stimulatory function. J. Hematol. Oncol. 2008, 21, 9–21. [Google Scholar] [CrossRef]
- Hsu, J.W.; Huang, H.C.; Chen, S.T.; Wong, C.H.; Juan, H.F. Ganoderma lucidum Polysaccharides Induce Macrophage-Like Differentiation in Human Leukemia THP-1 Cells via Caspase and p53 Activation. Evid. Based Complement. Altern. Med. 2011, 2011, 358717. [Google Scholar] [CrossRef]
- Guo, L.; Xie, J.; Ruan, Y.; Zhou, L.; Zhu, H.; Yun, X.; Jiang, Y.; Lu, L.; Chen, K.; Min, Z.; et al. Characterization and immunostimulatory activity of a polysaccharide from the spores of Ganoderma lucidum. Int. Immunopharmacol. 2009, 9, 1175–1182. [Google Scholar] [CrossRef]
- Hsu, H.Y.; Hua, K.F.; Lin, C.C.; Lin, C.H.; Hsu, J.; Wong, C.H. Extract of Reishi Polysaccharides Induces Cytokine Expression via TLR4-Modulated Protein Kinase Signaling Pathways. J. Immunol. 2004, 173, 5989–5999. [Google Scholar] [CrossRef] [PubMed]
- Altfeld, M.; Fadda, L.; Frleta, D.; Bhardwaj, N. DCs and NK cells: Critical effectors in the immune response to HIV-1. Nat. Rev. Immunol. 2011, 11, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Chien, C.M.; Cheng, J.L.; Chang, W.T.; Tien, M.H.; Tsao, C.M.; Chang, Y.H.; Chang, H.Y.; Hsieh, J.F.; Wong, C.H.; Chen, S.T. Polysaccharides of Ganoderma lucidum alter cell immunophenotypic expression and enhance CD56+ NK-cell cytotoxicity in cord blood. Bioorg. Med. Chem. 2004, 12, 5603–5609. [Google Scholar] [CrossRef]
- Wang, P.Y.; Zhu, X.L.; Lin, Z.B. Antitumor and Immunomodulatory Effects of Polysaccharides from Broken-Spore of Ganoderma lucidum. Front. Pharmacol. 2012, 13, 135. [Google Scholar] [CrossRef]
- Wu, G.; Qian, Z.; Guo, J.; Hu, D.; Bao, J.; Xie, J.; Xu, W.; Lu, J.; Chen, X.; Wang, Y. Ganoderma lucidum Extract Induces G1 Cell Cycle Arrest, and Apoptosis in Human Breast Cancer Cells. Am. J. Chin. Med. 2012, 40, 631–642. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.B.; Li, C.H.; Lee, S.S.; Kan, L.S. Triterpene-enriched extracts from Ganoderma lucidum inhibit growth of hepatoma cells via suppressing protein kinase C, activating mitogen-activated protein kinases and G2-phase cell cycle arrest. Life Sci. 2003, 72, 2381–2390. [Google Scholar] [CrossRef]
- Jedinak, A.; Thyagarajan-Sahu, A.; Jiang, J.; Sliva, D. Ganodermanontriol, a lanostanoid triterpene from Ganoderma lucidum, suppresses growth of colon cancer cells through ss-catenin signaling. Int. J. Oncol. 2011, 38, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.H.; Liu, J.W.; Zhong, J.J. Ganoderic acid T inhibits tumor invasion in vitro and in vivo through inhibition of MMP expression. Pharmacol. Rep. 2010, 62, 150–163. [Google Scholar] [CrossRef]
- Chen, N.H.; Liu, J.W.; Zhong, J.J. Ganoderic acid Me inhibits tumor invasion through down-regulating matrix metalloproteinases 2/9 gene expression. J. Pharmacol. Sci. 2008, 108, 212–216. [Google Scholar] [CrossRef]
- Hsu, C.L.; Yu, Y.S.; Yen, G.C. Lucidenic acid B induces apoptosis in human leukemia cells via a mitochondria-mediated pathway. J. Agric. Food Chem. 2008, 56, 3973–3980. [Google Scholar] [CrossRef]
- Liu, R.M.; Zhong, J.J. Ganoderic acid Mf and S induce mitochondria mediated apoptosis in human cervical carcinoma HeLa cells. Phytomed. Int. J. Phytother. Phytopharmacol. 2011, 18, 349–355. [Google Scholar] [CrossRef]
- Liu, R.M.; Li, Y.B.; Zhong, J.J. Cytotoxic and pro-apoptotic effects of novel ganoderic acid derivatives on human cervical cancer cells in vitro. Eur. J. Pharmacol. 2012, 681, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Shi, P.; Chen, N.H.; Zhong, J.J. Ganoderic acid Me induces apoptosis through mitochondria dysfunctions in human colon carcinoma cells. Proc. Biochem. 2011, 46, 219–225. [Google Scholar] [CrossRef]
- Lu, H.; Ouyang, W.; Huang, C. Inflammation, a Key Event in Cancer Development. Mol. Cancer Res. 2006, 4, 221–233. [Google Scholar] [CrossRef] [PubMed]
- Shalapour, S.; Karin, M. Immunity, inflammation, and cancer: An eternal fight between good and evil. J. Clin. Investig. 2015, 125, 3347–3355. [Google Scholar] [CrossRef]
- Dudhgaonkar, S.; Thyagarajan, A.; Sliva, D. Suppression of the inflammatory response by triterpenes isolated from the mushroom Ganoderma lucidum. Int. Immunopharmacol. 2009, 9, 1272–1280. [Google Scholar] [CrossRef]
- Miron, L.; Gafton, B.; Marinca, M. Tumor angiogenesis- implications in cancer therapy. Iasi J. Surg. 2010, 6, 2. [Google Scholar]
- Cao, Q.Z.; Lin, Z.B. Antitumor and anti-angiogenic activity of Ganoderma lucidum polysaccharides peptide. Acta Pharmacol. Sin. 2004, 25, 833–838. [Google Scholar]
- Smina, T.P.; Mathew, J.; Janardhanan, K.K.; Devasagayam, T.P. Antioxidant activity and toxicity profile of total triterpenes isolated from Ganoderma lucidum (Fr.) P. Karst occurring in South India. Environ. Toxicol. Pharmacol. 2011, 32, 438–446. [Google Scholar] [CrossRef]
- Smina, T.P.; De, S.; Devasagayam, T.P.; Adhikari, S.; Janardhanan, K.K. Ganoderma lucidum total triterpenes prevent radiation-induced DNA damage and apoptosis in splenic lymphocytes in vitro. Mutat. Res. 2011, 726, 188–194. [Google Scholar] [CrossRef]
- Lu, H.M.; Uesaka, T.; Katoh, O.; Kyo, E.; Watanabe, H. Prevention of the development of preneoplastic lesions, aberrant crypt foci, by a water-soluble extract from cultured medium of Ganoderma lucidum (Rei-shi) mycelia in male F344 rats. Oncol. Rep. 2001, 8, 1341–1345. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Kyo, E.; Uesaka, T.; Katoh, O.H.W. A water-soluble extract from cultured medium of Ganoderma lucidum (Rei-shi) mycelia suppresses azoxymethane-induction of colon cancers in male F344 rats. Oncol. Rep. 2003, 10, 375–379. [Google Scholar] [CrossRef]
- Lee, J.M.; Kwon, H.; Jeong, H.; Lee, J.W.; Lee, S.Y.; Baek, S.J.; Surh, Y.J. Inhibition of lipid peroxidation and oxidative DNA damage by Ganoderma lucidum. Phytother. Res. 2001, 15, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Jiang, X.; Deng, W.; Lai, Y.; Wu, M.; Zhang, Z. Antioxidant activities of Ganoderma lucidum polysaccharides and their role on DNA damage in mice induced by cobalt-60 gamma-irradiation. Food Chem. Toxicol. 2012, 50, 303–309. [Google Scholar] [CrossRef]
- Ulbricht, C.; Isaac, R.; Milkin, T.; Poole, E.A.; Rusie, E.; Grimes Serrano, J.M.; Weissner, W.; Windsor, R.C.; Woods, J. An evidence-based systematic review of stevia by the Natural Standard Research Collaboration. Cardiovasc. Hematol. Agents Med. Chem. 2010, 8, 113–127. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.K.; Rieder, M.J. Toxicity of a traditional Chinese medicine, Ganoderma lucidum, in children with cancer. Can. J. Clin. Pharmacol. 2008, 15, 275–285. [Google Scholar]
- Bishop, K.S.; Kao, C.H.; Xu, Y.; Glucina, M.P.; Paterson, R.R.M.; Ferguson, L.R. From 2000 years of Ganoderma lucidum to recent developments in nutraceuticals. Phytochemistry 2015, 114, 56–65. [Google Scholar] [CrossRef]
- Tran, H.B.; Yamamoto, A.; Matsumoto, S.; Ito, H.; Igami, K.; Miyazaki, T.; Kondo, R.; Shimizu, K. Hypotensive effects and angiotensin-converting enzyme inhibitory peptides of reishi (Ganoderma lingzhi) auto-digested extract. Molecules 2014, 19, 13473–13485. [Google Scholar] [CrossRef]
- Karwa, A.; Gaikwad, S.; Rai, M.K. Mycosynthesis of silver nanoparticles using Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W. Curt.: Fr.) P. Karst. and their role as antimicrobials and antibiotic activity enhancers. Int. J. Med. Mush. 2011, 13, 483–491. [Google Scholar] [CrossRef]
Mushroom Origin/ Constitutes | From Bangladesh | From Bangladesh | From Taiwan | From China | From Spain | From India | From Nigeria |
---|---|---|---|---|---|---|---|
Moisture % | 12.19 | 47 | - | - | - | 7.5 | 2.78 ± 0.05 |
Ash % | 3.93 | 6.3 | 1.8 | 1.21 ± 0.06 | 2.31 ± 0.12 | 18.7 | 8.42 ± 0.13 |
Water-soluble proteins % | 28.6 | 19.50 | 7–8 | 7.47 ± 0.22 | 11.70 ± 0.35 | 23.6 | 16.79 ± 0.13 |
Total lipids % | 2.4 | 3.00 | 3–5 | - | - | 5.8 | 1.52 ± 0.09 |
Fatty acid | - | - | - | 1.44 ± 0.10 | 1.27 ± 0.09 | - | 1.22 ± 0.07 |
Total carbohydrates % | 44.91 | 5.41 | 26–28 | 9.88 ± 1.04 | 11.02 ± 1.16 | 42.8 | 63.27 ± 0.20 |
Dietary fibers % | 14.67 | 2.4 | 59 | 76.81 ± 3.46 | 69.35 ± 3.12 | - | 7.77 ± 0.34 |
References | [21] | [30,71] | [70] | [72] | [72] | [73] | [74] |
Mushroom Part of G. lucidum | Monosaccharide Composition | Backbone | Extraction and Fractionation | Bioactivity | References | |
---|---|---|---|---|---|---|
1 | Fruiting body | Glucose, rhamnose glucose, galactose, rhamnose | β(1→3)-Glucan; -(1→3)-(1→4)-, (1→6)Heteroglycan α-(1→4), β-(1→6)-heteroglycan | Hot-water extraction; DEAE-cellulose and gel filtration; chromatography | Antioxidant activity | [94] |
2 | Fruiting body (cultivated) | Mannose, rhamnose, glucose, galactose | Heteroglucans (GLP, GLP1, GLP2, GLP3, GLP4) Main glycosidic bond | Ultrasonic extraction; Sevag method; ethanol precipitation; ultrafiltration membranes | Antioxidant activity in vitro by DPPH scavenging activity; reducing power; Fe2+ chelating activity; ORAC | [95] |
3 | Fruiting body (cultivated) | Glucose, galactose, mannose, arabinose | Heteropolysaccharide (GL-1; GL-V) (1→4)-galactan, Heteropolysaccharide | Soluble in water and in ethyl-acetate; Sevag method; dialysis | Bioactive compounds are an important source of anticancer agents | [96] |
4 | Extracellular | Galactose, mannose, glucose, arabinose, rhamnose | α-(1→4)-Galactose | DEAE-Sephcel and Sephadex G200. | Enhance T- and B-lymphocyte proliferation and antibody production | [97] |
5 | Fruiting body | Galactose, glucose, fucose | α-(1→6)-galactose α-(1→3)-Glucose | Hot-water extraction; DEAE-Sepharose Fast-Flow and Sephacryl S-300 | Immunostimulatory activity of spleen lymphocyte proliferation | [98] |
6 | Fruiting body | Glucose, galactose, arhamnose | Heteroglycan α-(1→4), β-(1→6) | Hot-water extraction | Immunologically active; proliferation of B-lymphocytes with important immunologic activity | [99] |
7 | Fruiting body (cultivated) | Glucose, galactose, mannose, arabinose, xylose, fucose | Heteropolysaccharides glucans (1→3)-β-D-glucan with a few short (1→4)-linked glucosyl units | Extraction and separation of fractions with hot water, cold and hot 1 M NaOH | Antitumor activity against sarcoma solid tumor | [100] |
8 | Fruiting body | Galactose, glucose, fucose | α-(1→6)-, (1→2,6)-Galactose β-(1→3)-, (1→4,6)-Glucose | Hot-water extraction; DEAE-Sepharose Fast-Flow and Sepharose CL-6B | An immunostimulating potential | [101] |
9 | Fruiting body | Glucose, galactose, mannose | β-(1→3)(1→4)(1→6)-Glucan Heteropolysaccharides | Hot-water extraction; DEAE-cellulose-32 and Sephacryl S-200 h | Pronounced antioxidant activity in free radicals scavenging and Fe2+ chelating | [102] |
10 | Fruiting body (wild) | Galactose, rhamnose, and glucose in mole ratio of 1.00:1.15:3.22 | Water-soluble polysaccharide α-(1→6)-, (1→2,6) Galactose β-(1→3)-, (1→4,6) Glucose | Hot water and ethanol precipitation; DEAE-Sepharose Fast Flow and Sephacryl S-300 | Neutral heteropolysaccharide, which reported antihyperglycemia effects | [103] |
11 | Mycelium (cultivated) | Rhamnose, arabinose, mannose, glucose, galactose | Heteropolysaccharide α-D-Glc (1→6), α-D-Glc,α-D-Man (rhamnose and arabinose residues in the side chain) | Hot water; ethanol precipitation; Sevag method; dialysis | Antitumor activity against Human hepatocarcinoma cell line (HepG2) and tumor xenografts in ICR mice | [104] |
12 | Fruiting body | Glucose | Branched homo-glucan (GLP0; GLP1) (1→3)-β-D-glucan with (1→6)-β-D branches | Hot water followed by ethanol precipitation | Induced a cascade of immunomodulatory cytokines against sarcoma 180 solid tumor | [105] |
Elements | mg/100 g | mg/100 g | % or ppm | ppm |
---|---|---|---|---|
Potassium | 432 | 3.590 | 1.11 ± 0.04 (%) | - |
Phosphorus | 225 | 4.150 | 30.17 ± 1.29 (ppm) | - |
Sulfur | 129 | - | - | - |
Magnesium | 7.95 | 1.030 | 0.34 ± 0.01 (%) | 50.76 ± 1.19 |
Sodium | 2.82 | 375 | 229.88 ± 0.34 (ppm) | - |
Calcium | 1.88 | 832 | 1.99 ± 0.04% | - |
Copper | 27 | - | 7.43 ± 0.13 (ppm) | 5.49 ± 0.35 |
Manganese | 22 | - | 71.06 ± 1.56 (ppm) | 20.19 ± 0.54 |
Iron | 2.22 | 82.6 | 121.37 ± 1.82(ppm) | 130.60 ± 1.63 |
Zinc | 0.7 | - | 51.49 ± 2.16 (ppm) | 8.45 ± 0.38 |
References | [30,71] | [153] | [74] | [156] |
Amino Acid | Aspartic Acid | Threonine | Serine | Glutamic Acid | Proline | Glycine | Alanine | Valine |
---|---|---|---|---|---|---|---|---|
Asp | Thr | Ser | Glu | Pro | Gly | Als | Val | |
mg AA/g protein | 117 | 66 | 54 | 120 | 60 | 108 | 100 | 61 |
References | [27,184] | [27,184] | [27,184] | [27,184] | [27,184] | [27,184] | [27,184] | [27,184] |
Amino acid | Methionine | Isoleucine | Leucine | Phenylalanine | Tyrosine | Histidine | Lysine | Arginine |
Met | Ile | Leu | Phe | Tyr | His | Lys | Arg | |
mg AA/g protein | 6 | 36 | 55 | 28 | 16 | 12 | 21 | 22 |
References | [27,184] | [27,184] | [27,184] | [27,184] | [27,184] | [27,184] | [27,184] | [27,184] |
Total Triterpenoids | Total Polysaccharides | Total Polyphenol Content (TPC) | Total Flavonoid Content (TFC) | Ascorbic Acid | ||
---|---|---|---|---|---|---|
/g d.w. | mg glucose equiv./g d.w. | mg/100 g d.w. | mg/100 g d.w. | mg/100 g d.w. | ||
196.03–643.06 | 769.1 | 112.53 | 33.3–43.49 | 912.38 | 34.09–38.08 | 30.51–32.2 |
[188] | [192] | [188] | [21] | [192] | [21] | [21] |
Nr. | Phenolic Acids | Quantity (mg/100 g DW of Extract) |
---|---|---|
1 | Tricaffeoyl-glucosyl-glucoside | 13.54 ± 0.23 |
2 | Tricaffeoyl-glucosyl | 23.79 ± 0.24 |
3 | Caffeoyltrihexoside | 38.02 ± 0.30 |
4 | Protocatechuic acid hexoside | 19.09 ± 0.15 |
5 | 1-Caffeoylquinic acid | 505.89 ± 3.21 |
6 | trans-5-ꓑ-coumaroylquinic acid | 0.46 ± 0.01 |
7 | 5-Caffeoylquinic acid | 95.01 ± 0.92 |
8 | Caffeoyl-2-hydroxyethane-1.1.2-tricarboxylic acid | 213.89 ± 1.52 |
9 | Yunnaneic acid F | 1.29 ± 0.01 |
10 | Salvianolic acid B | 1.39 ± 0.01 |
Sum | 912.38 ± 20.14 |
DPPH | FRAP | ABTS | ||
---|---|---|---|---|
(%) | (µMol TE/g) | (μg/100 g) | (µMol TE/g) | (µMol TE/g) |
24.04 ± 0.33 | 51.3 ±1.04 | 614.83 ± 0.05 | 49.87 ± 1.58 | 81.26 ± 1.10 |
[21] | [192] | [21] | [192] | [192] |
Fatty Acids | G. lingzhi ± 15% | G. lucidum ± 15% |
---|---|---|
Total monounsaturated fatty acids | 37.5 | 28.68 |
Total polyunsaturated fatty acids | 43.84 | 49.93 |
Total saturated fatty acids | 18.64 | 20.77 |
Total | 99.98 | 99.38 |
G. lucidum Compounds | Actions and Effects of Gl-Ps on Antitumor Activity | Mechanism of Action | References | |
---|---|---|---|---|
1 | Gl-Ps | Effects on dendritic cells | Gl-Ps acts on the maturation and function of cultured murine bone marrow-derived dendritic cells (DCs). | [211] |
2 | Gl-Ps | Effect on cytotoxicity | Gl-Ps acts with a specific T-lymphocyte cytotoxic (CTL) mechanism, which has been pulsed with the tumor antigen P815. | [212] |
3 | Gl-Ps | Evaluation of immunomodulatory effect on cytokines | Explain the mechanism of action on macrophages in which Gl-Ps (fractions) activate kinase to induce, in turn, activation of IL-1, IL-2, and TNF-α. | [213] |
4 | Gl-Ps | Effect of cytokine-induced killer cells (CIK) | Gl-Ps decreases the number of lymphokine-activated cytokines (LAK) and CIK-induced cytokine-killing cells. | [214] |
5 | Gl-Ps | Actions in immunopotentiation therapy against induced immunosuppression | Gl-Ps extract at low doses leads to increased immunological effector cell activity in immunosuppressed mice. | [215] |
6 | Gl-Ps | Effect on antioxidant enzyme activity | Gl-Ps from G. lucidum significantly reduced malondialdehyde (MDA) production and increased the activity of serum antioxidant enzymes in ovarian cancer therapy in rats. | [216] |
7 | Gl-Ps | Gl-Ps suppresses tumorigenesis, inhibits tumor growth | Gl-Ps affects immune cells, including B-lymphocytes, T-lymphocytes, dendritic cells, and natural killer cells. They are mediated by immunomodulatory, anti-angiogenic, and cytotoxic effects. | [217] |
8 | Gl-Ps | Antitumor effects by stimulating host immune function | Gl-Ps acts directly in activating lymphocytes that have been tested by incubating Gl-Ps with an antigen-deficient tumor cell line. Also, Gl-Ps acts on B16F10 melanoma cells. | [218] |
9 | Gl-Ps | Antitumor effects by stimulating host immune function | Gl-Ps can induce lymphocyte proliferation through action on B16F10 melanoma cells and IFN-γ production. | [219] |
10 | Gl-Ps | Antitumor activity manifested by a mixture of Gl-Ps and sulfates. | Gl-Ps sulfate showed remarkable inhibition of rat Heps proliferation. | [220] |
11 | Gl-Ps | Therapeutic potential in inflammatory breast cancer (IBC). | Study results provide evidence that Gl-Ps treatment suppresses protein synthesis and tumor growth by affecting survival signaling pathways in mice injected with IBC cells, suggesting a natural therapeutic potential for breast cancer. | [221] |
12 | Gl-Ps | The ability of isolated Gl-Ps fractions (F3) to induce innate inflammatory cytokines | Enhanced Th1 response with high levels of IFN-γ and IL-2. Cell wall Gl-Ps were inducers of innate inflammatory cytokines, and extracellular Gl-Ps demonstrated a high capacity to modulate cytokine responses to IL-17 production. | [222] |
13 | Gl-Ps | Potential anticancer activity | They discussed the mechanisms of anticancer activity attributed to Gl-Ps by highlighting immunomodulatory, anti-proliferative, pro-apoptotic, antimetastatic and anti-angiogenic effects. | [223] |
14 | Gl-Ps | Antitumor action and immunomodulatory effects of Gl-Ps in rats | Gl-Ps increased the serum concentration of Il-2, INF-γ and tumor necrosis factor-α. It increased the cytotoxic activity of natural killer cells and T cells and led to prolonged lifespan of brain glioma-bearing rats. | [224] |
15 | Gl-Ps, spores | Antitumor action of a novel polysaccharide with an estimated average molecular weight of 1.5 × 104 Da | In vivo antitumor activity tests showed that Gl-Ps could significantly inhibit S180 tumor growth in mice. No drug-related toxic reactions were observed. | [225] |
16 | Gl-Ts | Ganoderic acids from spores and their cytotoxicity | The cytotoxicity of the compounds isolated from the Ganoderma spores was carried out in vitro against Meth-A and LLC tumor cell lines. | [227] |
17 | Gl-Ts | Anticancer study of lucialdehydes B, C (2,3), ganodermanonol, and ganodermanondiol | Cytotoxic mechanism. Lucialdehyde C exhibited the most potent cytotoxicity against CLL, T-47D, sarcoma 180, and Meth-A tumor cells. | [227] |
18 | Gl-Ps Gl-Ts | Antitumor effect of aqueous extract; cytotoxic activity of alcoholic extract | Manifestation of a significant antitumor effect in several tumor-bearing animals; manifestation of an anti-angiogenic effect that may be involved in the antitumor activity. | [228] |
19 | Gl-Ts | Ability of ganoderic acid X (GAX) to inhibit topoisomerases and interfere with apoptosis | Mechanisms of chromosomal DNA degradation, cancer cell apoptosis, mitochondrial membrane disruption, and caspase-3 activation have been elucidated upon GAX treatment of HuH-7 human hepatoma cells. | [229] |
20 | Gl-Ts | Cytotoxicity of GA-T on different human carcinoma | It was shown in vivo to significantly inhibit proliferation of lung cancer cells by inducing apoptosis by GA-T | [230] |
21 | Gl-Ts | The effect of ganoderic acids A, F, and H on breast cancer cells was evaluated | GA-A, GA-F, and GA-H suppressed cell proliferation, colony formation, and invasive behavior of MDA-MB-231 cells. They have biological effects by inhibiting transcription factors AP-1 and NF-κB. | [231] |
22 | GA-T | Studies of anti-invasive and antimetastatic mechanisms of GA-T in vitro in lung cancer | GA-T dose-dependently inhibited 95-D cell migration by wound healing assay, promoting cell aggregation and inhibiting cell adhesion to the extracellular matrix (ECM). GA-T prevents tumor metastasis in highly metastatic lung carcinoma. | [232] |
23 | Gl-Ts. | Anticancer, anti-inflammatory, and antimetastatic activities of G. lucidum extracts | Gl-Ts from G. lucidum reduces the production of IL-8, IL-6, MMP-2, and MMP-9 in breast cancer and melanoma cells. They decrease cancer cell viability in a time and dose-dependent manner. | [233] |
24 | GL-Ts | Investigation of Gl-Ts with activity in inhibiting growth of pulmonary carcinoma metastates and suppressing colonic inflammation | The triterpene extracts exhibit inhibitory activity against foodborne carcinogen-induced mouse colon carcinogenesis. All suppressive functions were enhanced by high doses of triterpene extract. | [234] |
25 | Gl-Ts NTF, ATF | Evaluation of anticancer effects of NTF (neutral triterpene fraction) and ATF (acidic triterpene fraction) on human colorectal cancer | The cytotoxic effects of Gl-Ts on human colon cancer cells SW480, SW620, SW116, and mouse embryonic fibroblast cells NIH3T3 were studied. Compounds isolated from NTF acted as antitumorals by inducing apoptosis. | [235] |
27 | GlSO | Mechanistic investigation of the anticancer-gene effect of GlSO (G. lucidum spore oil) on mammary cancer cells | Growth of MDA—MB-231 cells, in vitro, were inhibited by treatment with GlSO (0.2, 0.4, and 0.6 µL/mL). In vitro, GlSO increased Bax and caspase-3 expression but did not affect caspase-8 expression. | [236] |
27 | Gl-Ts | Anticancer potential of G. lucidum against prostate cancer (PC-3) | G. lucidum has been shown to prevent prostate cancer cell growth and stimulate apoptosis in PC-3 cells by preventing STAT-3 translocation (signal transduction and activation of transcription). | [237] |
28 | Gl-Ts | Effects on colorectal cancer. Involves suppression of NF-κB-regulated inflammation and carcinogenesis | In vitro administration of GLSF extract at non-toxic concentrations to mice inoculated with CT27 tumor cells significantly potentiated paclitaxel-induced growth inhibition and apoptosis in CT27 and HCT-15 cells. | [238] |
29 | Gl-Ps, Gl-Ts | Evaluation of the effects on skin carcinogenesis analyzed on JB6 cells in SKH-1 mice | Reduced incidence and multiplicity of skin tumors. In tumor-free skin tissue of mice, Gl-Ps and Gl-Ts attenuated UV-induced epidermal thickening. Gl-SF increased CD8 and Granzyme B expression. | [239] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cadar, E.; Negreanu-Pirjol, T.; Pascale, C.; Sirbu, R.; Prasacu, I.; Negreanu-Pirjol, B.-S.; Tomescu, C.L.; Ionescu, A.-M. Natural Bio-Compounds from Ganoderma lucidum and Their Beneficial Biological Actions for Anticancer Application: A Review. Antioxidants 2023, 12, 1907. https://doi.org/10.3390/antiox12111907
Cadar E, Negreanu-Pirjol T, Pascale C, Sirbu R, Prasacu I, Negreanu-Pirjol B-S, Tomescu CL, Ionescu A-M. Natural Bio-Compounds from Ganoderma lucidum and Their Beneficial Biological Actions for Anticancer Application: A Review. Antioxidants. 2023; 12(11):1907. https://doi.org/10.3390/antiox12111907
Chicago/Turabian StyleCadar, Emin, Ticuta Negreanu-Pirjol, Carolina Pascale, Rodica Sirbu, Irina Prasacu, Bogdan-Stefan Negreanu-Pirjol, Cezar Laurentiu Tomescu, and Ana-Maria Ionescu. 2023. "Natural Bio-Compounds from Ganoderma lucidum and Their Beneficial Biological Actions for Anticancer Application: A Review" Antioxidants 12, no. 11: 1907. https://doi.org/10.3390/antiox12111907
APA StyleCadar, E., Negreanu-Pirjol, T., Pascale, C., Sirbu, R., Prasacu, I., Negreanu-Pirjol, B. -S., Tomescu, C. L., & Ionescu, A. -M. (2023). Natural Bio-Compounds from Ganoderma lucidum and Their Beneficial Biological Actions for Anticancer Application: A Review. Antioxidants, 12(11), 1907. https://doi.org/10.3390/antiox12111907