Natural Antioxidants in Obesity and Related Diseases
- Souza, F.; Silva, G.; Cadavid, C.; Lisboa, L.; Silva, M.; Paiva, W.; Ferreira, M.; de Paula Oliveira, R.; Rocha, H. Antioxidant Baccharis trimera Leaf Extract Suppresses Lipid Accumulation in C. elegans Dependent on Transcription Factor NHR-49. Antioxidants 2022, 11(10), 1913; https://doi.org/10.3390/antiox11101913.
- Park, W.; Song, G.; Boo, M.; Kim, H.; Park, J.; Jung, S.; Choi, M.; Kim, B.; Kim, Y.; Kim, M.; Kim, K.; Kwak, H.; Leem, J.; Um, J.; Park, J. Anmyungambi Decoction Ameliorates Obesity through Activation of Non-Shivering Thermogenesis in Brown and White Adipose Tissues. Antioxidants 2023, 12(1), 49; https://doi.org/10.3390/antiox12010049.
- Tamel Selvan, K.; Goon, J.; Makpol, S.; Tan, J. Effects of Microalgae on Metabolic Syndrome. Antioxidants 2023, 12(2), 449; https://doi.org/10.3390/antiox12020449.
- Arellano-García, L.; Trepiana, J.; Martínez, J.; Portillo, M.; Milton-Laskibar, I. Beneficial Effects of Viable and Heat-Inactivated Lactobacillus rhamnosus GG Administration on Oxidative Stress and Inflammation in Diet-Induced NAFLD in Rats. Antioxidants 2023, 12(3), 717; https://doi.org/10.3390/antiox12030717.
- Méndez, L.; Muñoz, S.; Barros, L.; Miralles-Pérez, B.; Romeu, M.; Ramos-Romero, S.; Torres, J.; Medina, I. Combined Intake of Fish Oil and D-Fagomine Prevents High-Fat High-Sucrose Diet-Induced Prediabetes by Modulating Lipotoxicity and Protein Carbonylation in the Kidney. Antioxidants 2023, 12(3), 751; https://doi.org/10.3390/antiox12030751.
- Zheng, Y.; Lee, S.; Lee, Y.; Lee, T.; Kim, J.; Kim, T.; Kang, I. Standardized Sanguisorba officinalis L. Extract Inhibits Adipogenesis and Promotes Thermogenesis via Reducing Oxidative Stress. Antioxidants 2023, 12(4), 882; https://doi.org/10.3390/antiox12040882.
- Munteanu, C.; Schwartz, B. The Effect of Bioactive Aliment Compounds and Micronutrients on Non-Alcoholic Fatty Liver Disease. Antioxidants 2023, 12(4), 903; https://doi.org/10.3390/antiox12040903.
- Jung, U. Sarcopenic Obesity: Involvement of Oxidative Stress and Beneficial Role of Antioxidant Flavonoids. Antioxidants 2023, 12(5), 1063; https://doi.org/10.3390/antiox12051063.
- Munkhsaikhan, U.; Kwon, Y.; Sahyoun, A.; Galán, M.; Gonzalez, A.; Ait-Aissa, K.; Abidi, A.; Kassan, A.; Kassan, M. The Beneficial Effect of Lomitapide on the Cardiovascular System in LDLr-/- Mice with Obesity. Antioxidants 2023, 12(6), 1287; https://doi.org/10.3390/antiox12061287.
- Naomi, R.; Teoh, S.; Halim, S.; Embong, H.; Hasain, Z.; Bahari, H.; Kumar, J. Unraveling Obesity: Transgenerational Inheritance, Treatment Side Effects, Flavonoids, Mechanisms, Microbiota, Redox Balance, and Bioavailability & mdash; A Narrative Review. Antioxidants 2023, 12(8), 1549; https://doi.org/10.3390/antiox12081549.
- Mokgalaboni, K.; Dlamini, S.; Phoswa, W.; Modjadji, P.; Lebelo, S. The Impact of Punica granatum Linn and Its Derivatives on Oxidative Stress, Inflammation, and Endothelial Function in Diabetes Mellitus: Evidence from Preclinical and Clinical Studies. Antioxidants 2023, 12(8), 1566; https://doi.org/10.3390/antiox12081566.
- Cortés-Espinar, A.; Ibarz-Blanch, N.; Soliz-Rueda, J.; Bonafos, B.; Feillet-Coudray, C.; Casas, F.; Bravo, F.; Calvo, E.; Ávila-Román, J.; Mulero, M. Rhythm and ROS: Hepatic Chronotherapeutic Features of Grape Seed Proanthocyanidin Extract Treatment in Cafeteria Diet-Fed Rats. Antioxidants 2023, 12(8), 1606; https://doi.org/10.3390/antiox12081606.
- Dave, A.; Park, E.; Pezzuto, J. Multi-Organ Nutrigenomic Effects of Dietary Grapes in a Mouse Model. Antioxidants 2023, 12(10), 1821; https://doi.org/10.3390/antiox12101821.
Author Contributions
Funding
Conflicts of Interest
References
- Hannon, T.S.; Arslanian, S.A. Obesity in Adolescents. N. Engl. J. Med. 2023, 389, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Lingvay, I.; Sumithran, P.; le Roux, C.W.; Cohen, R.V. There is no magic bullet for obesity. Lancet Diabetes Endocrinol. 2023, 11, 541. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, D.K.; Heilmann, R.M.; Paital, B.; Patel, A.; Yadav, V.K.; Wong, D.; Jergens, A.E. Oxidative stress, hormones, and effects of natural antioxidants on intestinal inflammation in inflammatory bowel disease. Front. Endocrinol. 2023, 14, 1217165. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Huang, Q.; Wang, Y.; Yao, Y.; Li, J.; Chen, J.; Wu, M.; Zhang, Z.; Mingyao, E.; Qi, H.; et al. Therapeutic application of natural products: NAD(+) metabolism as potential target. Phytomedicine 2023, 114, 154768. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Nurkolis, F.; Won, H.; Yang, J.; Oh, D.; Jo, H.; Choi, J.; Chung, S.; Kurniawan, R.; Kim, B. Could Natural Products Help in the Control of Obesity? Current Insights and Future Perspectives. Molecules 2023, 28, 6604. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Du, Q.; Meng, X.; Zhang, Y. Natural polyphenols: A potential prevention and treatment strategy for metabolic syndrome. Food Funct. 2022, 13, 9734–9753. [Google Scholar] [CrossRef] [PubMed]
- Thyagarajan, A.; Forino, A.S.; Konger, R.L.; Sahu, R.P. Dietary Polyphenols in Cancer Chemoprevention: Implications in Pancreatic Cancer. Antioxidants 2020, 9, 651. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Yoon, S.-H.; Kim, H.; Kim, Y.D.; Leem, J.; Park, J. Ephedrae Herba in combination with herbal medicine (Zhizichi decoction and Phellodendri Cortex) for weight reduction: A case series. Integr. Med. Res. 2020, 9, 100408. [Google Scholar] [CrossRef]
- Jang, D.; Jeong, H.; Kim, C.E.; Leem, J. A System-Level Mechanism of Anmyungambi Decoction for Obesity: A Network Pharmacological Approach. Biomolecules 2021, 11, 1881. [Google Scholar] [CrossRef]
- Laamanen, C.; Desjardins, S.; Senhorinho, G.; Scott, J. Harvesting microalgae for health beneficial dietary supplements. Algal Res. 2021, 54, 102189. [Google Scholar] [CrossRef]
- Liao, M.-T.; Sung, C.-C.; Hung, K.-C.; Wu, C.-C.; Lo, L.; Lu, K.-C. Insulin resistance in patients with chronic kidney disease. J. Biomed. Biotechnol. 2012, 2012, 691369. [Google Scholar] [CrossRef] [PubMed]
- Kris-Etherton, P.M.; Harris, W.S.; Appel, L.J. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 2003, 23, e20–e30. [Google Scholar] [CrossRef]
- Amézqueta, S.; Ramos-Romero, S.; Martínez-Guimet, C.; Moreno, A.; Hereu, M.; Torres, J.L. Fate of D-fagomine after oral administration to rats. J. Agric. Food Chem. 2017, 65, 4414–4420. [Google Scholar] [CrossRef] [PubMed]
- Gómez, L.; Molinar-Toribio, E.; Calvo-Torras, M.Á.; Adelantado, C.; Juan, M.E.; Planas, J.M.; Canas, X.; Lozano, C.; Pumarola, S.; Clapés, P. D-Fagomine lowers postprandial blood glucose and modulates bacterial adhesion. Br. J. Nutr. 2012, 107, 1739–1746. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Liu, X.; Zhang, Z.L.; He, L.; Wang, Z.; Wang, G.S. Isolation and identification of the phenolic compounds from the roots of Sanguisorba officinalis L. and their antioxidant activities. Molecules 2012, 17, 13917–13922. [Google Scholar] [CrossRef] [PubMed]
- Katsiki, N.; Mikhailidis, D.P.; Mantzoros, C.S. Non-alcoholic fatty liver disease and dyslipidemia: An update. Metabolism 2016, 65, 1109–1123. [Google Scholar] [CrossRef] [PubMed]
- Arrese, M.; Arab, J.P.; Barrera, F.; Kaufmann, B.; Valenti, L.; Feldstein, A.E. Insights into nonalcoholic fatty-liver disease heterogeneity. Semin. Liver Dis. 2021, 41, 421–434. [Google Scholar] [CrossRef] [PubMed]
- Kalyani, R.R.; Corriere, M.; Ferrucci, L. Age-related and disease-related muscle loss: The effect of diabetes, obesity, and other diseases. Lancet Diabetes Endocrinol. 2014, 2, 819–829. [Google Scholar] [CrossRef]
- Goulooze, S.C.; Cohen, A.F.; Rissmann, R. Lomitapide. Br. J. Clin. Pharmacol. 2015, 80, 179. [Google Scholar] [CrossRef]
- Rader, D.J.; Kastelein, J.J. Lomitapide and mipomersen: Two first-in-class drugs for reducing low-density lipoprotein cholesterol in patients with homozygous familial hypercholesterolemia. Circulation 2014, 129, 1022–1032. [Google Scholar] [CrossRef]
- Kondratov, R.V.; Vykhovanets, O.; Kondratova, A.A.; Antoch, M.P. Antioxidant N-acetyl-L-cysteine ameliorates symptoms of premature aging associated with the deficiency of the circadian protein BMAL1. Aging 2009, 1, 979. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.I.; Park, J. Natural Antioxidants in Obesity and Related Diseases. Antioxidants 2023, 12, 1966. https://doi.org/10.3390/antiox12111966
Kim HI, Park J. Natural Antioxidants in Obesity and Related Diseases. Antioxidants. 2023; 12(11):1966. https://doi.org/10.3390/antiox12111966
Chicago/Turabian StyleKim, Hyo In, and Jinbong Park. 2023. "Natural Antioxidants in Obesity and Related Diseases" Antioxidants 12, no. 11: 1966. https://doi.org/10.3390/antiox12111966
APA StyleKim, H. I., & Park, J. (2023). Natural Antioxidants in Obesity and Related Diseases. Antioxidants, 12(11), 1966. https://doi.org/10.3390/antiox12111966