Oxidative Stress Mediated Therapy in Patients with Rheumatoid Arthritis: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Literature Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Intervention and Outcomes
2.4. Literature Screening, Assessment of Risk of Bias, and Data Extraction
2.5. Statistical Analysis
3. Results
3.1. Results of the Literature Search
3.2. Risk of Bias Assessment
3.3. Clinical Efficiency of Antioxidant Treatment among RA Patients
3.4. Evaluation of Antioxidant Treatment of Studies Evaluated in Meta-Analysis
3.5. Inflammatory Effects of Antioxidant Treatment of Studies Evaluated in Meta-Analysis
3.6. Cardiovascular Effects of Antioxidant Treatment in RA Patients
3.7. Effect Sizes of Studies Included in the Meta-Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Appendix to Table 5 Cohen’s Effect Size Classification
Effect Size (ES) | Interpretation |
0.00 < ES < 0.20 | Ignored |
0.20 ≤ ES < 0.50 | Small |
0.50 ≤ ES < 0.80 | Moderate |
0.80 ≤ ES < 1.30 | Large |
1.30 ≤ ES | Very large |
References
- McInnes, I.B.; Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 2011, 365, 2205–2219. [Google Scholar] [CrossRef]
- Smolen, J.S.; Aletaha, D.; McInnes, I.B. Rheumatoid arthritis. Lancet 2016, 388, 2023–2038. [Google Scholar]
- Lin, Y.J.; Anzaghe, M.; Schülke, S. Update on the pathomechanism, diagnosis, and treatment options for rheumatoid arthritis. Cells 2020, 9, 880. [Google Scholar] [PubMed]
- Behl, T.; Upadhyay, T.; Singh, S.; Chigurupati, S.; Alsubayiel, A.M.; Mani, V.; Vargas-De-La-Cruz, C.; Uivarosan, D.; Bustea, C.; Sava, C.; et al. Polyphenols targeting MAPK mediated oxidative stress and inflammation in rheumatoid arthritis. Molecules 2021, 26, 6570. [Google Scholar] [PubMed]
- Marcucci, E.; Bartoloni, E.; Alunno, A.; Leone, M.C.; Cafaro, G.; Luccioli, F. Extraarticular rheumatoid arthritis. Reumatismo 2018, 70, 212–224. [Google Scholar] [CrossRef] [PubMed]
- Deane, K.D.; Demoruelle, M.K.; Kelmenson, L.B.; Kuhn, K.A.; Norris, J.M.; Holers, V.M. Genetic and environmental risk factors for rheumatoid arthritis. Best Pract. Res. Clin. Rheumatol. 2017, 31, 3–18. [Google Scholar]
- Da Fonseca, L.J.S.; Nunes-Souza, V.; Goulart, M.O.F.; Rabelo, L.A. Oxidative stress in rheumatoid arthritis: What the future might hold regarding novel biomarkers and add-on therapies. Oxid. Med. Cell. Longev. 2019, 2019, 7536805. [Google Scholar]
- Balbir-Gurman, A.; Fuhrman, B.; Braun-Moscovici, Y.; Markovits, D.; Aviram, M. Consumption of pomegranate decreases serum oxidative stress and reduces disease activity in patients with active rheumatoid arthritis: A pilot study. Isr. Med. Assoc. J. 2011, 13, 474–479. [Google Scholar]
- Zhang, Q.; Lenardo, M.J.; Baltimore, D. 30 years of NF-κB: A blossoming of relevance to human pathobiology. Cell 2017, 168, 37–57. [Google Scholar]
- Ahmadinejad, F.; Geir Møller, S.; Hashemzadeh-Chaleshtori, M.; Bidkhori, G.; Jami, M.S. Molecular mechanisms behind free radical scavengers function against oxidative stress. Antioxidants 2017, 6, 51. [Google Scholar]
- Hitchon, C.A.; El-Gabalawy, H.S. Oxidation in rheumatoid arthritis. Arthritis Res. Ther. 2004, 6, 265–278. [Google Scholar] [PubMed]
- Schalkwijk, J.; Van der Berg, W.; Van de Putte, L.; Joosten, L. An experimental model for hydrogen peroxide–induced tissue damage. Efects of a single infammatory mediator on (peri)articular tissues. Arthritis Rheum. 1986, 29, 532–538. [Google Scholar] [PubMed]
- Helli, B.; Mowla, K.; Mohammadshahi, M.; Jalali, M.T. Effect of sesamin supplementation on cardiovascular risk factors in women with rheumatoid arthritis. J. Am. Coll. Nutr. 2016, 35, 300–307. [Google Scholar] [PubMed]
- Mateen, S.; Moin, S.; Khan, A.Q.; Zafar, A.; Fatima, N. Increased reactive oxygen species formation and oxidative stress in rheumatoid arthritis. PLoS ONE 2016, 11, e0152925. [Google Scholar]
- Phull, A.R.; Nasir, B.; Haq, I.U.; Kim, S.J. Oxidative stress, consequences and ROS mediated cellular signaling in rheumatoid arthritis. Chem. Biol. Interact. 2018, 281, 121–136. [Google Scholar]
- Solomon, D.H.; Karlson, E.W.; Rimm, E.B.; Cannuscio, C.C.; Mandl, L.A.; Manson, J.E.; Stampfer, M.J.; Curhan, G.C. Cardiovascular morbidity and mortality in women diagnosed with rheumatoid arthritis. Circulation 2003, 107, 1303–1307. [Google Scholar]
- Del Rincón, I.D.; Williams, K.; Stern, M.P.; Freeman, G.L.; Escalante, A. High incidence of cardiovascular events in a rheumatoid arthritis cohort not explained by traditional cardiac risk factors. Arthritis Rheum. 2001, 44, 2737–2745. [Google Scholar]
- Hansson, G.K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 2005, 352, 1685–1695. [Google Scholar]
- Rho, Y.H.; Chung, C.P.; Oeser, A.; Solus, J.; Asanuma, Y.; Sokka, T.; Pincus, T.; Raggi, P.; Gebretsadik, T.; Shintani, A.; et al. Inflammatory mediators and premature coronary atherosclerosis in rheumatoid arthritis. Arthritis Rheum. 2009, 61, 1580–1585. [Google Scholar]
- Buono, M.D.; Abbate, A.; Toldo, S. Interplay of inflammation, oxidative stress and cardiovascular disease in rheumatoid arthritis. Heart 2018, 104, 1991–1992. [Google Scholar] [CrossRef]
- Lerman, A.; Zeiher, A.M. Endothelial function: Cardiac events. Circulation 2005, 111, 363–368. [Google Scholar] [PubMed]
- Libby, P.; Ridker, P.M.; Maseri, A. Inflammation and atherosclerosis. Circulation 2002, 105, 1135–1143. [Google Scholar] [PubMed]
- Fragoulis, G.E.; Panayotidis, I.; Nikiphorou, E. Cardiovascular risk in rheumatoid arthritis and mechanistic links: From pathophysiology to treatment. Curr. Vasc. Pharmacol. 2019, 18, 431–446. [Google Scholar]
- Prasad, M.; Hermann, J.; Gabriel, S.E.; Weyand, C.M.; Mulvagh, S.; Mankad, R.; Oh, J.K.; Matteson, E.L.; Lerman, A. Cardiorheumatology: Cardiac involvement in systemic rheumatic disease. Nat. Rev. Cardiol. 2015, 12, 168–176. [Google Scholar] [PubMed]
- Deeks, J.J.; Higgins, J.P.; Altman, D.G. Chapter 16: Special topics in statistics. In Cochrane Handbook for Systematic Reviews of Interventions; Higgins, J.P., Green, S., Eds.; The Cochrane Collaboration: London, UK, 2020. [Google Scholar]
- Moosavian, S.P.; Paknahad, Z.; Habibagahi, Z. A randomized, double-blind, placebo-controlled clinical trial, evaluating the garlic supplement effects on some serum biomarkers of oxidative stress, and quality of life in women with rheumatoid arthritis. Int. J. Clin. Pract. 2020, 74, e13498. [Google Scholar] [CrossRef]
- Ghavipour, M.; Saedisomeolia, A.; Djalali, M.; Sotoudeh, G.; Eshraghyan, M.; Moghadam, A.; Wood, L. Tomato juice consumption reduces systemic inflammation in overweight and obese females. Br. J. Nutr. 2013, 109, 2031–2035. [Google Scholar] [CrossRef]
- Li, E.K.; Tam, L.S.; Wong, C.K.; Li, W.C.; Lam, C.W.; Wachtel-Galor, S.; Benzie, I.F.; Bao, Y.X.; Leung, P.C.; Tomlinson, B. Safety and efficacy of Ganoderma lucidum (lingzhi) and San Miao San supplementation in patients with rheumatoid arthritis: A double-blind, randomized, placebo-controlled pilot trial. Arthritis Rheum. 2007, 57, 1143–1150. [Google Scholar]
- Abdollahzad, H.; Aghdashi, M.A.; Jafarabadi, M.A.; Alipour, B. Effects of Coenzyme Q10 Supplementation on Inflammatory Cytokines (TNF-α, IL-6) and Oxidative Stress in Rheumatoid Arthritis Patients: A Randomized Controlled Trial. Arch. Med. Res. 2015, 46, 527–533. [Google Scholar]
- Aryaeian, N.; Shahram, F.; Djalali, M.; Eshragian, M.R.; Djazayeri, A.; Sarrafnejad, A.; Naderi, N.; Chamari, M.; Fatehi, F.; Zarei, M. Effect of conjugated linoleic acid, vitamin E and their combination on lipid profiles and blood pressure of Iranian adults with active rheumatoid arthritis. Vasc. Health Risk Manag. 2008, 4, 1423–1432. [Google Scholar] [CrossRef]
- Amalraj, A.; Varma, K.; Jacob, J.; Divya, C.; Kunnumakkara, A.B.; Stohs, S.J.; Gopi, S. A Novel Highly Bioavailable Curcumin Formulation Improves Symptoms and Diagnostic Indicators in Rheumatoid Arthritis Patients: A Randomized, Double-Blind, Placebo-Controlled, Two-Dose, Three-Arm, and Parallel-Group Study. J. Med. Food 2017, 20, 1022–1030. [Google Scholar]
- Javadi, F.; Ahmadzadeh, A.; Eghtesadi, S.; Aryaeian, N.; Zabihiyeganeh, M.; Rahimi Foroushani, A.; Jazayeri, S. The Effect of Quercetin on Inflammatory Factors and Clinical Symptoms in Women with Rheumatoid Arthritis: A Double-Blind, Randomized Controlled Trial. J. Am. Coll. Nutr. 2017, 36, 9–15. [Google Scholar] [CrossRef]
- Bae, S.C.; Jung, W.J.; Lee, E.J.; Yu, R.; Sung, M.K. Effects of antioxidant supplements intervention on the level of plasma inflammatory molecules and disease severity of rheumatoid arthritis patients. J. Am. Coll. Nutr. 2009, 28, 56–62. [Google Scholar] [CrossRef]
- Thabrew, I.; Senaratna, L.; Samarawickrema, N.; Munasinghe, C. Antioxidant potential of two polyherbal. preparations used in Ayurveda for the treatment of rheumatoid arthritis. J. Ethnopharmacol. 2001, 76, 285–291. [Google Scholar] [CrossRef]
- Hagfors, L.; Leanderson, P.; Sköldstam, L.; Andersson, J.; Johansson, G. Antioxidant intake, plasma antioxidants and oxidative stress in a randomized, controlled, parallel, Mediterranean dietary intervention study on patients with rheumatoid arthritis. Nutr. J. 2003, 2, 5. [Google Scholar] [CrossRef]
- Forrest, C.M.; Mackay, G.M.; Stoy, N.; Stone, T.W.; Darlington, L.G. Inflammatory status and kynurenine metabolism in rheumatoid arthritis treated with melatonin. Br. J. Clin. Pharmacol. 2007, 64, 517–526. [Google Scholar] [CrossRef]
- Esalatmanesh, K.; Loghman, A.; Esalatmanesh, R.; Soleimani, Z.; Khabbazi, A.; Mahdavi, A.M.; Mousavi, S.G.A. Effects of melatonin supplementation on disease activity, oxidative stress, inflammatory, and metabolic parameters in patients with rheumatoid arthritis: A randomized double-blind placebo-controlled trial. Clin. Rheumatol. 2021, 40, 3591–3597. [Google Scholar] [CrossRef]
- Cannarella, L.A.T.; Mari, N.L.; Alcântara, C.C.; Iryioda, T.M.V.; Costa, N.T.; Oliveira, S.R.; Lozovoy, M.A.B.; Reiche, E.M.V.; Dichi, I.; Simão, A.N.C. Mixture of probiotics reduces inflammatory biomarkers and improves the oxidative/nitrosative profile in people with rheumatoid arthritis. Nutrition 2021, 89, 111282. [Google Scholar] [CrossRef]
- Batooei, M.; Tahamoli-Roudsari, A.; Basiri, Z.; Yasrebifar, F.; Shahdoust, M.; Eshraghi, A.; Mehrpooya, M.; Ataei, S. Evaluating the Effect of Oral N-acetylcysteine as an Adjuvant Treatment on Clinical Outcomes of Patients with Rheumatoid Arthritis: A Randomized, Double Blind Clinical Trial. Rev. Recent Clin. Trials 2018, 13, 132–138. [Google Scholar] [CrossRef]
- Dawczynski, C.; Schubert, R.; Hein, G.; Müller, A.; Eidner, T.; Vogelsang, H.; Basu, S.; Jahreis, G. Long-term moderate intervention with n-3 long-chain PUFA-supplemented dairy products: Effects on pathophysiological biomarkers in patients with rheumatoid arthritis. Br. J. Nutr. 2009, 101, 1517–1526. [Google Scholar] [CrossRef]
- Kolahi, S.; Mirtaheri, E.; Pourghasem Gargari, B.; Khabbazi, A.; Hajalilou, M.; Asghari-Jafarabadi, M.; Mesgari Abbasi, M. Oral administration of alpha-lipoic acid did not affect lipid peroxidation and antioxidant biomarkers in rheumatoid arthritis patients. Int. J. Vitam. Nutr. Res. 2019, 89, 13–21. [Google Scholar] [CrossRef]
- Hashemi, G.; Mirjalili, M.; Basiri, Z.; Tahamoli-Roudsari, A.; Kheiripour, N.; Shahdoust, M.; Ranjbar, A.; Mehrpooya, M.; Ataei, S. A Pilot Study to Evaluate the Effects of Oral N-Acetyl Cysteine on Inflammatory and Oxidative Stress Biomarkers in Rheumatoid Arthritis. Curr. Rheumatol. Rev. 2019, 15, 246–253. [Google Scholar] [CrossRef]
- Esalatmanesh, K.; Jamali, A.; Esalatmanesh, R.; Soleimani, Z.; Khabbazi, A.; Malek Mahdavi, A. Effects of N-acetylcysteine supplementation on disease activity, oxidative stress, and inflammatory and metabolic parameters in rheumatoid arthritis patients: A randomized double-blind placebo-controlled trial. Amino Acids 2022, 54, 433–440. [Google Scholar] [CrossRef]
- León Fernández, O.S.; Viebahn-Haensler, R.; Cabreja, G.L.; Espinosa, I.S.; Matos, Y.H.; Roche, L.D.; Santos, B.T.; Oru, G.T.; Polo Vega, J.C. Medical ozone increases methotrexate clinical response and improves cellular redox balance in patients with rheumatoid arthritis. Eur. J. Pharmacol. 2016, 789, 313–318. [Google Scholar] [CrossRef]
- Vaghef-Mehrabany, E.; Alipour, B.; Homayouni-Rad, A.; Sharif, S.K.; Asghari-Jafarabadi, M.; Zavvari, S. Probiotic supplementation improves inflammatory status in patients with rheumatoid arthritis. Nutrition 2014, 30, 430–435. [Google Scholar] [CrossRef]
- Khojah, H.M.; Ahmed, S.; Abdel-Rahman, M.S.; Elhakeim, E.H. Resveratrol as an effective adjuvant therapy in the management of rheumatoid arthritis: A clinical study. Clin. Rheumatol. 2018, 37, 2035–2042. [Google Scholar] [CrossRef]
- Hamidi, Z.; Aryaeian, N.; Abolghasemi, J.; Shirani, F.; Hadidi, M.; Fallah, S.; Moradi, N. The effect of saffron supplement on clinical outcomes and metabolic profiles in patients with active rheumatoid arthritis: A randomized, double-blind, placebo-controlled clinical trial. Phytother. Res. 2020, 34, 1650–1658. [Google Scholar] [CrossRef]
- Peretz, A.; Siderova, V.; Nève, J. Selenium supplementation in rheumatoid arthritis investigated in a double blind, placebo-controlled trial. Scand. J. Rheumatol. 2001, 30, 208–212. [Google Scholar]
- Helmy, M.; Shohayeb, M.; Helmy, M.H.; el-Bassiouni, E.A. Antioxidants as adjuvant therapy in rheumatoid disease. A preliminary study. Arzneimittelforschung 2001, 51, 293–298. [Google Scholar]
- Shavandi, M.; Moini, A.; Shakiba, Y.; Mashkorinia, A.; Dehghani, M.; Asar, S.; Kiani, A. Silymarin (Livergol®) Decreases Disease Activity Score in Patients with Rheumatoid Arthritis: A Randomized Single-arm Clinical Trial. Iran. J. Allergy Asthma Immunol. 2017, 16, 99–106. [Google Scholar]
- Thimóteo, N.S.B.; Iryioda, T.M.V.; Alfieri, D.F.; Rego, B.E.F.; Scavuzzi, B.M.; Fatel, E.; Lozovoy, M.A.B.; Simão, A.N.C.; Dichi, I. Cranberry juice decreases disease activity in women with rheumatoid arthritis. Nutrition 2019, 60, 112–117. [Google Scholar] [CrossRef]
- Helli, B.; Shahi, M.M.; Mowla, K.; Jalali, M.T.; Haghighian, H.K. A randomized, triple-blind, placebo-controlled clinical trial, evaluating the sesamin supplement effects on proteolytic enzymes, inflammatory markers, and clinical indices in women with rheumatoid arthritis. Phytother. Res. 2019, 33, 2421–2428. [Google Scholar] [CrossRef]
- Zamani, B.; Golkar, H.R.; Farshbaf, S.; Emadi-Baygi, M.; Tajabadi-Ebrahimi, M.; Jafari, P.; Akhavan, R.; Taghizadeh, M.; Memarzadeh, M.R.; Asemi, Z. Clinical and metabolic response to probiotic supplementation in patients with rheumatoid arthritis: A randomized, double-blind, placebo-controlled trial. Int. J. Rheum. Dis. 2016, 19, 869–879. [Google Scholar] [CrossRef]
- Edmonds, S.E.; Winyard, P.G.; Guo, R.; Kidd, B.; Merry, P.; Langrish-Smith, A.; Hansen, C.; Ramm, S.; Blake, D.R. Putative analgesic activity of repeated oral doses of vitamin E in the treatment of rheumatoid arthritis. Results of a prospective placebo controlled double blind trial. Ann. Rheum. Dis. 1997, 56, 649–655. [Google Scholar] [CrossRef]
- Veselinovic, M.; Barudzic, N.; Vuletic, M.; Zivkovic, V.; Tomic-Lucic, A.; Djuric, D.; Jakovljevic, V. Oxidative stress in rheumatoid arthritis patients: Relationship to diseases activity. Mol. Cell Biochem. 2014, 391, 225–232. [Google Scholar] [CrossRef]
- Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.; Rahu, N. Oxidative Stress and Inflammation: What Polyphenols Can Do for Us? Oxid. Med. Cell. Longev. 2016, 2016, 7432797. [Google Scholar] [CrossRef]
- Ramani, S.; Pathak, A.; Dalal, V.; Paul, A.; Biswas, S. Oxidative Stress in Autoimmune Diseases: An Under Dealt Malice. Curr. Protein Pept. Sci. 2020, 21, 611–621. [Google Scholar] [CrossRef]
- Balogh, E.; Veale, D.J.; McGarry, T.; Orr, C.; Szekanecz, Z.; Ng, C.T.; Fearon, U.; Biniecka, M. Oxidative stress impairs energy metabolism in primary cells and synovial tissue of patients with rheumatoid arthritis. Arthritis Res. Ther. 2018, 20, 95. [Google Scholar] [CrossRef]
- Mateen, S.; Moin, S.; Zafar, A.; Khan, A.Q. Redox signaling in rheumatoid arthritis and the preventive role of polyphenols. Clin. Chim. Acta 2016, 463, 4–10. [Google Scholar] [CrossRef]
- Battersby, A.C.; Braggins, H.; Pearce, M.S.; Cale, C.M.; Burns, S.O.; Hackett, S.; Hughes, S.; Barge, D.; Goldblatt, D.; Gennery, A.R. Inflammatory and autoimmune manifestations in X-linked carriers of chronic granulomatous disease in the United Kingdom. J. Allergy Clin. Immunol. 2017, 140, 628–630.e6. [Google Scholar] [CrossRef]
- Aviello, G.; Knaus, U.G. NADPH oxidases and ROS signaling in the gastrointestinal tract. Mucosal Immunol. 2018, 11, 1011–1023. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
Clinical trial | Studies that by design did not present clinical trials |
Studies that include antioxidant treatment strategy in RA | Studies that did not include antioxidant treatment strategy in RA |
Studies in English | Studies in other languages |
Study (First Author, Year) | Type of Treatment | Duration of Treatment (days) | Clinical Efficiency (+/−) | Antioxidative Effects (+/−) | Antiinflammatory Effects (+/−) |
---|---|---|---|---|---|
Moosavian SP et al., 2020 [26] | Garlic tablet 500 mg | 60 days | + | + | + |
Ghavipour M et al., 2016 [27] | Pomegranate extract 250 mg | 60 days | + | + | + |
Edmund KLi et al., 2007 [28] | Ganoderma lucidum (4 gm) and San Miao San (2.4 gm) | 168 days | + | Not evaluated. | + |
Abdollahzad H et al., 2015 [29] | Coenzyme Q10 capsules 100 mg | 60 days | - | + | + |
Aryaeian N et al., 2009 [30] | Cis 9-trans 11 and trans 10-cis12 CLAs | 90 days | + | Not evaluated. | + |
Amalraj A et al., 2017 [31] | Curcumin 500 mg | 90 days | + | Not evaluated. | + |
Javadi F et al., 2016 [32] | Quercetin capsule 500 mg | 60 days | + | Not evaluated. | + |
Bae SC et al., 2014 [33] | Quercetin + vitamin C 166 mg + 133 mg | 44 days | + | Not evaluated. | + |
Thabrew MI et al., 2001 [34] | Maharasnadi quathar 160 mL | 90 days | + | + | + |
Hagfors L et al., 2003 [35] | Antioxidants by food | 90 days | - | + | - |
Forrest CM et al., 2007 [36] | Melatonin 10 mg | 180 days | - | - | + |
Esalatmanesh K et al., 2021 [37] | Melatonin 6 mg | 90 days | + | + | + |
Cannarella LAT et al., 2021 [38] | Probiotics | 60 days | + | + | + |
Batooei M et al., 2018 [39] | N-acetylcysteine 600 mg | 90 days | + | Not evaluated. | + |
Dawczynski C et al., 2009 [40] | n-3 long-chain PUFA | 60 days | + | + | + |
Kolahi S et al., 2019 [41] | Alpha-lipoic 1200 mg | 60 days | + | + | + |
Hashemi G et al., 2019 [42] | N-acetylcysteine 600 mg | 90 days | + | + | + |
Esalatmanesh K et al., 2022 [43] | N-acetylcysteine 600 mg | 90 days | + | + | + |
Fernández OSL et al., 2016 [44] | Ozone 25 mg/L | 30 days | Not evaluated. | + | + |
Vaghef-Mehrabany E et al., 2014 [45] | Lactobacillus casei | 60 days | Not evaluated. | - | Not evaluated. |
Khojah HM et al., 2018 [46] | Resveratrol 1 g | 90 days | + | - | + |
Hamidi Z et al., 2020 [47] | Saffron 100 mg | 90 days | + | - | Not evaluated. |
Peretz A et al., 2001 [48] | Selenium 200 μg | 90 days | + | + | + |
Helmy M et al., 2001 [49] | Selenium 50 μg | 60 days | Not evaluated. | + | Not evaluated. |
Shavandi M et al., 2017 [50] | Silymarin 420 mg | 90 days | + | Not evaluated. | Not evaluated. |
Thimóteo NSB et al., 2018 [51] | Cranberry juice 500 mL | 90 days | + | Not evaluated. | + |
Helli B et al., 2019 [52] | Sesamin 200 mg | 60 days | + | + | + |
Helli B et al., 2015 [13] | Sesamin 200 mg | 44 days | + | + | + |
Zamani B et al., 2016 [53] | Probiotics | 60 days | + | + | + |
Edmonds SE et al., 1997 [54] | α-tocopherol 600 mg | 90 days | + | + | + |
Study (First Author, Year) | Number and Groups of Patients | Antioxidant Treatment | Antioxidative Effects in RA Treatment |
---|---|---|---|
Moosavian SP et al., 2020 [26] | 70 women with RA divided into intervention (n = 35) and placebo group (n = 35) | Tablet of 500 mg garlic twice daily for 8 weeks | Significant increase in TAC serum levels compared to the placebo group. Significant reduction in MDA levels compared to the control group. |
Ghavipour M et al., 2016 [27] | 55 patients with RA divided into intervention group (n = 30) and control group (n = 25) | Two capsules of 250 mg pomegranate extract per day for 8 weeks | Significant increase in glutathione peroxidase (GPx) concentrations compared to the placebo group. No significant difference in the mean of MDA levels between the intervention and the control group. |
Edmund KLi et al., 2007 [28] | 65 patients with RA divided into intervention group (n = 32) and placebo group (n = 33) | A combination of Ganoderma lucidum (4 gm) and San Miao San (2.4 gm) daily for 24 weeks | No significant difference in the total antioxidant power of plasma by the ferric ion reducing antioxidant parameter (FRAP) assay and plasma ascorbic acid concentration between the intervention and the control group. |
Abdollahzad H et al., 2015 [29] | 44 patients with RA divided into intervention group (n = 22) and placebo group (n = 22) | 100 mg/day capsules of coenzyme Q10 for 2 months in addition to their conventional medications (methotrexate, sulfasalazine, hydroxychloroquine, and prednisolone) | Significant reduction in MDA concentration compared to the placebo. No significant difference in TAC between the intervention and the control group. |
Thabrew MI et al., 2001 [34] | 100 patients with RA divided into two treatment groups | 160 mL of Maharasnadi quathar (MRQ) extract orally three times a day for three months in the MRQ group, half a teaspoon of the powder of Weldehi choornaya (WC) mixed with a little bee honey orally twice a day for three months in the WC group | Statistically significant rise in the antioxidant enzyme activities in the MRQ group. Significant decrease in TBARS generation in both groups (greater effect in the MRQ-treated group). |
Forrest CM et al., 2007 [36] | 75 patients with RA divided into intervention group (n = 37) and placebo group (n = 38). | 10 mg of melatonin at night in addition to ongoing medication for six months | Significant reduction in plasma kynurenine concentrations in the melatonin group. |
Esalatmanesh K et al., 2021 [37] | 64 patients with RA divided into intervention group (n = 32) and placebo group (n = 32). | 6 mg/day of melatonin for 12 weeks | Significant increase in TAC and HDL-C. But, considerable differences only seen between the two groups were in serum MDA and LDL-C concentrations. |
Cannarella LAT et al., 2021 [38] | 42 patients with RA divided into intervention group (n = 21) and placebo group (n = 21) | Daily ingestion of probiotics in a sachet containing (109 CFU/g) of each of five freeze-dried strains: Lactobacillus acidophilus LA-14, Lactobacillus casei LC-11, Lactococcus lactis LL-23, Bifidobacterium lactis BL-04, and Bifidobacterium bifidum BB-06 | Significant lower nitric oxide metabolites and higher sulfhydryl group and total radical-trapping antioxidant parameter compared to the placebo group. |
Kolahi S et al., 2019 [41] | 70 patients with RA divided into intervention group (n = 35) and placebo group (n = 35) | 1200 mg/day alpha-lipoic acid for 8 weeks | Significant increase in serum TAC and arylesterase (ARE) and significant decline in MDA in the intervention group, but it was not statistically significant when compared with the placebo group. Within- and between-group differences in blood antioxidant enzymes were not statistically significant. |
Hashemi G et al., 2019 [42] | 42 patients with RA divided into intervention group (n = 23) and placebo group (n = 19) | 600 mg N-acetylcysteine twice a day for 12 weeks | Significant reduction in MDA, NO, IL-6, TNF-α, erythrocyte sedimentation rate (ESR), and CRP. Significant increase in TAC and Total Thiol Groups (TTG). Only NO, MDA, and TTG showed a significant difference compared to the placebo group. |
Esalatmanesh K et al., 2022 [43] | 74 patients with RA divided into intervention group and placebo group | 600 mg N-acetylcysteine twice a day for 3 months | Significant reduction in NO and fasting blood sugar (FBS). No significant reduction in MDA and increase in TAC and GPx activity compared to the placebo group. |
Fernández OSL et al., 2016 [44] | 60 patients with RA divided into MTX group (n = 30; methotrexate, folic acid and ibuprophen) and MTX + ozone group (n = 30; MTX group + medical ozone) | 12.5 mg of MTX i.m. once per week + 400 mg of ibuprophen orally three times a day + 5 mg of folic acid oral/day + 25 mg/L to 40 mg/L of medical ozone (20 treatments, five/week) for 4 weeks | MTX + medical ozone increased the capacity of the antioxidant endogenous system. Increased glutathione (GSH). |
Peretz A et al., 2001 [48] | 15 women with RA divided into intervention group (n = 8) and placebo group (n = 7) | 200 μg of selenium as enriched yeast tablets for 3 months | Significant increase in plasma selenium and E-GPx activity compared to the placebo group. Pain and joint involvement were reduced in most patients treated with selenium. |
Helmy M et al., 2001 [49] | 30 patients with RA divided into three groups (combination of antioxidants, vitamin E, and control group) | Group II: 50 μg of antioxidant tablet with selenium, 105 mg of medicinal yeast, 5.54 mg of vitamin A acetate, 100 mg of ascorbic acid, and 30 mg/daily of vitamin E + standard treatment Group III: 400 mg of vitamin E three times a day + standard treatment | Significant increase in GPx activity and reduction in MDA in II and III groups compared to standard treatment. |
Helli B et al., 2015 [13] | 44 patients with RA divided into intervention group (n = 22) and placebo group (n = 22) | 200 mg sesamin capsule once daily for 6 weeks | Significant decrease in serum levels of MDA and increase in TAC and HDL-C compared to the placebo group. |
Zamani B et al., 2016 [53] | 54 patients with RA divided into intervention group (n = 27) and placebo group (n = 27) | Synbiotic capsule containing Lactobacillus acidophilus, Lactobacillus casei, and Bifidobacterium bifidum (2 × 109 colony-forming units/g) plus 800 mg of inulin for 8 weeks | Significant increase in plasma GSH compared to the placebo group. |
Edmonds SE et al., 1997 [54] | 42 patients with RA divided into intervention group (n = 20) and placebo group (n = 22) | 600 mg of α-tocopherol twice a day for 12 weeks | Oxidative modification of lipids and proteins and inflammatory activity were unchanged compared with placebo, with the exception of the concentration of apolipoprotein A-I. The pain parameters were significantly decreased compared to the placebo group. |
Study (First Author, Year) | Number and Groups of Patients | Antioxidant Treatment | Cardiovascular Effects |
---|---|---|---|
Dawczynski C et al., 2009 [40] | 45 patients with RA divided into intervention and placebo group | n-3 long-chain PUFA-supplemented dairy products or placebo consecutively for 3 months with a 2-month washout phase between the two periods | Atherosclerosis-preventive and cardioprotective effect of long-term consumption of dairy products via the modulation of blood lipids (significantly increased HDL and lowered lipoprotein a). |
Helli B et al., 2015 [13] | 44 patients with RA divided into intervention group (n = 22) and placebo group (n = 22) | 200 mg sesamin capsule once daily for 6 weeks | Significant improvement in anthropometric indices, lipid profiles, blood pressure, and oxidative stress markers may be beneficial for CVD prevention. |
Study | No. Effect Size | n | d | S2 | 95% Confidence Interval | |
---|---|---|---|---|---|---|
Lower Limit | Upper Limit | |||||
Moosavian SP et al., 2020 [26] | 1 | 70 | 0.594 | 0.069 | 0.077 | 1.111 |
Ghavipour M et al., 2016 [27] | 1 | 55 | 0.845 | 0.097 | 0.234 | 1.455 |
Edmund KLi et al., 2007 [28] | 1 | 65 | 0.661 | 0.034 | 0.298 | 1.022 |
Abdollahzad H et al., 2015 [29] | 1 | 44 | 0.720 | 0.011 | 0.168 | 0.912 |
Aryaeian N et al., 2009 [30] | 1 | 87 | 0.330 | 0.044 | 0.356 | 0.775 |
Amalraj A et al., 2017 [31] | 1 | 36 | 0.445 | 0.078 | −0.033 | 0.793 |
Javadi F et al., 2016 [32] | 1 | 50 | 0.321 | 0.021 | −0.031 | 0.678 |
Bae SC et al., 2014 [33] | 1 | 32 | 0.678 | 0.033 | −0.043 | 0.788 |
Thabrew MI et al., 2001 [34] | 2 | 100 | 0.438 | 0.011 | 0.021 | 0.790 |
Hagfors L et al., 2003 [35] | 1 | 51 | 0.334 | 0.011 | 0.367 | 1.122 |
Forrest CM et al., 2007 [36] | 1 | 75 | 0.112 | 0.056 | 0.567 | 1.245 |
Esalatmanesh K et al., 2021 [37] | 1 | 64 | 0.455 | 0.078 | 0.021 | 1.043 |
Cannarella LAT et al., 2021 [38] | 1 | 42 | 0.578 | 0.085 | 0.342 | 1.134 |
Batooei M et al., 2018 [39] | 1 | 51 | 0.744 | 0.065 | 0.143 | 0.987 |
Dawczynski C et al., 2009 [40] | 1 | 45 | 0.674 | 0.056 | −0.322 | 0.786 |
Kolahi S et al., 2019 [41] | 1 | 70 | 0.401 | 0.067 | 0.321 | 1.110 |
Hashemi G et al., 2019 [42] | 1 | 42 | 0.657 | 0.056 | 0.211 | 1.345 |
Esalatmanesh K et al., 2022 [43] | 1 | 74 | 0.884 | 0.032 | 0.245 | 1.345 |
Fernández OSL et al., 2016 [44] | 1 | 60 | 0.421 | 0.045 | 0.232 | 1.445 |
Vaghef-Mehrabany E et al., 2016 [45] | 1 | 46 | 0.546 | 0.066 | 0.135 | 1.097 |
Khojah HM et al., 2018 [46] | 2 | 100 | 0.587 | 0.021 | 0.143 | 0.898 |
Hamidi Z et al., 2019 [47] | 1 | 66 | 0.477 | 0.034 | 0.145 | 1.065 |
Peretz A et al., 1992 [48] | 1 | 15 | 0.678 | 0.056 | 0.156 | 0.987 |
Helmy M et al., 2001 [49] | 1 | 30 | 0.477 | 0.067 | 0.245 | 1.065 |
Shavandi M et al., 2017 [50] | 1 | 57 | 0.321 | 0.067 | 0.276 | 0.983 |
Thimóteo NSB et al., 2018 [51] | 1 | 41 | 0.675 | 0.045 | 0.278 | 1.108 |
Helli B et al., 2019 [52] | 1 | 44 | 0.232 | 0.065 | 0.266 | 1.104 |
Helli B et al., 2015 [13] | 1 | 44 | 0.339 | 0.052 | 0.277 | 1.324 |
Zamani B et al., 2017 [53] | 1 | 54 | 0.671 | 0.045 | 0.143 | 0.965 |
Edmonds SE et al., 1997 [54] | 1 | 42 | 0.441 | 0.042 | 0.265 | 1.245 |
Final result | 1652 | 0.525 | 0.050 | 0.212 | 713.118 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Djordjevic, K.; Milojevic Samanovic, A.; Veselinovic, M.; Zivkovic, V.; Mikhaylovsky, V.; Mikerova, M.; Reshetnikov, V.; Jakovljevic, V.; Nikolic Turnic, T. Oxidative Stress Mediated Therapy in Patients with Rheumatoid Arthritis: A Systematic Review and Meta-Analysis. Antioxidants 2023, 12, 1938. https://doi.org/10.3390/antiox12111938
Djordjevic K, Milojevic Samanovic A, Veselinovic M, Zivkovic V, Mikhaylovsky V, Mikerova M, Reshetnikov V, Jakovljevic V, Nikolic Turnic T. Oxidative Stress Mediated Therapy in Patients with Rheumatoid Arthritis: A Systematic Review and Meta-Analysis. Antioxidants. 2023; 12(11):1938. https://doi.org/10.3390/antiox12111938
Chicago/Turabian StyleDjordjevic, Katarina, Andjela Milojevic Samanovic, Mirjana Veselinovic, Vladimir Zivkovic, Victor Mikhaylovsky, Maria Mikerova, Vladimir Reshetnikov, Vladimir Jakovljevic, and Tamara Nikolic Turnic. 2023. "Oxidative Stress Mediated Therapy in Patients with Rheumatoid Arthritis: A Systematic Review and Meta-Analysis" Antioxidants 12, no. 11: 1938. https://doi.org/10.3390/antiox12111938
APA StyleDjordjevic, K., Milojevic Samanovic, A., Veselinovic, M., Zivkovic, V., Mikhaylovsky, V., Mikerova, M., Reshetnikov, V., Jakovljevic, V., & Nikolic Turnic, T. (2023). Oxidative Stress Mediated Therapy in Patients with Rheumatoid Arthritis: A Systematic Review and Meta-Analysis. Antioxidants, 12(11), 1938. https://doi.org/10.3390/antiox12111938